2.34 CFC-12(R12)

CFC-12(R12)
313
2.34 CFC-12(R12)
All equations for CFC-12(R12) are based on the Table from Japanese Association of Refrigeration [1].
2.34.1 Temperature Scale
International practical temperature scale 1968 (IPTS-1968)
2.34.2 The Names of Substance, Library File and Single Shot Program
Name of Substance:
Library File for UNIX:
Library File for DOS,Windows95/NT:
Single Shot Program for UNIX:
Single Shot Program for DOS,Windows95/NT:
CFC-12, R12, Refrigerant 12, Freon 12,
Dichlorodifluoromethane
libjr12.a
JR12.LIB
r12-ss
R12–SS.EXE
2.34.3 Important Constants and Others
Molecular Formula:
Relative Molecular Mass:
Gas Constant:
CC2 F2
120.9138
68.7625 J/(kg·K)
Critical Constants:
Critical Pressure:
Critical Temperature:
Critical Specific Volume:
4.125×10 6Pa (41.25 bar)
384.95 K (111.80 ◦C)
1.7921×10 −3m3 /kg
Reference State:
At 0◦ C, 1.0000 kcal(thermochemical)/(kg·K), i.e. 4184.0 J/(kg·K) and 100.00 kcal(thermochemical)/kg, i.e. 0.4184
×106 J/kg are assigned to the specific entropy and the specific enthalpy, respectively.
2.34.4 Formula
Equation of State:
Equation (II·2·1) in a function form of Z = Z(ρ, T ) in reference [1]. Here Z=compressibility, ρ=density and
T = temperature. However the temperature scale IPTS-1948 used in the reference has been replaced with terms
of IPTS-1968.
Vapor Pressure:
Equation (II·2·3) in reference [1].
Properties at Vapor-Liquid Equilibrium:
saturated liquid: Equations (II·2·3), (II·2·9), (II·2·15) and (II·2·17) for specific volume, specific enthalpy, specific
entropy and isobaric specific heat, respectively. However the factor −2.1953 ×10−6 in the 3rd term in right hand
side of (II·2·17) has been corrected as −2.1593×10 −6.
saturated vapor: Equations (II·2·16) and (II·2·1) for specific volume, (II·2·16) and (II·2·6) for specific enthalpy,
and (II·2·16) and (II·2·12) for specific volume. Equations (II·2·16) and (II·2·21) for isobaric specific heat. Equations (II·2·16) and (II·2·26) for isochoric specific heat.
All of these equations have been cited from reference [1].
Transport Properties:
Equations (II·3·8) and (II·3·1) in reference [1] for thermal conductivity and dynamic viscosity of saturated
liquid, respectively. However the right hand side of (II·3·1) has been corrected as
314
P-PROPATH: Pure Substances and Mixtures with Fixed Composition
21.08203 − 2.450974 × 104 /T + 9.430266 × 106 /T 2 − 1.549714 × 109 /T 3 + 9.433612 × 1010 /T 4
Equations (II.3.10) and (II.3.3) in reference [1] for thermal conductivity of vapor at the atmospheric pressure
and dynamic viscosity of the superheated vapor, respectively.
The Other Properties:
Equation (II·2·37) in reference [1] for surface tension.
References
[1] Japanese Association of Refrigeration, Thermophysical Properties of Refrigerants (R12, Dichlorodifluoromethane), (1981).
CFC-12(R12)
315
Table II–2.34–1
No.
1
94
8A
8B
82
Name of
Function
AIPPT(P,T)
AJTPT(P,T)
AKPD(P)
AKPDD(P)
AKPT(P,T)
CFC-12 (R12) Function
Function and Argument(s)
AKPT: Isentropic Exponent [–]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
Range of Argument(s)
2.0×103 ≤P≤8.0×106 [Pa]
183.15≤T≤473.15 [K]
0.02≤P≤80 [bar]
−90≤T≤200 [◦C]
see Fig.II-2.34-1
8C
8D
2
AKTD(T)
AKTDD(T)
ALAPP(P)
3
ALAPT(T)
4
ALHP(P)
5
ALHT(T)
6
ALMPD(P)
7
8
ALMPDD(P)
ALMPT(P,T)
9
ALMTD(T)
10
11
ALMTDD(T)
AMUPD(P)
12
13
AMUPDD(P)
AMUPT(P,T)
14
AMUTD(T)
15
92
90
91
93
AMUTDD(T)
BPPT(P,T)
BSPT(P,T)
BTPT(P,T)
BVPT(P,T)
ALAPP: Laplace Coefficient [m]
P∗: Pressure [Pa], [bar]
ALAPT: Laplace Coefficient [m]
T∗: Temperature [K], [◦ C]
ALHP: Latent Heat of Vaporization [J/kg]
P∗: Pressure [Pa], [bar]
ALHT: Latent Heat of Vaporization [J/kg]
T∗: Temperature [K], [◦ C]
ALMPD: Thermal Conductivity of Saturated
Liquid [W/(m·K)]
P∗: Pressure [Pa], [bar]
22.59×103 ≤P≤4.02×106 [Pa]
0.2259≤P≤40.2 [bar]
213.15≤T≤383.15 [K]
−60≤T≤110 [◦C]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
PST(173.15K)≤P≤PST(333.15K) [Pa]
(∼1.17×103 )
(∼1.52×106 )
◦
PST(−100 C)≤P≤PST(60◦ C) [bar]
(∼0.0117)
(∼15.2)
ALMPT: Thermal Conductivity at Ordinary
Pressure [W/(m·K)]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
ALMTD: Thermal Conductivity of Saturated
Liquid [W/(m·K)]
T∗: Temperature [K], [◦ C]
P=Dummy
253.15≤T≤363.15 [K]
−20≤T≤90 [◦C]
AMUPD: Coefficient of Viscosity of Saturated
Liquid [Pa·s]
P∗: Pressure [Pa], [bar]
PST(203.15K)≤P≤PST(311.15K) [Pa]
(∼12.2×103 )
(∼0.913×106 )
◦
PST(−70 C)≤P≤PST(38◦ C) [bar]
(∼0.122)
(∼9.13)
AMUPT: Coefficient of Viscosity [Pa·s]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
100×103 ≤P≤4.0×106 [Pa]
298.15≤T≤398.15 [K]
AMUTD: Coefficient of Viscosity of Saturated
Liquid [Pa·s]
T∗: Temperature [K], [◦ C]
173.15≤T≤333.15 [K]
−100≤T≤60 [◦C]
1.0≤P≤40 [bar]
25≤T≤125 [◦ C]
203.15≤T≤311.15 [K]
−70≤T≤38 [◦C]
316
P-PROPATH: Pure Substances and Mixtures with Fixed Composition
Table II–2.34–1
No.
CFC-12 (R12) Function (cont’d)
16
Name of
Function
CPPD(P)
17
CPPDD(P)
CPPDD: Isobaric Specific Heat of Saturated
Vapor [J/(kg·K)]
P∗: Pressure [Pa], [bar]
18
CPPT(P,T)
CPPT: Isobaric Specific Heat [J/(kg·K)]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦C]
19
CPTD(T)
20
CPTDD(T)
21
CRP(‘A’)
7A
76
CVPD(P)
CVPDD(P)
77
CVPT(P,T)
Function and Argument(s)
CPPD: Isobaric Specific Heat of Saturated
Liquid [J/(kg·K)]
P∗: Pressure [Pa], [bar]
CPTD: Isobaric Specific Heat of Saturated
Liquid [J/(kg·K)]
T∗: Temperature [K], [◦C]
CPTDD: Isobaric Specific Heat of Saturated
Vapor [J/(kg·K)]
T∗: Temperature [K], [◦C]
CRP: Critical Constants
H: ‘A’=‘H’: 0.56681×106 [J/kg] Specific Enthalpy
P∗: ‘A’=‘P’: 4.125×106 [Pa], 41.25 [bar] Pressure
S: ‘A’=‘S’: 4.6140×103 [J/(kg·K)] Specific Entropy
T∗: ‘A’=‘T’: 384.95 [K], 111.80 [◦C] Temperature
V: ‘A’=‘V’: 1.7921×10−3 [m3 /kg] Specific Volume
CVPDD: Isochoric Specific Heat of Saturated
Vapor [J/(kg·K)]
P∗: Pressure [Pa], [bar]
CVPT: Isochoric Specific Heat [J/(kg·K)]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦C]
Range of Argument(s)
PST(173.15K)≤P≤PST(363.15K) [Pa]
(∼1.17×103 )
(∼2.77×106 )
◦
PST(−100 C)≤P≤PST(90◦ C) [bar]
(∼0.0117)
(∼27.7)
PST(173.15K)≤P≤PST(363.15K) [Pa]
(∼1.17×103 )
(∼2.77×106 )
◦
PST(−100 C)≤P≤PST(90◦ C) [bar]
(∼0.0117)
(∼27.7)
2.0×103 ≤P≤8.0×106 [Pa]
183.15≤T≤473.15 [K]
0.02≤P≤80 [bar]
−90≤T≤200 [◦ C]
see Fig.II-2.34-1
173.15≤T≤363.15 [K]
−100≤T≤90 [◦ C]
173.15≤T≤363.15 [K]
−100≤T≤90 [◦ C]
one of ‘H’, ‘P’, ‘S’, ‘T’ and ‘V’
PST(173.15K)≤P≤PST(363.15K) [Pa]
(∼1.17×103 )
(∼2.77×106 )
PST(−100◦ C)≤P≤PST(90◦ C) [bar]
(∼0.0117)
(∼27.7)
2.0×103 ≤P≤8.0×106 [Pa]
183.15≤T≤473.15 [K]
0.02≤P≤80 [bar]
−90≤T≤200 [◦ C]
see Fig.II-2.34-1
7B
78
CVTD(T)
CVTDD(T)
2A
2B
22
2C
2D
89
EPSPD(P)
EPSPDD(P)
EPSPT(P,T)
EPSTD(T)
EPSTDD(T)
FC(‘A’)
9A
96
95
9B
97
23
GAMPD(P)
GAMPDD(P)
GAMPT(P,T)
GAMTD(T)
GAMTDD(T)
HPD(P)
CVTDD: Isochoric Specific Heat of Saturated
Vapor [J/(kg·K)]
T∗: Temperature [K], [◦C]
173.15≤T≤363.15 [K]
−100≤T≤90 [◦ C]
FC: Fundamental Constants
M: ‘A’=‘M’: 120.9138 Relative Molecular Mass
R: ‘A’=‘R’: 68.7625 [J/(kg·K)] Gas Constant
one of ‘M’ and ‘R’
HPD: Specific Enthalpy of Saturated Liquid
[J/kg]
P∗: Pressure [Pa], [bar]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
CFC-12(R12)
317
Table II–2.34–1
No.
24
Name of
Function
HPDD(P)
71
HPS(P,S)
25
HPT(P,T)
26
HPX(P,X)
27
HTD(T)
28
HTDD(T)
29
HTX(T,X)
84
IDENTF(‘A’)
66
68
85
86
81
PLDT(T)
PMLT(T)
PRPD(P)
PRPDD(P)
PRPT(P,T)
87
88
99
30
PRTD(T)
PRTDD(T)
PSBT(T)
PST(T)
72
73
31
PSTD(T)
PSTDD(T)
SIGP(P)
32
SIGT(T)
33
SPD(P)
34
SPDD(P)
CFC-12 (R12) Function (cont’d)
Function and Argument(s)
HPDD: Specific Enthalpy of Saturated Vapor
[J/kg]
P∗: Pressure [Pa], [bar]
HPS: Specific Enthalpy [J/kg]
P∗: Pressure [Pa], [bar]
S: Specific Entropy [J/(kg·K)]
HPT: Specific Enthalpy [J/kg]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦C]
HPX: Specific Enthalpy of Mixture [J/kg]
P∗: Pressure [Pa], [bar]
X: Dryness Fraction [–]
HTD: Specific Enthalpy of Saturated Liquid
[J/kg]
T∗: Temperature [K], [◦C]
HTDD: Specific Enthalpy of Saturated Vapor
[J/kg]
T∗: Temperature [K], [◦C]
HTX: Specific Enthalpy of Mixture [J/kg]
T∗: Temperature [K], [◦C]
X: Dryness Fraction [–]
IDENTF: CHARACTER TYPE FUNCTION
for Package Identification (Length 20)
C: ‘A’=‘C’: ‘CCL2F2’ Molecular Formula
S: ‘A’=‘S’: ‘CFC-12(R12)’ Name of Substance
V: ‘A’=‘V’: ‘10.1’ Version Number
Range of Argument(s)
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
1.2×103 ≤P≤8.0×106 [Pa]
0.012≤P≤80 [bar]
see Fig.II-2.34-3 for S
2.0×103 ≤P≤8.0×106 [Pa]
183.15≤T≤473.15 [K]
0.02≤P≤80 [bar]
−90≤T≤200 [◦C]
see Fig.II-2.34-1
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
0≤X≤1.0 [–]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦C]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦C]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦C]
0≤X≤1.0 [–]
one of ‘C’, ‘S’ and ‘V’
PRPT: Prandtl Number at Ordinary
Pressure [–]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦C]
P=Dummy
253.15≤T≤363.15 [K]
−20≤T≤90 [◦ C]
PST∗: Saturation Pressure [Pa], [bar]
T∗: Temperature [K], [◦C]
173.15≤T≤384.95 [K]
−100≤T≤111.8 [◦C]
SIGP: Surface Tension [N/m]
P∗: Pressure [Pa], [bar]
PST(213.15K)≤P≤4.125×106 [Pa]
(∼22.59×103 )
PST(−60◦ C)≤P≤41.25 [bar]
(∼0.2259)
213.15≤T≤384.95 [K]
−60≤T≤111.8 [◦ C]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
SIGT: Surface Tension [N/m]
T∗: Temperature [K], [◦C]
SPD: Specific Entropy of Saturated Liquid
[J/(kg·K)]
P∗: Pressure [Pa], [bar]
SPDD: Specific Entropy of Saturated Vapor
[J/(kg·K)]
P∗: Pressure [Pa], [bar]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
318
P-PROPATH: Pure Substances and Mixtures with Fixed Composition
Table II–2.34–1
No.
35
Name of
Function
SPT(P,T)
36
SPX(P,X)
37
STD(T)
38
STDD(T)
39
STX(T,X)
67
69
64
TLDP(P)
TMLP(P)
TPH(P,H)
65
TPS(P,S)
98
70
TPSEUP(P)
TPV(P,V)
CFC-12 (R12) Function (cont’d)
Function and Argument(s)
SPT: Specific Entropy [J/(kg·K)]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
SPX: Specific Entropy of Mixture [J/(kg·K)]
P∗: Pressure [Pa], [bar]
X: Dryness Fraction [–]
STD: Specific Entropy of Saturated Liquid
[J/(kg·K)]
T∗: Temperature [K], [◦ C]
STDD: Specific Entropy of Saturated Vapor
[J/(kg·K)]
T∗: Temperature [K], [◦ C]
STX: Specific Entropy of Mixture [J/(kg·K)]
T∗: Temperature [K], [◦ C]
X: Dryness Fraction [–]
Range of Argument(s)
2.0×103 ≤P≤8.0×106 [Pa]
183.15≤T≤473.15 [K]
0.02≤P≤80 [bar]
−90≤T≤200 [◦ C]
see Fig.II-2.34-1
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
0≤X≤1.0 [–]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦C]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦C]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦C]
0≤X≤1.0 [–]
TPH∗: Temperature [K], [◦ C]
P∗: Pressure [Pa], [bar]
H: Specific Enthalpy [J/kg]
TPS∗: Temperature [K], [◦C]
P∗: Pressure [Pa], [bar]
S: Specific Entropy [J/(kg·K)]
1.2×103 ≤P≤8.0×106 [Pa]
0.012≤P≤80 [bar]
see Fig.II-2.34-2 for H
1.2×103 ≤P≤8.0×106 [Pa]
0.012≤P≤80 [bar]
see Fig.II-2.34-3 for S
TPV∗: Temperature [K], [◦ C]
P∗: Pressure [Pa], [bar]
V: Specific Volume [m3 /kg]
1.2×103 ≤P≤4.125×106 [Pa]
VPD(P)≤V≤
VPT(P,473.15K) [m3 /kg]
4.125×106 <P≤8.0×106 [Pa]
0.0017921≤V≤
VPT(P,473.15K) [m3 /kg]
0.012≤P≤41.25 [bar]
VPD(P)≤V≤
VPT(P,200◦ C) [m3 /kg]
41.25<P≤80 [bar]
0.0017921≤V≤
VPT(P,200◦ C) [m3 /kg]
41
100
40
TRPL(‘A’)
TSBP(P)
TSP(P)
74
75
42
TSPD(P)
TSPDD(P)
UPD(P)
43
UPDD(P)
TSP∗: Saturation Temperature [K], [◦C]
P∗: Pressure [Pa], [bar]
1.2×103 ≤P≤4.125×106 [Pa]
0.012≤P≤41.25 [bar]
UPD: Specific Internal Energy of Saturated
Liquid [J/kg]
P∗: Pressure [Pa], [bar]
UPDD: Specific Internal Energy of Saturated
Vapor [J/kg]
P∗: Pressure [Pa], [bar]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
CFC-12(R12)
319
Table II–2.34–1
No.
79
Name of
Function
UPS(P,S)
44
UPT(P,T)
45
UPX(P,X)
46
UTD(T)
47
UTDD(T)
48
UTX(T,X)
49
VPD(P)
50
VPDD(P)
80
VPS(P,S)
51
VPT(P,T)
52
VPX(P,X)
53
VTD(T)
54
VTDD(T)
55
VTX(T,X)
8E
8F
83
WPD(P)
WPDD(P)
WPT(P,T)
CFC-12 (R12) Function (cont’d)
Function and Argument(s)
UPS: Specific Internal Energy [J/kg]
P∗: Pressure [Pa], [bar]
S: Specific Entropy [J/(kg·K)]
UPT: Specific Internal Energy [J/kg]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
UPX: Specific Internal Energy of Mixture [J/kg]
P∗: Pressure [Pa], [bar]
X: Dryness Fraction [–]
UTD: Specific Internal Energy of Saturated
Liquid [J/kg]
T∗: Temperature [K], [◦ C]
UTDD: Specific Internal Energy of Saturated
Vapor [J/kg]
T∗: Temperature [K], [◦ C]
UTX: Specific Internal Energy of Mixture [J/kg]
T∗: Temperature [K], [◦ C]
X: Dryness Fraction [–]
VPD: Specific Volume of Saturated Liquid [m3 /kg]
P∗: Pressure [Pa], [bar]
VPDD: Specific Volume of Saturated Vapor [m3 /kg]
P∗: Pressure [Pa], [bar]
VPS: Specific Volume [m3 /kg]
P∗: Pressure [Pa], [bar]
S: Specific Entropy [J/(kg·K)]
VPT: Specific Volume [m3 /kg]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
VPX: Specific Volume of Mixture [m3 /kg]
P∗: Pressure [Pa], [bar]
X: Dryness Fraction [–]
VTD: Specific Volume of Saturated Liquid [m3 /kg]
T∗: Temperature [K], [◦ C]
VTDD: Specific Volume of Saturated Vapor [m3 /kg]
T∗: Temperature [K], [◦ C]
VTX: Specific Volume of Mixture [m3 /kg]
T∗: Temperature [K], [◦ C]
X: Dryness Fraction [–]
WPT: Velocity of Sound [m/s]
P∗: Pressure [Pa], [bar]
T∗: Temperature [K], [◦ C]
Range of Argument(s)
1.2×103 ≤P≤8.0×106 [Pa]
0.012≤P≤80 [bar]
see Fig.II-2.34-3 for S
2.0×103 ≤P≤8.0×106 [Pa]
183.15≤T≤473.15 [K]
0.02≤P≤80 [bar]
−90≤T≤200 [◦ C]
see Fig.II-2.34-1
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
0≤X≤1.0 [–]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
0≤X≤1.0 [–]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
1.2×103 ≤P≤8.0×106 [Pa]
0.012≤P≤80 [bar]
see Fig.II-2.34-3 for S
2.0×103 ≤P≤8.0×106 [Pa]
183.15≤T≤473.15 [K]
0.02≤P≤80 [bar]
−90≤T≤200 [◦ C]
see Fig.II-2.34-1
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
0≤X≤1.0 [–]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
0≤X≤1.0 [–]
2.0×103 ≤P≤8.0×106 [Pa]
183.15≤T≤473.15 [K]
0.02≤P≤80 [bar]
−90≤T≤200 [◦ C]
see Fig.II-2.34-1
8G
8H
56
WTD(T)
WTDD(T)
XPH(P,H)
XPH: Dryness Fraction [–]
P∗: Pressure [Pa], [bar]
H: Specific Enthalpy of Mixture [J/kg]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
HPD(P)≤H≤HPDD(P) [J/kg]
320
P-PROPATH: Pure Substances and Mixtures with Fixed Composition
Table II–2.34–1
No.
57
Name of
Function
XPS(P,S)
58
XPU(P,U)
59
XPV(P,V)
60
XTH(T,H)
61
XTS(T,S)
62
XTU(T,U)
63
XTV(T,V)
CFC-12 (R12) Function (cont’d)
Function and Argument(s)
XPS: Dryness Fraction [–]
P∗: Pressure [Pa], [bar]
S: Specific Entropy of Mixture [J/(kg·K)]
XPU: Dryness Fraction [–]
P∗: Pressure [Pa], [bar]
U: Specific Internal Energy of Mixture [J/kg]
XPV: Dryness Fraction [–]
P∗: Pressure [Pa], [bar]
V: Specific Volume of Mixture [m3 /kg]
XTH: Dryness Fraction [–]
T∗: Temperature [K], [◦C]
H: Specific Enthalpy of Mixture [J/kg]
XTS: Dryness Fraction [–]
T∗: Temperature [K], [◦C]
S: Specific Entropy of Mixture [J/(kg·K)]
XTU: Dryness Fraction [–]
T∗: Temperature [K], [◦C]
U: Specific Internal Energy of Mixture [J/kg]
XTV: Dryness Fraction [–]
T∗: Temperature [K], [◦C]
V: Specific Volume of Mixture [m3 /kg]
Range of Argument(s)
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
SPD(P)≤S≤SPDD(P) [J/(kg·K)]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
UPD(P)≤U≤UPDD(P) [J/kg]
1.2×103 ≤P≤4.02×106 [Pa]
0.012≤P≤40.2 [bar]
VPD(P)≤V≤VPDD(P) [m3 /kg]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
HTD(T)≤H≤HTDD(T) [J/kg]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
STD(T)≤S≤STDD(T) [J/(kg·K)]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
UTD(T)≤U≤UTDD(T) [J/kg]
173.15≤T≤383.15 [K]
−100≤T≤110 [◦ C]
VTD(T)≤V≤VTDD(T) [m3 /kg]
CFC-12(R12)
321
[bar]*10 6 [Pa]
80
8
50
V=
Pressure, P
1 .7 9
21*
10 -3 3
m /k
g
CFC-12(R12)
5
Critical point
p
Va
0.02
0.002
173.15
-100
p
or
273.15
0
re
u
ss
re
r
cu
ve
373.15
100
441.0
167.85
473.15 [K]
200 [C]
Temperature, T
Fig.II–2.34–1
Range of Arguments(P,T) for AKPT(P,T),CPPT(P,T),CVPT(P,T),HPT(P,T),
SPT(P,T),UPT(P,T),VPT(P,T) and WPT(P,T).
322
P-PROPATH: Pure Substances and Mixtures with Fixed Composition
[bar]*10 6 [Pa]
150
15
CFC-12(R12)
10
-6
T = 4.25*10 P+307.5
T:[K], P:[Pa]
60
6
50
5
T = 333 K
Sa
0.074
0.0074
0.1
tu
t
ra
ed
0.2
li q
ui
Critical point
Saturated vapor
Pressure, P
100
T = 460 K
T = 5.4*10-6P+319
T:[K], P:[Pa]
d
0.3
Enthalpy, H [J/kg]
Fig.II–2.34–2 Range of Arguments(P,H) for TPH(P,H).
0.4
*10
6
CFC-12(R12)
323
[bar]*10 6 [Pa]
150
15
CFC-12(R12)
10
-6
T = 4.25*10 P+307.5
T:[K], P:[Pa]
60
6
50
5
T = 333 K
0.074
0.0074
0.5
1.0
or
S at u ra te d v ap
tu
ra
te d
li q
ui
d
Critical point
Sa
Pressure, P
100
T = 460 K
T = 5.4*10-6P+319
T:[K], P:[Pa]
1.5
Entropy, S [J/(kg.K)]
Fig.II–2.34–3
Range of Arguments(P,S) for HPS(P,S),TPS(P,S),UPS(P,S)
and VPS(P,S).
2.0
*10
6