Advancements in Denitrification Processes in Aquaculture Jaap van Rijn Faculty of Agricultural, Food and Environmental Quality Sciences The Hebrew University of Jerusalem P.O. Box 12 Rehovot 76100, Israel Topics -General introduction to denitrification -Factors affecting denitrification -Denitrification and phosphorus removal -Denitrification and alkalinity -Application of denitrification in aquaculture * with external carbon sources * with internal carbon sources Topics -General introduction to denitrification -Factors affecting denitrification -Denitrification and phosphorus removal -Denitrification and alkalinity -Application of denitrification in aquaculture * with external carbon sources * with internal carbon sources Anammox Nitrate reduction pathways Assimilatory (NO3 Organic N) Nitrate reduction DNRA (dissimilatory nitrate reduction to ammonia) (NO3 NO2 NH4) Dissimilatory Heterotrophic (organic C and e- donor) Denitrification (NO3- NO2- NO N2O N2) Autotrophic (inorganic C and e- donor) Respiratory processes as a function of Redox potential Carbon source O2 Sediment H2O Redox potential decrease NO3 N2 SO4 H2 S CO2 CH4 Topics -General introduction to denitrification -Factors affecting denitrification -Denitrification and phosphorus removal -Denitrification and alkalinity -Application of denitrification in aquaculture * with external carbon sources * with internal carbon sources Environmental factors controlling denitrification Oxygen Organic carbon Temperature pH Substrates Wide diversity of species and therefore tolerant to wide range of environmental factors Factors underlying nitrite accumulation in denitrifiers * Oxygen concentrations * Kinetics of reductases * Carbon availability * Type of carbon source * Carbon starvation * Light exposure NO3- NO2- NO N2O N2 Factors underlying nitrite accumulation in denitrifiers * Oxygen concentration * Kinetics of reductases * Carbon availability * Type of carbon source * Carbon starvation * Light exposure Factors underlying nitrite accumulation in denitrifiers * Oxygen concentration * Kinetics of reductases * Carbon availability * Type of carbon source * Carbon starvation * Light exposure Topics -General introduction to denitrification -Factors affecting denitrification -Denitrification and phosphorus removal -Denitrification and alkalinity -Application of denitrification in aquaculture * with external carbon sources * with internal carbon sources EBPR scheme (Enhanced Biological Phosphate Removal). Aerobic / Anoxic Anaerobic [Ac] [PO4] Settling [CO2] [PO4] Effluent Influent PHB Poly-P PHB Poly-P Glycogen Glycogen Return sludge Poly-P Poly-P Waste sludge Poly-P van Loosdrecht et al. (1997) Phosphate removal by a denitrifying consortium derived from the FBR Barak and van Rijn (2000a) Phosphate accumulation in denitrifiers Polyphosphate Before exposure to phosphate After exposure to phosphate Topics -General introduction to denitrification -Factors affecting denitrification -Denitrification and phosphorus removal -Denitrification and alkalinity -Application of denitrification in aquaculture * with external carbon sources * with internal carbon sources Nitrification NH3 +2O2 = NO3- + H+ + H2O (Alkalinity loss = 1 meq of alkalinity per mmole NH4+) Denitrification 2NO3- + [5H2] + 2H+ = N2 + 6H2O (Alkalinity gain = 1 meq of alkalinity per mmole NO3) Autotrophic denitrification (on H2S) 5H2S + 8NO3- → 5SO42- + 4N2 + 4H2O + 2H+ (Alkalinity loss = 2 meq per 5 mmole H2S) 5SO42- + [20H2] + 10H+ 5H2S + 20H2O (Alkalinity gain = 10 meq per 5 mmole SO42-) Total alkalinity gain = 1 meq of alkalinity per mmole NO3- Autotrophic denitrification (on HS-) 5HS- + 8NO3- + 3H+ → 5SO42- + 4N2 + 4H2O (Alkalinity gain = 3 meq per 5 mmole HS-) 5SO42- + [20H2] + 5H+ 5HS- + 20H2O (Alkalinity gain = 5 meq of alkalinity per 5 mmole SO42-) Total alkalinity gain = 1 meq of alkalinity per mmole NO3- Topics -General introduction to denitrification -Factors affecting denitrification -Denitrification and phosphorus removal -Denitrification and alkalinity -Application of denitrification in aquaculture *with external carbon sources *with internal carbon sources Recirculating aquaculture system (Wade et al., 1996) Stripping Fluidized Bed Column Culture basin Drum Filter Ozonation Sludge + Water U-tube Disadvantages of current recirculating systems * Nitrate accumulation * Sludge production * Phosphate accumulation Topics -General introduction to denitrification -Factors affecting denitrification -Denitrification and phosphorus removal -Denitrification and alkalinity -Application of denitrification in aquaculture *with external carbon sources *with internal carbon sources Heterotrophic Denitrification 5CH3COO- + 8NO3- + 3H+ 10HCO3- + 4N2 + 4H2O C/N ration 1.25 Denitrifying reactors operated with external carbon source Type of denitrifying reactor Cultured organisms Carbon/ electron donor Reference Packed bed reactor (sw) salmon methanol Balderston and Sieburth (1976) Activated sludge (fw) tilapia/eel glucose/methanol Otte and Rosenthal (1979) Activated sludge (fw) trout corn starch Kaiser and Schmitz (1988) Packed bed reactor (sw) flounder glucose Honda et al. (1993) Packed bed reactor (sw) squid methanol Whitson et al (1993) Packed bed reactor (fw) ? methanol Abeysinghe et al. (1996) Packed bed reactor (sw) ? ethanol Sauthier et al. (1998) Packed bed reactor (sw) shrimp ethanol/methanol Menasvesta et al. (2001) Packed bed reactor (sw) eel methanol Suzuki et al. (2003) * fw = freshwater; sw = seawater Menasvesta et al. (2001) Summary of current status of denitrification in recirculating systems •Mainly applied in experimental systems •Inducement of heterotrophic denitrifiers by means of external carbon sources •Use of submerged, packed bed reactors Topics -General introduction to denitrification -Factors affecting denitrification -Denitrification and phosphorus removal -Denitrification and alkalinity -Application of denitrification in aquaculture *with external carbon sources *with internal carbon sources Denitrifying reactors operated with internal carbon source Type of denitrifying reactor Cultured organisms Reference Activated sludge (fw) carp Meske (1976) Digestion basin/ Fluidized bed reactor (fw) tilapia van Rijn and Rivera (1990) Activated sludge (fw) eel Knosche (1994) Packed bed reactor (fw) Digestion basin/ Fluidized bed ractor (sw) ? seabream * fw = freshwater; sw = seawater Phillips and Love (1998) Gelfand et al. (2003) Anaerobic carbon metabolism with nitrate as terminal electron acceptor Complex polymers Hydrolytic bacteria Mono + Oligomers Propionate + Butyrate Hydrogen producing acetogenic bacteria H2, CO2 Denitrifiers CO2, N2, Bacterial biomass Acetate Nitrate Ginosar (Freshwater) Rehovot (Fresh and Marine) Eilat ( Marine) Intensive Freshwater Fish Culture Unit - Ginosar Pumping basin Fluidized bed reactors Trickling filter Mechanical Filter Sedimentation Basin Water + Sludge Water Fish Basins Liquid Oxygen PO4-P (mg/l) NO3-N (mg/l) NO2-N (mg/l) NH4-N (mg/l) 6 3 0 6 3 0 200 100 0 100 50 0 100 200 300 T im e (d ) 400 Growth performance of tilapia in Ginosar 60 400 40 200 20 0 0 0 100 200 300 Days of growth 400 Average weight (g) Fish density (kg/m3) 600 Fish yield and water use Days of growth----------------------- 331.0 Biomass produced (kg)-------------- 4,868.0 Production (kg/m3)------------------ 81.1 Average daily freshwater addition (m3)-------------------------- 2.9 (4.1%) Water usage for fish production (liters/kg) ---------------- 190.0 Pilot-plant Marine Recirculating System Foam fractionator Trickling filter Settler Fluidized bed reactor Pump Pump Fish basin Digestion basin NH4-N (mg/l) 5 20 ppt 15 ppt 10 ppt 5 ppt 4 0 ppt 3 2 1 0 NO2-N (mg/l) 10 5 0 NO3-N (mg/l) 150 100 50 0 0 100 200 D ay 300 400 Phosphate concentrations in fish basin over experimental period PO43--P (mg/l) 20 10 0 0 100 200 300 400 D ay (Barak and van Rijn, 2000a) Fish basin Trickling Filter out Sedimentation basin out FBR out Alkalinity (mg CaCO3/l) 180 160 140 120 100 80 60 40 20 0 7:00 11:00 Time (h) 15:00 I- Schematic Diagram of the DB Experimental Setup DB out (to the Fluidized-Bed Reactor) Aerial view out flow direction intermediate cross section Top Middle Overlying liquid Underlying sludge in Bottom DB in (from the fish pool) Working volume: 400 l Retention time: ~1.5 hrs. Flow rate: 5 l/min IA- Chemical Parameters Nitrate Nitrite 8000 120 7000 100 NO2 (µM) 5000 80 60 - 4000 - NO3 (µM) 6000 3000 2000 40 20 1000 0 0 T M B T M in B T M interm. B out T M in B T M B interm. T M B out Total Ammonia 18000 16000 14000 12000 10000 8000 6000 4000 2000 Geochemical Processes NH3 (µM) •Nitrate/Nitrite Reduction •Ammonification •Dissimilatory Reduction of Nitrate to Ammonia (DNRA) 150 100 50 0 T M in B T M B interm. T M B out IA- Chemical Parameters Sulfate Phosphate 1200 16000 1000 14000 PO4 (µM) 800 10000 600 3- 8000 2- SO4 (µM) 12000 6000 4000 400 200 2000 0 0 T M B T in M B T interm. M B out T M in B T M B interm. T M B out Total Sulfide 7000 6000 H2S (µM) 5000 Geochemical Processes 4000 •Sulfate Reduction •Sulfide Oxidation •Organic Phosphorus Release •Anaerobic Poly-P degradation 3000 2000 1000 20 10 0 T M in B T M B interm. T M B out IB- DGGE Analysis Aqueous Samples In Top 3.1 7.1 In Middle 3.1 7.1 Intermediate Intermediate Top Middle 3.1 7.1 3.1 7.1 Sludge Samples Out Top 3.1 7.1 Out Middle 3.1 7.1 In Sludge 3.1 7.1 Intermediate Sludge 3.1 7.1 Out Sludge 3.1 7.1 • DGGE of partial 16S rRNA gene fragments amplified with general bacterial primers –GCclamp-341F and 907R • Samples run on an 18-55% DGGE gel gradient 1B- Phylogenetic Affiliations of Excized DGGE Bands Excised Bands showing Closest “Blast” relative Liquid samples Sludge samples out 7.1.01 3.1.01 3.1.01 interme. in 3.1.01 3.1.01 31.10.00 S2- Mesophilibacter aromativorans (97%) Bacteroidetes S3- Flavobacteriales CF-1 (94%) S4- Alkaliflexus imshenetskii (91%) S5- Microscilla furvescens (90%) S6A- Riftia pachyptila symbiont (93%) S6I- Fusibacter paucivorans (94%) S7- Desulfovibrio calendoniensis (98%) S8- Marine Alpha Bacteria JP88 (97%) S9- Bacterium from Denitrifying Sludge Reactor AF234732 (97%) S10- Dethioulfovibrio marinus (99%) W4- Marine bacterium Keppib22 (96%) W3- Marine alpha prot. AS-19 (99%) W2- Microscilla furvescens (90%) Fermentative Bacteria DB inlet (from fish basin) Sulfate Reservoirs from seawater NH4 Nitrification + NO2- CO2 Nitrification Products from TF NO3NO3- Sulfide Oxidation NO2- NO Rhodobacteraceae, Thauera HSsulfur reduction ammonification Particulate Organic Carbon Fish excretions N2 Oxygen-dependent Thiomicrospira, HS symbiont-related SOB’s Nitrate-dependent Rhodobacteraceae 0 S S0Dethiosulfovibrio, Fusibacter Bacteroidetes Fermentation Processes CH2O NH2COOCOO-R Denitrification SO4- NH4 N2O CO2 NO Sulfate reducers, 3 + Clostridia, ? - DNRA CO2 Sulfate Reduction HSDesulfovibrio, Desulfomicrobium Desulfobacterium SO4SO3- CO2 Figure DD. Hypothetical model of of biogeochemical processes in the DB. Proposed bacterial strains that participate in these processes are shown in italics. Dashed lines represent carbon transformations. (Cytryn, 2005) Sulfur Transformations in the Fluidized Bed Reactor Sulfide is extremely toxic to fish • Blocks oxygen transport by hemoglobin • Binds to the iron at the center of cytochrome molecules Fluidized bed reactor 8/ 20 /2 1 1 1 1 00 1 01 00 00 01 00 20 /2 /2 8/ 27 16 8/ 7/ 7/ 1 1 01 00 20 /2 /2 5/ 26 15 7/ 6/ 6/ 00 00 20 /2 /2 6/ 24 11 6/ 5/ 5/ sulfide (µM) /2 /0 /2 /0 /2 /2 /1 0/ 01 00 00 00 00 99 99 01 20 20 20 20 20 19 19 /1 2/ 9/ 9/ 2/ 9/ 3/ 0/ 12 03 11 05 04 02 12 11 sulfide (µM) Sulfur Transformations in the Fluidized Bed Reactor 80 60 Rehovot 11/99-12/01 40 20 0 500 FBR Inlet 400 300 FBR Outlet 200 150 125 100 Eilat 5/01-8/01 75 50 25 0 (Cytryn et al., 2005) DGGE Analysis of FBR community profiles Dec. ` 99 Apr. 00 Nov. 00 Apr. 01 Dec. Wf Dec. Eilat 01 01 8/01 Phylogenetic Affiliation of Excized Bands- Proteobacteria Sulfide-oxidizing (autotrophic) denitrifying bacteria Filamentous sulfide-oxidizing bacteria Hydrothermal vent eubacterium , U15103 Epsilon Thiomicrospira denitrificans, L40808 proteobacteria unidentified oil field bacteri, U46506 FBR3 Beggiatoa alba, L40994 Gamma symbiont of Riftia pachyptila , M99451 proteobacteria FBR5 marine humic oxidizing bacteri, AF521582 Thiothrix ramosa, U32940 Thiothrix sp. OS-F FBR19 FBR20 Comamonas testosteroni, D87101 Beta uncultured eubacteria ONG2 proteobacteria FBR21 Hydrogenophaga taeniospiralis uncultured sludge bacterium S1 FBR8 Thauera aromatica, X77118 Unknown Proteobacteria, X83533 FBR13 Alpha Slope strain EI1 proteobacteria Roseobacter denitrificans, M59063 FBR18 FBR17 uncultured Roseobacter Artic 9 FBE5 FBR14 FBR6 Paracoccus denitrificans , D13480 FBR7 Rhodovulum sulfidophilum, D16422 FBR15 Symbiotic sulfideoxidizing bacteria Rhodobacteraceae 0.1 The fluidized-bed reactor (FBR) N2 Sulfate Autotrophic sulfide oxidizers 5HS- + 8NO3- + 3H+ → 5SO42- +4N2 + 4H2O Nitrate Sulfide Sulfur Transformations in the Anoxic Treatment Stage Dissimilatory sulfate reduction 2 SO4 H2S sulfate sulfide Chemotrophic sulfide oxidation S0 Elemental sulfur Carbon, nitrogen and phosphorus in system after 16 months growth period Carbon Nitrogen Phosphorus (as percentage of total feed input) Retained in fish 18 15 21 Retained in system 11 12 79 Expelled from system 71 73 0 (Neori et al., in prep.) Conclusions • So far, denitrification has limited commercial application in RAS systems • Mainly external, not internal, carbon sources are used for induction of denitrification in recirculating systems • Additional benefits of denitrification: *reduces/prevents organic matter discharge *stabilizes buffering capacity *prevents sulfide accumulation *prevents phosphate accumulation Acknowledgements Faculty of Agriculture Rehovot Dr. Yoram Barak Dr. Eddie Cytryn Dr. Yossi Tal Mr. Iliya Gelfand Mrs. Liat Koch Mr. Gilad Fine Mr. Yoni Sher Volcani Institute Dr. Dror Minz National Center for Mariculture Dr. Amir Neori Leeds University Prof. Mike Krom University of Bayreuth Prof. Andreas Schramm Prof. Harold Drake Mrs. Bärbel Krieger MPI Bremen Dr. Armin Gieseke Dr. Dirk de Beer Carsten Schwemer Thank you!!! Organic matter degradation Performance parameters of prototype seawater, recirculating system - Rehovot ________________________________________ Growth period 225.0 Initial average weight (g) 169.0 Final average weight (g) 378.0 Total fish biomass produced (kg) 58.1 Specific yield (kg/m3) 25.2 Survival 70.0 FCR 3.1 Average food input (g/day) 561.0 Freshwater supply (%) 1.3 Specific water consumption (l/kg) 109.0 ________________________________________ “Atypical” Phosphate Removal by Paracoccus denitrificans PO4-P Acetate NO3-N Glycogen Total P PHB Barak and van Rijn (2000b) Main physiological differences between Paracoccus denitrificans and “polyphosphate accumulating organisms” (PAOs) Organism( s) Anaerobic metabolism PAOs Use external carbon source forPHA synthesis - Unable to use external carbon P. denitrifica source for PHA synthesis ns Aerobic/Anoxic metabolism Grow and produce polyphosphate onPHA in absence of external carbon source - When present, external carbon source might inhibit polyphosphate synthesis or is used for PHA production but not for growth - Produces polyphosphate and grows on energy provided by external carbon source - in absence of external carbon source, cells with PHA do not grow and do not produce polyphosphate
© Copyright 2025 Paperzz