MATH1510 Calculus for Engineers (Fall 2016) Suggested Solution for Midterm Examination 1. Solution: (a) Noted (1 + x)3 = x3 + 3x2 + 3x + 1, lim− x→0 (1 + x)3 − 1 x3 + 3x2 + 3x + 1 − 1 = lim− x→0 x x 2 = lim− (x + 3x + 3) = 3. x→0 (b) (x − 1)(x − 2) x2 − 3x + 2 = lim 2 x→1 (1 − x)(1 + x) x→1 1−x 2−x 1 = lim = . x→1 1 + x 2 lim (c) x5 x4 x3 x2 1 x 2 5+ 5+ 5+ 5+ 5 2x5 + x4 + x3 + x2 + 1 x x x x x = lim lim 4 3 2 5 x→+∞ x→+∞ πx5 + x4 + x3 + x2 + 1 x x x 1 x x5 π 5 + 5 + 5 + 5 + 5 x x x x x −1 −2 −3 −5 2 2+x +x +x +x = . = lim x→+∞ π + x−1 + x−2 + x−3 + x−5 π 5 (d) x −1 x −1 2 2 2 1 2 lim 1 + 1+ = lim 1 + x→+∞ x→+∞ x x/2 x x2 1 1 lim = lim 1 + x→+∞ 1 + 2 x→+∞ x/2 x = e · 1 = e. (e) Since | sin x| ≤ 1 and | cos3 x| ≤ 13 = 1, and as x → −∞, 2x x(sin x + cos3 x) 2x ≤ ≤ − , x2 + 1 x2 + 1 x2 + 1 moreover, 2 2x = lim = 0, 2 x→−∞ 1/x + x x→−∞ 1 + x lim lim (− x→−∞ then using the squeeze theorem, we know x(sin x + cos3 x) lim = 0. x→−∞ x2 + 1 2x ) = 0, 1 + x2 2. Solution: (a) First, the right hand limit is, lim f (x) = lim+ sin x = 0 x→0+ x→0 Second, the left hand side limit is, lim f (x) = lim− −|x| = 0 x→0 x→0− and by the definition of f (x), one have f (0) = −|0| = 0. The above three identities gives lim f (x) = lim− f (x) = f (0) = 0 x→0+ x→0 by definition of continuity of a function at a point, we know f is continuous at x = 0. (b) By definition of Lf ′ and f (x) for x < 0, Lf ′ (0) = lim− h→0 −|h| − 0 −(−h) f (h) − f (0) = lim− = lim− = 1. h→0 h→0 h h h (c) By definition of Rf ′ and f (x) for x > 0, Rf ′ (0) = lim+ h→0 f (h) − f (0) sin h − 0 = lim+ = 1. h→0 h h (d) By (b) and (c), we know Lf ′ (0) = Rf ′ (0) = 1 so f (x) is differentiable at x = 0. 20 15 10 y 5 0 −5 −10 −15 −20 −20 −15 −10 −5 0 x 5 Figure 1: Question 2 10 15 20 3. Solution: (a) For x > 0, noted d a x = axa−1 , dx dy 2 3 = x−1/3 − x−5/2 . dx 3 2 (b) For x > 0, noted log9 x = d x ln x and 9 = 9x ln 9, ln 9 dx dy 2 1 9x = + ln 9. dx ln 9 x 2 (c) Noted (f /g)′ = (f ′ g − f g ′)/g 2, cos x(cos x + 3) + sin x(sin x + 2) 1 + 3 cos x + 2 sin x dy = = . 2 dx (cos x + 3) (cos x + 3)2 (d) By chain rule, dy = ecos x · (− sin x) + cos (ex ) · ex = −ecos x sin x + ex cos ex . dx (e) For x > 0, taking natural logarithms of both sides of y = x1/x ln y = 1 ln x, x then taking derivative with respect to x, 1 1 1 dy = − 2 ln x + 2 , y dx x x then replace y by x1/x , dy = −x1/x−2 ln x + x1/x−2 . dx 4. Solution: By the representation of f (x), √ f ′ (x) = −2 sin (2x) + 2 2 sin x = 4 sin x √ ! 2 − cos x 2 Take f ′ (x) = 0, one can get sin x = 0 or cos x = √ π 2 . = cos ± 2 4 Case 1: sin x = 0, then x = kπ , k ∈ Z, where Z is the set whose elements are all the integers( same notation also used in the following). √ 2 π , then x = ± + 2kπ, k ∈ Z Case 2: cos x = 2 4 Combine Case 1 and 2, one can get all the critical points of f (x) are n o n π o kπ, k ∈ Z ∪ ± + 2kπ, k ∈ Z . 4 10 y=f y = f′ 8 6 4 y 2 0 −2 −4 −6 −8 −10 −10 −5 0 x Figure 2: Question 4 5 10 5. Solution: Firstly, we need to get the second derivative of f (x), f ′ (x) = ex + xex , f ′′ (x) = ex + ex + xex = (2 + x)ex . Note that ex is positive, so f ′′ (x) > 0 for x > −2; and f ′′ (x) < 0 for x < −2. So the only inflection point is − 2, f (−2) = (−2, −2e−2 ) where the concavity switches from negative to positive. IP x = −2 Test Value x = −10 ′′ Sign of f (x) f ′′ (x) < 0 − x = 10 f (x) > 0 + ′′ 35 y=f y = f′ y = f′′ 30 25 y 20 15 10 5 0 −3 −2.5 −2 −1.5 −1 −0.5 x 0 0.5 Figure 3: Question 5 1 1.5 2 6. Solution: (a) Calculate the derivatives first, y ′ = ex sin (2x) + ex · 2 cos (2x) = ex sin (2x) + 2 cos (2x)ex , y ′′ = ex sin (2x) + 2ex cos (2x) + 2 ex cos (2x) − 2ex sin (2x) = ex − 3 sin (2x) + 4 cos (2x) . Substitute the formulas of y, y ′ , y ′′ to the equation for y, 0 = y ′′ − 2y ′ + ky = ex − 3 sin (2x) + 4 cos (2x) − 2[ex sin (2x) + 2 cos (2x)ex ] + kex sin(2x) = (k − 5)ex sin (2x), then k = 5. 400 ky where k = 5 y′ y′′ 300 200 100 y 0 −100 −200 −300 −400 −500 −5 −4 −3 −2 −1 0 x 1 2 Figure 4: Question 6a 3 4 5 (b) Taking derivative with respect to x, x2 e dy dy · 2x + 2y = 0, + 2 cos (2xy) y + x dx dx i.e 2[y + x cos (2xy)] then dy 2 = −2 y cos (2xy) + xex , dx 2 y cos (2xy) + xex dy =− . dx y + x cos (2xy) Evaluate at (x, y) = (0, 1), one get dy 1+0 =− = −1. dx (0,1) 1+0 which gives the slope of the tangent line, and since the tangent line pass the point (0, 1) , then the equation of the tangent line is: y = −x + 1. 2 2 exp(x )+y +sin(2 x y)−2 = 0 2 y = f(x) tangent line at (0, 1) 1.5 1 y 0.5 0 −0.5 −1 −1.5 −2 −5 −4 −3 −2 −1 0 x 1 2 Figure 5: Question 6b 3 4 5 (c) 1 x 11 Since f (x) is continuous and differentiable in 1, 10 , one can use Lagrange’s 11 mean value theorem, i.e, there is a c ∈ 1, 10 , such that − f (1) f 11 1 10 = f ′ (c) = , 11 c −1 10 f ′ (x) = then noted f (1) = 0 and f (x) = ln x, one have 1 1 11 = . ln 10 10 c By the fact 1 10 < < 1 for c ∈ (1, 11 ), 10 11 c 1 1 1 1 < < . 11 10 c 10 Combining the above two, one get the conclusion. (d) i. Solution 1: By using l’Hôpital’s rule twice, 0 ) 0 0 0 e−3r − e−2r + r lim r→0 r2 −3e−3r + 2e−2r + 1 = lim r→0 2r 5 9e−3r − 4e−2r = . r→0 2 2 = lim Solution 2: By the Taylor expansion of f (x) = ex at 0, ex = 1 + x + x2 /2 + o(x2 ) then e−3r − e−2r + r (1 − 3r + 9r 2 /2) − (1 − 2r + 4r 2/2) + r + o(r 2 ) = lim r→0 r→0 r2 r2 5 o(r 2 ) 5 5r 2 /2 + o(r 2 ) = lim + = . = lim r→0 r→0 r2 2 r2 2 lim 10 9 8 7 6 y 5 4 3 2 1 0 −1 −1 −0.8 −0.6 −0.4 −0.2 0 x 0.2 0.4 Figure 6: Question 6(d)i 0.6 0.8 1 ii. First, ln(aK −t −t −1/t + (1 − a)L ) 0 . 0 ln(aK −t + (1 − a)L−t ) =− t where since lim A−t = 1 for A > 0, then t→0 lim ln(aK −t + (1 − a)L−t ) = ln(a + (1 − a)) = ln 1 = 0. t→0 By using l’Hôpital’s rule, lim − t→0 ln(aK −t + (1 − a)L−t ) aK −t ln K + (1 − a)L−t ln L = lim t→0 t aK −t + (1 − a)L−t = a ln K + (1 − a) ln L = ln(K a L1−a ). a = 0.3 K = 5 L = 9 2.1 2.05 y (0, ln(50.3 90.7 ) 2 1.95 1.9 1.85 −3 −2 −1 0 x 1 Figure 7: Question 6(d)ii 2 3 iii. First, we consider lim (2u − π) ln(tan u) u→ π2 − ln(tan u) (2u − π)−1 sec2 u 2 − = lim− tan u (2u − π)2 u→ π2 0 ( ) 0 = lim− u→ π2 = − lim π− u→ 2 = lim π− u→ 2 (2u − π)2 (2u − π)2 = lim sin (2u) u→ π2 − sin (2u − π) (2u − π) · (2u − π) = 0. sin (2u − π) x = 1, so x→0 sin x here we used l’Hôpital’s rule and lim lim (tan u)2u−π = e0 = 1. u→ π2 − 10 y 8 6 4 ( π2 , 1) y 2 0 −2 −4 −6 −8 −10 1 1.1 1.2 1.3 1.4 1.5 x 1.6 1.7 Figure 8: Question 6(d)iii iv. 1.8 1.9 2 Solution 1: By l’Hôpital’s rule sin−1 (x/6) lim x→0 tan−1 (x/2) 1 1 p 6 1 − x2 /36 1 = . = lim 1 1 x→0 3 2 2 1 + x /4 0 0 Solution 2: As sin−1 (x) = x + o(x), tan−1 x = x + o(x), then sin−1 (x/6) 1 x/6 + o(x) 1/6 + o(x)/x = lim = lim = . −1 x→0 tan (x/2) x→0 x/2 + o(x) x→0 1/2 + o(x)/x 3 lim 0.5 y 0.45 0.4 (0, 13 ) 0.35 y 0.3 0.25 0.2 0.15 0.1 0.05 0 −1 −0.8 −0.6 −0.4 −0.2 0 x 0.2 0.4 Figure 9: Question 6(d)iv 0.6 0.8 1
© Copyright 2026 Paperzz