Multiply Square Roots

Multiply Square Roots
The product rule of radicals, which we have already been using, can be
generalized as follows:
π’‚βˆšπ’ƒ βˆ™ π’„βˆšπ’… = π’‚π’„βˆšπ’ƒπ’…
Another way of stating this rule is we are allowed to multiply the factors
outside the radicals and multiply the factors inside the radicals.
Example 1: βˆ’5√14 βˆ™ 4√6
βˆ’5 βˆ™ 6√14 βˆ™ 6
Multiply the coefficients, multiply the radicands
βˆ’30√84
βˆ’30√2 βˆ™ 2 βˆ™ 3 βˆ™ 7
βˆ’30 βˆ™ 2√3 βˆ™ 7
βˆ’60√21
Factor the radicand
Simplify the square root
Multiply the radicands
Notice we could have eliminated a step by factoring the radicands and
simplifying the square root rather than multiplying and then factoring:
βˆ’5 βˆ™ 6√14 βˆ™ 6
βˆ’30√2 βˆ™ 2 βˆ™ 3 βˆ™ 7
βˆ’30 βˆ™ 2√3 βˆ™ 7
βˆ’60√21
Factor the radicand
Simplify the square root
Multiply the radicands
Modified from Beginning and Intermediate Algebra, by Tyler Wallace, CC-BY 2010. Licensed under a
Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0)
Example 2: 7√6(√10 βˆ’ 5√15)
7√6 βˆ™ √10 βˆ’ 7√6 βˆ™ 5√15
7√2 βˆ™ 2 βˆ™ 3 βˆ™ 5 βˆ’ 7 βˆ™ 5√2 βˆ™ 3 βˆ™ 3 βˆ™ 5
7 βˆ™ 2√3 βˆ™ 5 βˆ’ 7 βˆ™ 5 βˆ™ 3√2 βˆ™ 5
Distribute 7√6
Factor the radicands
Multiply
14√15 βˆ’ 105√10
Example 3: (5 βˆ’ √2)(3 + 5√2)
5(3 + 5√2) βˆ’ √2(3 + 5√2)
5 βˆ™ 3 + 5 βˆ™ 5√2 βˆ’ √2 βˆ™ 3 + √2 βˆ™ 5√2
15 + 25√2 βˆ’ 3√2 + 5√4
15 + 25√2 βˆ’ 3√2 + 10
(15 + 10) + (25√2 βˆ’ 3√2)
Use the Distributive Property
Distribute 5 and √2
Multiply
Simplify √4 and multiply by 5
Combine like terms
25 + 22√2
Example 4: (√7 + √11)
2
(√7 + √11)(√7 + √11)
√7(√7 + √11) + √11(√7 + √11)
√7 βˆ™ √7 + √7 βˆ™ √11 +
√49 + √77 +
7 + √77 +
(7 + 11) +
Write 2 factors of (√7 + √11)
Use the Distributive Property
√11 βˆ™ √7 + √11 βˆ™ √11 Distribute √7 and √11
Multiply
√77 + √121
Simplify √49 and √121
√77 + 11
Combine like terms
(√77 + √77)
18 + 2√77
Modified from Beginning and Intermediate Algebra, by Tyler Wallace, CC-BY 2010. Licensed under a
Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0)
Example 5: (8√2 + 4√5)(8√2 βˆ’ 4√5)
8√2(8√2 βˆ’ 4√5) + 4√5(8√2 βˆ’ 4√5)
Use the Distributive Property
8√2 βˆ™ 8√2 βˆ’ 8√2 βˆ™ 4√5 + 4√5 βˆ™ 8√2 βˆ’ 4√5 βˆ™ 4√5 Distribute 8√2 and 4√5
64√4 βˆ’ 32√10 + 32√10 βˆ’ 16√25
Multiply
128 βˆ’ 32√10 + 32√10 βˆ’ 80
Simplify √4 and √25 and multiply
(128 βˆ’ 80) + (βˆ’32√10 + 32√10 )
Combine like terms
48 + 0
48
The above example 5 illustrates multiplying conjugates. Conjugates are
binomials made up of the same terms with one being an addition and the
other being a subtraction. Notice that whenever we multiply conjugates
the two middle terms have a sum of zero, resulting in a product
containing no square root.
Modified from Beginning and Intermediate Algebra, by Tyler Wallace, CC-BY 2010. Licensed under a
Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0)