Pd Bimetallic Catalysis Rh -Reactions and Catalysts Chang Liu Department of Chemistry Michigan State University What’s Bimetallic Catalyst? 1. Alloy of two metals (MxM’Y) COOH Ru6Pd6 or Ru10 Pt2 or Ru12 Ag4 COOH Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Midgley, P. A. Acc. Chem. Res. 2003, 26, 20-30 2. Dinuclear catalysts (one metal complex containing two metal nuclei) CH3CN a H O O Pd Pd N S N O CH3CONH2 N Van den Beuken. E. K.; Feringa, B. L.Tetrahedron 1998, 54, 12985-13011 a: 3. Two-component catalyst (no interaction before reaction) R R PdCl2(PCy)2, Co2(CO)8 CO, H2, NEt3 R R CHO Ishii, Y,; Miyashita, K.; Kamita, K.; Hidai, M. J. Am. Chem. Soc. 1997, 119, 6448-6449 95% yield N Classification of Two-component Catalyst 1. Main and co-catalyst R1 + R2 R1 + R2 Cat. a, Cat. b Cat. a only Product 100 % yield, 100% ee Product 50 % yield, 30 % ee i. co-catalyst activates substrates R1 + Activated R1 + Activated R1 Cat. b R2 Cat. a Product ii. co-catalyst activates main catalysts Cat. a + Cat. b R1 + R2 Activated Cat. a Activated Cat. a 2. Cooperative (same importance) R1 + R2 Cat. a only No reaction Product Where We are Chemistry Organic Chemistry Traditional Other Fields in chemistry ( Inorganic, Analytical, Physical) Organometallic Monometallic Bimetallic Binuclear Two-component Main and co-catalyst Cooperative Alloy Outline 1. Introduction to two-component catalysts 2. Two-component catalysts (1) Main and co-catalyst i. Activate the substrates Pd(0) and Rh(I) catalyzed asymmetric Tsuji-Trost-type reaction ii. Activate the main catalyst Pd(0) and Ag(I) catalyzed asymmetric Heck reaction (2) Cooperative Pd(0) and Cu(I) catalyzed indole formation reaction Pd(0) and Cu(I) catalyzed trazole formation reaction 3. The extension of bimetallic catalysts Æ Main and co-catalyst activate the substrates Pd(0) and Rh(I) Catalyzed Tsuji-Trost Type Reaction R Shaw B. L. Chem. Ind. (London), 1961, 517 L Pd L Shaw, B. L. Chem. Ind. (London), 1962,1190 Tsuji- Trost reaction (Trost allylation) 1965 Tsuji’s report CH2 HC Pd CH2 H2C Cl CH + Pd Cl H2C O HC C OEt X X= O O EtOH, DMSO r.t. O C OEt or CH X OEt O C OMe Tsuji, J.; Takashashi, H.; Morikawa,M. Tetrahedron Lett. 1965, 49, 4387-4389 + C X OEt Main and co-catalyst Æ activate the substrates General Equation and Mechanism of Tsuji-Trost Type Reaction [Pd]0, NuH X Base Nu NuH = malonates, β-diketone, β-keto esters, enamines, β-keto sulfones X = Br, Cl, OCOOR, SO2R, OCOR, OCONR2, OPO(OR)2 etc. Nu Oxidative Addition L Pd Nucleophilic Addition L X Nu Pd(0)Ln Pd(0)Ln Catalyst Association Pd(0)Ln X Starting Material Dissociation Nu Product C. G. Frost; M. J. Williams Tetrahedron Asym. 1992, 3, 1089-1091 Æ Main and co-catalyst activate the substrates What We Know about Rhodium Generation of Nucleophile α to cyano group R2 R1 C C N H R2 R1 C C N H M M R2 R1 C C N H New C-C Bond Formation Reaction Electrophile M = Low Valent Metal Ru, Rh, etc. Murahashi, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.;Fukuoka, A.. J. Am. Chem. Soc. 1995, 117, 12436-12451 O O + R3 NC OR4 Me 0.1-1mol% RhH(CO)(PPh3) (S, S)-(R, R)-TRAP Benzene O O R3 Me OR4 CN R2P Me (R) H PR2 H Me Fe Fe 88% ~ 99% yield R3 4 = Me, Et, Ph, 4-MeOPh, 2-MeOPh, 4-ClPh, H 72% ~ 89% ee R = Alkyl Sawamura, M.; Hamashima, H.; Ito, Y. J. Am. Chem. Soc. 1992,114, 8295-8296 (S, S)-(R, R)-TRAP Æ Main and co-catalyst activate the substrates Rh(I) Catalyzed Nucleophilic Addition R 0.1-1mol% RhH(CO)(PPh3) O O + 3 NC OR4 Me O (S, S)-(R, R)-TRAP R3 Me Benzene Ln*Rh CN OR4 (R) Mechanism: E O O C OR4 O C OR4 Ln*Rh N C C Me N C C Me Catalyst Rh(I)Ln* O E Me OR4 CN Product O NC OR4 Me Starting Material Sawamura, M.; Hamashima, H.; Ito, Y. J. Am. Chem. Soc. 1992, 114, 8295-8296 E Main and co-catalyst Æ activate the substrates Here Comes the Idea H+ + OH- = H2O Pd Can we put them together? Nu E Rh Main and co-catalyst Æ activate the substrates New Reaction O O O + OR NC O Me 2 1 O Rh(acac)(CO)2 (1 mol%) Pd(Cp)(π -C3H5) (1 mol%) PhTRAP, THF, -40oC, 6h + ROH + CO2 O Me CN 3 b: R= CH(CF3)2 a: R = Et Mechanism: P Pd P RO O C P CO2 Pd P RO - O C O O Rh N C Me P O Rh N C O Me P OR NC P O C Rh P P ROH O P O O P OR P Pd(0) O O Me CN Sawamura, M.; Sudoh M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309-3310 O Me Main and co-catalyst Æ activate the substrates Closer Look at This Reaction O O O OR + NC Pd(Cp)(π-C3H5 ) (1 mol%) PhTRAP, THF, -40oC, 6h O Me 2 1 O Rh(acac)(CO)2 (1 mol%) + ROH + CO2 O Me CN 3 a: R = Et b: R = CH(CF3)2 1 Pd Rh Temp oC Time h Yield % ee % 1 1a + + 0 4 98 32(R) 2 1a + - 0 5 97 0 3 1a - + 0 24 0 4 1b + + -25 5 91 Entry Sawamura, M.; Sudoh M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309-3310 93(R) Æ Main and co-catalyst activate the substrates Lubricant for This Reaction O O O OR + NC O Me 2 1 Pd(Cp)(π -C3H5) (1 mol%) PhTRAP, THF, -40oC, 6h + ROH + CO2 O Me CN 3 b: R= CH(CF3)2 a: R = Et P Pd P RO O C P Pd P RO O C - O Rh N C N C O Me OR P NC P O C Pd(0) ROH O Rh P P Me P O P O O P - CO2 O O Rh(acac)(CO)2 (1 mol%) Rh OR P O O Me CN Sawamura, M.; Sudoh M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309-3310 O Me Æ Main and co-catalyst activate the substrates Possible Ligand Exchange in This Reaction O O O OR + NC O Me Rh(acac)(CO)2 -PhTRAP (1 mol%) Pd(Cp)(π-C3H5)-dppb (1 mol%) o O O Me CN THF, -40 C 93% ee R = CH(CF3 )2 O O O OR + NC Rh(acac)(CO) 2-dppb (1 mol%) O Me Pd(Cp)(π-C3H5)-PhTRAP (1 mol%) THF, -40o C O O Me CN 93% ee R = CH(CF3 )2 Sawamura, M.; Sudoh M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309-3310 Main and co-catalyst Æ activate the substrates Application (extension) of This Reaction 1. Use the product O LiAlH4 O O Me CN MeMgBr H 96% yield Me 97% yield Me CN O Me CN 2. Change different functional groups on the substrates and even different catalyst O X EWG R1 Y R2 O X Rh(acac)(CO)2, [Pd(π -C3H5)(COD)][BF4], PhTRAP R1 Y R2 EWG Sawamura, M.; Sudoh M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309-3310 R1, R2 = Alkyl X = C, P Y = O, N Main and co-catalyst Æ activate the substrates Application (extension) of This Reaction 2. Change different functional groups on the reagents and even different catalyst O NC P OEt OEt Me Rh(acac)(CO)2 (1 mol%) [Pd(π-C3H5)(COD)][BF4 ] (1 mol%), O P OEt OEt Me CN PhTRAP (2 mol%) 1b (2 eq.), THF, -25o C, 72h 5 91% yield 92% ee (-)-6 R Rh cat. Pd(0) R'OCO L2Pd 7 8 ReL6N2 Reactions R L L L Re NC L N C 2NCCHRCO2R' -H2 , -N2 O R, R' = Alkyl O OR' Pd Reactions R R OR' Sawamura, M.; Sudoh M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309-3310 L = PMe2Ph R, R' = H, Me, Et Main and co-catalyst Æ activate the substrates Summary of this part 1. Two metals activate their substrates 2. Two known mechanisms 3. Easy to handle and extend Æ Main and co-catalyst activate the main catalyst Pd(0) and Ag(I) Catalyzed Asymmetric Heck Reaction • Heck reaction I Pd(OAc) 2 (1 mol%) + 75% yield (t-Bu)3N, 100oC, 2h Heck, R. F.; Nolly. J. P., Jr. J. Org. Chem. 1972, 37, 2320-2322 • Asymmertric Heck reaction OTf Pd(OAc)2 (10 mol%) (R, R)-DIOP (10 mol%) n O 1 n O Et3N, Benzene, r.t. O 2 90% yield 45% ee Carpenter, N. E.; Kusera, D. J.; Overman, L. E. J. Org. Chem. 1989, 54, 5846-5848 O H H PPh2 PPh2 (R, R)-DIOP Æ Main and co-catalyst activate the main catalyst Mechanism of Asymmetric Heck Reaction baseHX * P Reductive elimination base R1 X 4 P Pd0 Oxidative addition 3 * * P H P 9 X β -hydrogen * elimination R1 1 R P PdII R1 X 5 P PdII * α R5 2 β' R R3 β R4 8 P R5 * R2 α 3 βR R4 7 P PdII X Insertion R5 α R2 6 R β 4 Shibasaki, M.; Boden, C. D. J.; Kojima, A. Tetrahedron 1997, 53, 7371-7395 R3 Æ Main and co-catalyst activate the main catalyst Two Pathways in the Insertion Step X = OTf Cationic Pathway * P P P PdII R1 * R1 X- P PdII R4 R3 11 R2 10 X- high ee * * R1 Insertion P P PdII X R1 5 R5 * R2 α R3 * P R4 * R2 P PdII R1 X P 12 P P PdII X R4 β 7 low ee P PdII R1 X 13 Neutral Pathway X = Halide and other Shibasaki, M.; Boden, C. D. J.; Kojima, A. Tetrahedron 1997, 53, 7371-7395 R3 Æ Main and co-catalyst activate the main catalyst How Ag(I) Improve the Regioselectivity O Pd(OAc)2 (1 mol%) PPh3 (12 mol%) Me N Et3N (2 eq.) CH3CN I 13 Mechanism: O Me N O Me N O + Regioisomer 14 Regioisomer 15 no Ag 1 : 1 AgNO3 26 : 1 Me N O P Regioisomer 15 P Pd0 Me N 13 16 O Me N O P H H P PdII 20 PdII 19 I I I O P O Me N P Me N Me N H Regioisomer 14 I PdII P P 18 Abelman, M.M.; Oh, T.; Overman, L.E. J. Org. Chem. 1987, 52, 4130-4133 PdII P P 17 I Æ Main and co-catalyst activate the main catalyst How Ag(I) Improve the Regioselectivity O Pd(OAc)2 (1 mol%) PPh3 (12 mol%) Me N Et3N (2 eq.) CH3CN I 13 Mechanism: O Me N O Me N O + Regioisomer 14 Regioisomer 15 no Ag 1 : 1 AgNO3 26 : 1 Me N O P Regioisomer 15 AgNO3 P Pd0 Me N 13 16 O Me N O P H H P Pd II 20 P Me N I I PdII 19 I O P O Me N Me N II I Pd H P P Regioisomer 14 18 Abelman, M.M.; Oh, T.; Overman, L.E. J. Org. Chem. 1987, 52, 4130-4133 PdII P P 17 I Main and co-catalyst Æ activate the main catalyst How Ag(I) Improve the Enantioselectivity • First Ag(I) promoted Heck reaction 74% yield 46% ee Cyclohexene (6 mol%) Ag2 CO3 (2 eq.) NMP, 60oC I 21 • CO2Me Pd(OAc)2 (3 mol%) (R)-BINAP (9 mol%) CO2Me H 22 Mechanism: * I P + CO2Me 21 23 P CO2Me 25 P PdII P P PdII AgY * P Pd * * P II Y- P PdII H CO2Me 26 Y- CO2Me 22 + AgI I P Pd II I * CO2Me 24 * P I P P PdII low ee product CO2Me CO2Me 28 27 Sato, Y.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1989, 54, 4738-4739 Y- = CO32- Main and co-catalyst Æ activate the main catalyst Which Ag(I) Salt is the Best CO2Me I 21 Pd(OAc)2 (3 mol%) (R)-BINAP (9 mol%) Cyclohexene (6 mol%) Ag2 CO3 (2 eq.) NMP, 60oC CO2Me 74% yield 46% ee H 22 Entry Silver salt Time h Yield % ee % 1 Ag3PO4 188 48 69 2 Ag2SO4 188 11 53 3 AgBF4 252 27 26 4 AgNO3 134 39 27 5 AgClO4 230 33 29 6 AgOTf 208 31 23 7 AgOAc 61 70 6 Sato, Y.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1989, 54, 4738-4739 Main and co-catalyst Æ activate the main catalyst Summary of Ag(I) Effect 1. Enhancing the rate of Heck reaction 2. Enhancing the regioselectivity of asymmetric Heck reaction 3. Enhancing the enantioselectivity by introduce the reaction into the cationic pathway, usually 2 eq. of Ag3PO4, Ag2CO3, Ag exchanged zeolite can give very high ee in asymmetric Heck reaction. 4. All those functions are based on the halide scavenger ability of Ag(I) Main and co-catalyst Æ activate the main catalyst Problem 1: Where does Ag(I) Scavenge the HX How Ag enhances the regioselectivity: O Me N O P Regioisomer 15 AgNO3 P Pd0 Me N 13 I 16 O Me N O P H H I PdII P P P Me N I I PdII 19 O Me N Me N O 20 PdII P P 17 H I PdII P P 18 Regioisomer 14 How Ag enhances the enantioselectivity: P Ag(I) P 1 R P PdII R X- P P PdII R1 X Neutral Pathway 1 P PdII R4 R3 R2 X = OTf X- X = Halide and other Æ Main and co-catalyst activate the main catalyst Conflict in AgNO3 1. We know Ag is to scavenge the halide O Pd(OAc)2 (1 mol%) Me N Me N O PPh3 (12 mol%) Et3N (2 eq.) CH3CN I + Regioisomer 15 Regioisiomer 14 13 Me N O no Ag 1 : 1 AgNO3 (1 eq.) 26 : 1 70% total yield Abelman, M.M.; Oh, T.; Overman, L.E. J. Org. Chem. 1987, 52, 4130-4133 2. AgNO3 must be a very good scavenger O Pd2(dba)3 (5 mol%) (R)-BINAP (12 mol%) Me N I 13 O Me N 4% yield AgNO3 (2 eq.) NMP, 80oC, 26h 0% ee (S)-32 Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6477-6487 Main and co-catalyst Æ activate the main catalyst What Happens without Ag(I) (Neutral Pathway) O Me N O Pd2(dba)3 , (R)-BINAP Me N 5 eq. of base I (R)-32 13 Me PMP = N Me MeMe Me N N PS = Entry Base Solvent Pd2(dba)3 % (R)- BINAP % Time h Yield % ee % 1 PMP DMA 10 22 8 71 63 2 PS DMA 10 22 11 70 46 Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D. J. J. Am Chem. Soc. 1998, 120, 6477-6487 Main and co-catalyst Æ activate the main catalyst Two Pathways in the Insertion Step X = OTf Cationic Pathway * P P P PdII R1 * X R1 - P PdII R4 R3 11 R2 10 X- high ee * * R1 Insertion P P PdII X R1 5 R5 * R2 α R3 * P R4 * R2 P R1 PdII P P II Pd R1 X 13 X 12 Neutral Pathway X = Halide and other P PdII X R4 β 7 P low ee R3 Main and co-catalyst Æ activate the main catalyst Can Monodentate Ligands Give High ee? TBDMSO OTBDMS O 5% [Pd2(dba)3] CHCl3, NMe I O 11mol% monophosphane ligands PMP (4 eq.), MeCONMe2, 100oC N Me 39 (S)-Oxindole 40 PPh2 X X = OTBDMS 27% ee X = Oi- Pr 23% ee X = CHPh2 19% ee X = PPh2 ((R)-BINAP) 66% ee (R)- product Overman, L. E.; Poon, D. J. Angew. Chem. Int. Ed. Engl. 1997, 36, 518-520 Æ Main and co-catalyst activate the main catalyst What are the Possibilities of Neutral Pathway P P ArX 33 P P X 35 X Pd P P Pd Ar X X P P Ar Pd Pd 36 34 P Ar P X- P Pd X 38 X P Pd Ar X 37 Overman, L. E.; Poon, D. J. Angew. Chem. Int. Ed. Engl. 1997, 36, 518-520 Thorn, D. L.; Hoffmann, R. J. J. Am. Chem. Soc. 1978, 100, 2079-2090 Samsel, E. G.; Norton, J. R. J. Am. Chem. Soc. 1984, 106, 5505-5512 Ar Main and co-catalyst Æ activate the main catalyst Knowledge Update P P AgY P ArX 33 P Pd Pd 36 Ar Cationic Pathway Y- high ee P P P Pd Ar P Pd X(Y) 42 X 34 high ee X = Halide P P Pd Ar X 37 P P Pd 41 Neutral Pathway Ar X- Overman, L. E.; Poon, D. J. Angew. Chem. Int. Ed. Engl. 1997, 36, 518-520 Ar Main and co-catalyst Æ activate the main catalyst Problem 2: Does Ag(I) Help to Determine Chirality of the Product? O (R)-(BINAP)Pd Me N 86% yield Ag(I) salt O 70% ee (S)-32 Me N I 13 O (R)-(BINAP)Pd Me N 71% yield amine 63% ee (R)-32 Overman, L. E.; Poon, D. J. Angew. Chem. Int. Ed. Engl. 1997, 36, 518-520 Main and co-catalyst Æ activate the main catalyst Another Possibility (S)-product AgY P ArX 33 X = Halide P Ag(I) P P Pd P Ar P Y- Pd P P Pd * Ar 45 44 Pd Y Ar X 34 base P P Pd Ar X 37 Can Ag(I) coordinate to BINAP? P P Pd P Ar P X- Pd X * 43 41 (R)-product Overman, L. E.; Poon, D. J. Angew. Chem. Int. Ed. Engl. 1997, 36, 518-520 Ar Æ Main and co-catalyst activate the main catalyst Can Ag(I) Coordinate to BINAP? OCH3 Br O OCH3 OCH3 Pd2(dba)3 CHCl3 (5 mol%) (S)-ligands (15 mol%) O CaCO3 (2.2 mol eq.) Ag(I), NMP, 4d OCH3 46 PPh2 PPh2 O 47 PdL2 OCH3 (S)-BINAP O AsPh2 AsPh2 O OCH3 48 O (S)-BINAs Entry Ag reagent mol eq. Ligand Yield % ee % 1 Ag exchanged zeolite (6.0) (S)- BINAs trace 39 2 Ag exchanged zeolite (2.0) (S)- BINAs 24 52 3 Ag exchanged zeolite (1.0) (S)- BINAs 21 53 4 Ag exchanged zeolite (6.0) (S)- BINAP 9 11 5 Ag exchanged zeolite (2.0) (S)- BINAP 28 47 6 Ag exchanged zeolite (1.0) (S)- BINAP 39 63 Miuazake, F.; Uotsu, K.; Shibasaki, M. Tetrahedron, 1998, 54,13073-13078 Main and co-catalyst Æ activate the main catalyst Two Tendencies in This Reaction 1. BINAP is better than BINAs 2. 1 eq. is the best • Explanation P 1 eq. AgY P ArI 33 P (same Ag salt, same amount) (same ligand, same Ag salt) P Pd P P P Pd Pd Y - Ar 38 Y 36 Pd P Ar + AgI Ar more Ag I 34 P Ag(I) P 49 Pd Ar P Ag(I) Y- P 50 + Pd Ar Y- 51 Miuazake, F.; Uotsu, K.; Shibasaki, M. Tetrahedron, 1998, 54,13073-13078 Main and co-catalyst Æ activate the main catalyst Conclusion of Pd(0) and Ag(I) Catalyzed Asymmetric Heck Reaction 1. For asymmetric Heck reaction, the function of Pd(0) is comparatively clear. 2. Ag(I) is the scavenger of halide, but we don’t know if Ag(I) is doing something else. 3. Previously, people thought there are two pathways in this reaction, Ag(I) can direct the reaction into cationic pathway. 4. Two open questions: a: Where does Ag(I) scavenge the halide? b: Does Ag(I) help to determine the chirality? Cooperative Pd(0) and Cu(I) catalyzed Indole Formation Reaction Transition metal catalyzed indole formation reactions (1) Pd(II)- alkyne complex PdII R R Pd(II) N R' NH R' NH R' R (2) Intramolecular Heck reaction X R Pd(0) PdX R N R1 N R1 N R1 R (3) Heck type reaction and cyclization R2 X + NH R1 R3 R2 Pd(0) R2 R3 PdX NH R1 Kamijo, S.; Yamamoto, Y. J. Org. Chem. 2003, 68, 4764-4771 N R1 R3 Cooperative Pd(0) and Cu(I) Catalyzed Indole Formation Reaction R1 OCO2R2 + 1 mol% Pd(PPh3)4 4 mol% CuCl N R1 CO2R2 THF NCO 2 1 3 Entry R1 R2 Time h Yield % 1 Pr Me 1 81 2 Ph Me 2 62 3 p- MeOC6H4 Me 6 62 4 p- CF3C6H4 Me 7 65 5 Pr i-Pr 1 69 6 Pr t- Bu 1 72 7 Pr Ph 1 86 8 Pr Bn 1 83 Kamijo, S.; Yamamoto, Y. J. Org. Chem. 2003, 68, 4764-4771 Cooperative Which Catalyst Combination is the Best Pr + NCO OCO2Me Pr 5 mol% Pd(PPh3)4 20 mol% 2nd catalyst THF, 100oC, 1h Pr N CO2 Me 2a 1a + N CO2Me 3a 4a Entry 2nd catalyst, M Yield of 3a % Yield of 4a % 1 CuCl 78 0 2 CuBr 70 Trace 3 CuOAc 26 37 4 CuCl (5 mol%) 0 78 5 none 0 89 6 K2CO3 0 87 7 CuCl2 0 0 8 LiCl 0 0 9 ZnCl2 0 0 Kamijo, S.; Yamamoto, Y. J. Org. Chem. 2003, 68, 4764-4771 Cooperative The Mechanism of This Reaction OCO2R2 R1 N C O R2O product 3 CO2 Pd R2O N C 2 Pd(0) R1 Pd OR2 CuCl 5 O CuCl 8 R1 R2O N C R1 Pd O 6 CuCl N 4 N CO2R2 byproduct 10 CuCl R2O N C R1 R1 C O R1 Pd O 7 Kamijo, S.; Yamamoto, Y. J. Org. Chem. 2003, 68, 4764-4771 CuCl 1 NCO Cooperative Pd(0) and Cu(I) Catalyzed Triazole Formation Reaction • The synthesis of triazoles via the [3+2] cycloaddition reaction using activated substrates 1. Activated alkynes with simple azides R + EWG EWG R R' N3 R' N N N 2. Simple alkynes with activated azides R R R • R + EWG N3 N N N EWG What we know about Cu R H Cu R Cu Activated alkyne Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786-7787 Cooperative Pd(0) and Cu(I) Catalyzed Triazole Formation Reaction R H + 11 OCO2Me + 12 TMSN3 13 H R Pd2(dba)3 CHCl3 (2.5 mol%) P(OPh)3 (20 mol%) N CuCl(PPh3)3 (10 mol%) AcOEt (0.5 M), 100oC N 14 Entry R= Time h Yield % 1 Ph 10 83 2 p-Cl-C6H4 6 78 3 p-MeO-C6H4 18 63 4 t-Bu 24 58 5 isopropenyl 24 50 6 BnOCH2 6 56 Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786-7787 N Cooperative What Catalyst Combination is the Best Ph + H OCO2Me + TMSN3 H Ph Pd2(dba)3 CHCl3 (2.5 mol%) dppp (10 mol%) N 2nd catalyst (10 mol%) AcOEt (0.5 M), 100oC N N Entry 2nd catalyst Time h Yield % 1 none 24 Complex mixture 2 CuCl(PPh3)3 12 73 3 CuCl 12 15 4 CuI 12 12 12 78 5 Ph Cu 6 CuCl2 12 0 7 Cu power 12 trace Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786-7787 Cooperative Mechanism of Pd(0) and Cu(I) Catalyzed Triazole Formation Reaction R H 11 Pd N3 CuClLn 17 HCl R CuLn N 19 CO2 CuLn R N + TMSOMe N 16 Pd 18 OCO2Me Pd(0) R H 11 or HCl H R N N 15 N 14 Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786-7787 12 + TMSN3 13 Cooperative Summary of this part 1. T his type of bimetallic catalysis is more complicated. 2. Most of this type are based on Pd. 3. Knowledge about monometallic catalysis can help us to understand the mechanism. 4. Cooperative bimetallic catalysts have brilliant future. Summary Acknowledgement Dr. Hollingsworth Dr. Tepe Dr. Maleczka My friends: Group Members: Yana feng xiaoyu chunrui zhensheng yu jun yiqian kyoungsoo ying zhenjie lingling meng tao lei zhiyi ziyang Li zhen hanmi kun carol phalicia Thank you for your atten xuezheng changyou linjuan gia ping betsy baseHX R1 X 4 * P base P Pd0 3 * * P P PdII X H 9 P PdII X R1 5 P 1 R R1 P R5 * R2 α P PdII X R4 β 7 X = OTf Cationic Pathway high ee R3 * P R1 R1 P PdII R1 X X- 10 * P P PdII P P PdII R3 6 X- R2 11 R3 R4 * R2 12 6 R4 P PdII R1 X 13 * * α R 2 β' R R3 β R4 8 5 * P X = Halide and other Neutral Pathway low ee
© Copyright 2026 Paperzz