Coverage, Cost, and Safety Impacts of Primary Container Choice

Coverage, Cost,
and Safety Impacts of
Primary Container Choice
By: Cecily Stokes-Prindle & Lois Privor-Dumm, Leila Haidari, Diana Connor,
Angela Wateska, Shawn Brown, and Bruce Lee
International Vaccine Access Center (IVAC) • Johns Hopkins Bloomberg School of Public Health | 1
International Vaccine
Access Center (IVAC)
Johns Hopkins Bloomberg
School of Public Health
Rangos Bldg, Suite 600
855 N. Wolfe Street
Baltimore, MD 21205
www.jhsph.edu/ivac
Cecily Stokes-Prindle & Lois Privor-Dumm, Johns Hopkins University Bloomberg School of Public Health
Leila Haidari, Diana Connor, Angela Wateska, Shawn Brown, and Bruce Lee, HERMES Logistics Modeling Team, Johns Hopkins Bloomberg School of Public Health, University
of Pittsburgh, and Pittsburgh Supercomputing Center (PSC).
This report was produced by the International Vaccine Access Center at Johns Hopkins University Bloomberg School of Public Health, with data from the HERMES model
provided by the HERMES Logistics Modeling Team (http://hermes.psc.edu). We gratefully acknowledge the input of the following participants in the Primary Container Roundtable: Orin Levine & Robert Steinglass (co-chairs), Muyi Aina, Edward Arcuri, Tajul Islam Abdul Bari, Endele Beyene, David Bishai, Carla Botting, Dmitri Davydov, Srihari Dutta,
Serge Ganivet, Andrew Garnett, Neal Halsey, Thomas Hensey, Suresh Jadhav, Phillipe Jaillard, Najwa Khuri-Bulos, Solo Kone, Debra Kristensen, Gordon Larsen, Tina Lorenson,
Vivek Malhotra, Susan McKinney, Andrew Meek, Jules Millogo, Angeline Nanni, Jean-Marc Olivé, Jon Pearman, Olga Popova, Logan Rae, Raja Rao, Nora Lucia Rodriguez,
Jeff Sanderson, Angela Shen, Chizoba Wonodi, and Prashant Yadev. We also thank Jennifer McManus and Kyung Min Song for their invaluable research assistance.
2 | Coverage, Cost, and Safety Impacts of Primary Container Choice • 2013
INTRODUCTION
A single decision on the size and type of a vaccine container can have significant
implications on the safety, affordability, and coverage of vaccination in routine and
campaign settings. Choosing a single dose vial instead of a multi dose container
WHY NOW FOR PRIMARY
CONTAINER WORK?
• New vaccine introductions are ramping up. If
or a pre-filled syringe, for example, affects a wide variety of stakeholders: the
we help manufacturers understand priorities
vaccine recipients who benefit from the vaccine’s protection; the governments
early, these can be addressed in product
and organizations that buy, transport, and store them; the health workers who
development to produce the greatest health
administer and dispose of them; and manufacturers who make vaccines.
value and deliver savings down the line.
• For eradication, almost isn’t good enough.
Given the scarcity of data on the broader effects of container choice,
Polio eradication is within reach, but only
decisions are often based on readily quantifiable criteria with clear short-
if vaccines can make it all the way to the
term implications; procurement price or storage volume are common decision
last child at the end of the last mile. Measles
drivers.1 These criteria provide a helpful starting point for decision-making;
eradication efforts may be next, and will face
however, container choices have additional complex impacts on safety,
the same difficulty. Container choice could
affordability, and coverage—particularly in low-resource, last-mile settings.
be the small but crucial difference between
eradication and continued transmission.
While these concepts might seem abstract, they have already had very real
effects, in terms of both dollars spent and lives saved. In the early stages of
pneumococcal conjugate vaccine (PCV) introduction, manufacturers developed
a two dose presentation as a response to global health community requests for
low storage-volume options. However, unlike other multi dose liquid vaccines
used in routine immunization, the two dose PCV vial was preservative-free,
with new handling requirements to ensure safe, effective administration.
The resulting need for training at the country level was extensive, and—in
the absence of systematic communication between countries, agencies, and
manufacturers—largely unanticipated. As a result, introduction was delayed in
several countries, increasing costs and leaving children unvaccinated.2
The upcoming transition from oral to inactivated polio vaccine (IPV), an
injectable, provides another example of these tradeoffs in action—for instance,
in the short-term, standalone IPV may be the most viable option, but with
• Many new vaccines cost more than traditional
vaccines, making high wastage rates even
more costly.3,11 With traditional vaccines,
which are generally pennies per dose,
wastage is less costly, with an increasing
number of new, expensive vaccines, costs
due to wastage could increase substantially.
A more in-depth look is needed to understand
the full cost implications of a new vaccine
introduction, factoring in issues of wastage,
cold chain, health worker training, and
the often hidden costs of adverse events
following immunization.
• Demand-side issues are likely to become
how many doses per vial? Many countries prefer multi dose vials due to space
more important. There are important
constraints and price, but it’s currently unclear which presentations will be
discussions going on in other container-
available and prequalified, and whether multi dose vial policy will apply.
impacted areas, such as the rise in public
and environmental concerns about
Furthermore, countries may want more than one option for different situations.
thimerosal in multi dose vial vaccines.
In areas where session sizes are small, single, or low dose options may make the
most sense. Further into the future, decisions will center around combination
vaccines, such as hexavalent diphtheria, tetanus, pertussis, hepatitis b, haemophilus
influenzae type b, and IPV vaccine. This approach avoids extra shots but requires
a preservative-free one or two dose container. Low dose options often come at a
higher price and increase cold chain burden, but they also reduce wastage. In
cases of limited resources or uncertain supply, the fear of wastage puts health care
workers in a difficult position: with a multi dose vial and a small session size, do
they open the vial and waste the unused doses, or do they wait for another day when
there is a larger session size, avoiding wastage but leaving today’s eligible children
unvaccinated? The “best” answer isn’t clear, and might be different from one place
to another—but getting the answer right from the start could mean the difference
between successful polio eradication or an ongoing battle against the disease.
International Vaccine Access Center (IVAC) • Johns Hopkins Bloomberg School of Public Health | 1
HOW DO PRIMARY CONTAINER
DECISIONS AFFECT COVERAGE,
AFFORDABILITY, AND SAFETY?
COVERAGE
As with safety, the pathways from container choice to coverage
outcomes are complicated, and have not been well studied. To the
extent that multi dose containers reduce storage and transport burdens,
they may increase coverage by reducing space bottlenecks which may
prevent vaccines from reaching the places they need to reach. However,
they can also affect health care worker behavior. If a health worker has
three children at a session, but the needed vaccine is in a ten or twenty
dose vial , the health worker may have a dilemma. If the vaccine does
not qualify for the multi dose vial policy (MDVP)* or the MDVP is not
followed, they may waste a lot of doses and possibly not have enough
for children who come in later sessions; or, they may inappropriately
use the vaccine, potentially putting children at risk. Outreach to use the
remaining doses is also an option, particularly with presentations such as
prefilled syringes or oral droppers, but the associated time and logistics
required could be a significant challenge.
In areas with uncertain supply, there is some evidence that health
workers are hesitant to open the vial, and children miss opportunities
for vaccination.3,4 Even if a worker does open the vial, the increase in
wastage reduces overall supply and can result in shortages. On the other
hand, if the health center is supplied with only single dose vials, storage
constraints may prevent them from keeping enough vaccine on hand to
meet demand on any given day. In addition, there are reports of central
managers reporting adequate supply while regional managers report
shortages; these disconnects could be a result of multiple factors, but an
incomplete understanding of decisions at the clinic level may contribute to
communication and forecasting failures. The difficult tradeoffs in coverage
demonstrate the extent to which the “best” container choice will vary by
context, and highlight the importance of better data for decision-making.
Additionally, compact, pre-filled auto-disable devices (CPADs) reduce
the transportation and planning burden for ensuring availability of
syringes. They also offer another benefit that can not be forgotten given that needles are already attached, there is no added risk that
children will not receive vaccine due to a shortage of needles at the
time of administration.
To illustrate the impact that these choices can have on coverage,
see Figure 1, which shows the impact on coverage of a 10-dose vial
with a 50% opening threshold. In other words, if a health care worker
only opens a vial when at least half of that vial will be used, what is
the impact on coverage? As the figure shows, the impact varies by
session size. With larger session sizes, the coverage differences are
very small. But in areas where sessions are between 1-10 children—
as in many “last-mile” settings—coverage will decrease to 60% even
when the needed vaccines are technically available.
Even in scenarios with larger average session sizes, coverage impacts
can be observed; in areas where sessions average between 11-20
children, a 50% opening threshold decreases coverage to 92%. This
is still a relatively high percentage, but it also represents a best case
scenario in which the needed vaccine is always available. When
variations in availability combine with reluctance to open large vials,
Figure 1. Percent coverage by session size range, if health care worker opens vial only for sessions where 50% of doses will be used.
The 50% “Opening Threshold”: If a health care worker only opens a vial when at least half of that vial will be used, what is the impact on coverage?
With large session sizes, the coverage differences are small. But in areas where sessions are between 1-10 children—as in many “last-mile”
settings—a 50% “opening threshold” will decrease coverage to 60% even when the needed vaccines are technically available. Even in scenarios
with larger average session sizes, coverage impacts can be observed; in areas where sessions average between 11-20 children, a 50% opening
threshold decreases coverage to 92%. This is still a relatively high percentage, but it also represents a best case scenario in which the needed
vaccine is always available. When variations in availability combine with reluctance to open large vials, the coverage impacts will be larger.
*MDVP states that under certain conditions, opened multi dose vials of OPV, DTP, TT, hepatitis B, and liquid formulations of Hib may be used in subsequent
sessions for up to four weeks.
2 | Coverage, Cost, and Safety Impacts of Primary Container Choice • 2013
the coverage impacts will be larger. These impacts may be somewhat
container lower procurement costs and require less space, reducing
mitigated if children return to the clinic after an unsuccessful visit,
storage needs, transport needs, and medical waste.5 For this
but when health facilities are hard to reach, a return visit is a difficult
reason, multi dose vials are generally considered the least expensive
option. For eradication campaigns and last-mile efforts, these small
option when procurement and logistics costs are considered alone.
differences can be the difference between success and failure.
However, increased global demand for a particular presentation
may help lower procurement costs; as cost to manufacturer is not
AFFORDABILITY
directly related to price,6 procurement costs could be similar across
The pathways from container choice to affordability outcomes
presentations. Other costs, such as wastage or handling, may add
are in some ways straightforward. Stakeholders, however, do not
considerably to the overall cost of the vaccine program.7 Where
always consider the impact of all aspects of affordability and may
wastage is an issue in a country, the lower cost per dose delivered
thus focus on one aspect—such as price per dose, or cost to add
benefits of a multi dose vial may be erased as the system needs to
additional cold chain storage— without considering other aspects.
procure more product, transport it and store it.
The characteristics of the container and the market affect the price
charged by a manufacturer, and the country pays that price in
As an illustration, consider the hypothetical scenario illustrated in
addition to storage, transport, disposal, and wastage costs. Taken
Figure 2 below. In this example, a hypothetical vaccine is priced
together, all of these factors determine price per dose, cost per
similar to Pneumococcal Conjugate Vaccine (PCV): $3.50 for a single
vaccinated child, and overall affordability of a presentation.
dose vial, $2.80 per dose in 5-dose vials, and $2.40 per dose in a
Usually, presentations with a high number of doses in a single
10-dose vial.
Figure 2. Average cost per dose administered by session size range, assuming that health care workers open vials as needed, and unused doses are wasted.
Multi dose vials are sometimes cheaper—but only for large session sizes. As an example, a hypothetical vaccine is priced similarly to possible Pneumococcal Conjugate Vaccine (PCV) pricing: $3.50 for a single dose vial, $2.80 per dose in 5-dose vials, and $2.40 per dose in
a 10-dose vial. As illustrated above, cost per dose administered is higher for a multi dose vial when sessions are small, and that relationship
quickly reverses as session sizes increase. This demonstrates the need to consider multiple presentations in a single country, even when
affordability is the primary concern.
ASSUMPTIONS
• Logistics costs are calculated per vial: $1.00 for the 10-dose, $0.70 for the 5-dose, and $0.50 for the single dose. Possible
economies of scale in logistics costs are not represented.
• Price per dose is $3.50 for single dose vial, $2.80 for 5-dose vial, and $2.40 for the 10-dose vial.
• Distribution of session sizes is equal; no session size is weighted to reflect a more frequent occurrence.
International Vaccine Access Center (IVAC) • Johns Hopkins Bloomberg School of Public Health | 3
In this illustration, cost per dose administered is higher for a multi
after a serious adverse event can also be significant.
dose vial when sessions are small, and that relationship quickly
reverses as session sizes increase. This demonstrates the need to
INTERRELATIONSHIPS BETWEEN DOMAINS
consider multiple presentations in a single country, even when
There are also safety or coverage effects that influence affordability
affordability is the primary concern.
or vice versa. For example, the health worker choosing between
wasting doses or leaving children unvaccinated will affect cost per
Actions to keep wastage low (such as session size management or
administered dose as well as coverage. If the worker opens the vial,
compliance with multi dose vial policies) can help keep multi dose
wastage costs increase, reducing the affordability of the multi dose
vials affordable for small session sizes, even when cost per dose
presentation. If the worker decides not to open the vial, the costs
administered is considered along with procurement costs. Wastage
of wastage are averted, but there may be increased costs of illness
at earlier points along the supply chain (e.g., during transport or at
and lost productivity from incidence of vaccine-preventable diseases
the central cold store) should also be considered for a comprehensive
in those unvaccinated children. Poor safety outcomes can increase
cost per dose assessment. Additionally, investing in additional cold
the cost of illness17 (particularly at the household level) while also
chain options and/or reevaluating the structure of storage and delivery
reducing coverage by depressing demand.
8
options may be an affordable option over the long term.
POLITICAL WILL AND DECISION-MAKING
The manufacturer perspective on affordability is also important; as
It is important to note that the relationships illustrated above exist
noted earlier, price is not a fixed characteristic of a presentation, but
within and alongside a series of similarly complicated political
a function of the entire economic and technological environment.
systems. While container choice is not inherently a political issue,
Although single dose containers generally cost more, those
agencies, governments, and funders set priorities which in turn affect
differences do not fully account for the disparity in pricing between
the range of options and willingness to prioritize different aspects
presentations. Economies of scale help reduce price per dose; the
of container decisions.18 Politics and policy are therefore key, albeit
greater the demand for single dose product, the lower the possible
indirect, components of the primary container decision system.
9
cost per unit. If that demand can be reliably predicted, it can be
leveraged to reduce prices. When demand is uncertain, however,
manufacturers will necessarily be less flexible in price setting, and
SCENARIO ANALYSIS: ROUTINE
IMMUNIZATION IN BENIN
affordability will be reduced.
In a more concrete example of the importance of health care
SAFETY
worker decision-making, we can consider the variations in vaccine
The pathways from container choice to safety outcomes are perhaps
availability and cost per dose administered within a small country
the most difficult to quantify, and have not been well characterized
such as Benin. According to the Highly Extensible Resource
to date. Essentially, increasing the doses per container increases
for Modeling Event-Driven Supply Chains (HERMES) analyses
the opportunity for user error,10 which may raise the likelihood of
(conducted after an extensive data collection and verification
non-sterile injections and injections with expired vaccine. In
process), the national-level cost per dose administered, averaged
turn, this increases the likelihood of infection from injection and
across all vaccines, is $0.25. Reducing doses per vial for any
of blood-borne disease transmission. Certain presentations may
vaccine in the schedule increases the cost per dose administered,
also increase the risk of accidental needle sticks, which put health
and simulating a 50% opening threshold for each vial results in
workers at risk of blood-borne disease.
decreased vaccine availability.
The presence of preservatives may reduce the likelihood of some
Subnationally, however, the picture varies. Simulating a 50% opening
adverse outcomes, but thimerosal, the most commonly used
threshold— a rule that vials are only opened when 50% or more of
preservative, has been a target of concerned parents and activists
the doses will be immediately used—yields differing results across
due to its chemical relation to mercury.15 Furthermore, thimerosal
the areas analyzed. In Natitingou and Kandi, two of the three areas
may have antibacterial action, but is not effective in controlling
with the lowest vaccine availability, a 50% opening threshold results
viral contaminants.
in slight increases in vaccine availability and reductions in cost per
11
12
13,14
dose administered. This may indicate that current large vial sizes
Additionally, public opinion can have a significant impact on
are reducing overall availability due to open vial wastage. In the
perceived safety of certain vaccines or the program overall;
higher performing areas, applying a 50% opening threshold had
regardless of actual safety, these concerns can lower demand and
the opposite effect, increasing cost per dose administered and
thus coverage. Costs to mitigate bad publicity or restart a program
decreasing availability.
16
4 | Coverage, Cost, and Safety Impacts of Primary Container Choice • 2013
Figure 3. Vaccine Availability and Cost per
Dose in Benin With and Without a Vial Opening Threshold
In terms of threshold changes, the increases and
decreases of the largest magnitude were observed in
the areas with the highest baseline vaccine availability.
However, variations in cost and coverage as a result
of vial size changes were much smaller in the high
availability areas, perhaps indicating a greater ability to
adapt to changes in the system. Interestingly, variations
in the number of health post trips needed as a result
of vial size changes follow the same pattern in both
high-availability and low-availability areas; as expected,
reducing the doses per vial increases the number of trips
necessary. However, the trips themselves are cheaper in
high-availability areas, reducing the cost impact of the
additional logistics burden.
WHAT IS THE CURRENT STATE
OF PRIMARY CONTAINER
DECISION-MAKING?
There is no comprehensive set of guidelines weighing the
trade-offs of affordability, safety, and coverage. Decision
makers from different sectors or regions will naturally
have differing priorities, which may lead them to a focus
on certain aspects over others. The resources available to
a given decision-maker vary widely as well. In resourcelimited settings, up-front costs, and current system
capacity are very often the determining factors in container
choice at the country level. Costs are most easily compared
in terms of procurement prices. While price differences
are certainly not trivial, changes in vaccine presentations
can change other outcomes, such as wastage, that in
turn change the cost per vaccinated child—even when
price per dose procured remains the same.19, 20 On the
Simulating a 50% opening threshold— a rule that vials are only opened when 50%
or more of the doses will be immediately used—yields differing results in different
areas of Benin. In Natitingou and Kandi, two of the three areas with the lowest
vaccine availability at baseline, a 50% opening threshold results in slight increases in
vaccine availability and reductions in cost per dose administered. This may indicate
that current large vial sizes are reducing overall availability due to open vial wastage.
In the higher performing areas, applying a 50% opening threshold had the opposite
effect, increasing cost per dose administered and decreasing availability.
flip side, choosing a presentation with a high volume per
dose (such as a single dose vial) can lead to increased cold
chain, transport, and personnel needs and costs.21 While
container choice almost certainly affects safety,22 there
is little concrete evidence quantifying these effects; the
lack of data often excludes safety concerns from explicit
consideration in container decisions.
International Vaccine Access Center (IVAC) • Johns Hopkins Bloomberg School of Public Health | 5
Improved market forecasting could spur product development.
Mismatches between available presentations and country needs can
create shortages or unnecessary burdens; when countries receive
products that are not compatible with their systems, additional or
unplanned investments may be required for successful introduction.
Manufacturers are willing to develop new presentations in response
to global health community requests. Historically, however,
communication around desired characteristics has not been systematic
or consistent, leaving manufacturers hesitant to invest in new product
development.26 Accurate and transparent forecasting is needed to
restore private sector confidence in the health community’s decisions.
Space reduction does not always equate to lowest cost. Many EPI
managers will avoid adding cold chain capacity wherever possible.
The most consistent source of guidance is the WHO prequalification
The cost of new refrigerators and incremental operational costs, are
process, an established procedure used by WHO for the evaluation
often lower than the wastage seen for multi dose vials. Adding cold
of candidate vaccines. Prequalification provides a set of standards
chain space may become a necessity anyway given the number
for health products, including vaccines; a vaccine that has achieved
of new antigens introduced in the coming years. Additional space
WHO prequalification is eligible for purchase by UNICEF and other
needed from single dose vials may have insignificant cost compared
UN agencies. Prequalification requires that vaccine efficacy data and
to the wastage savings and other benefits of safety and coverage that
studies are relevant to the target population, and that vaccines meet
could be seen assuming the country has the capacity to handle the
specific criteria in terms of potency, thermostability, presentation,
product.
labeling, shipping conditions, and more.23 The prequalification
process is enormously helpful in setting baselines and facilitating
Stakeholder perspectives are complex and diverse. Decision-
dialogue between manufacturers and global agencies. However,
makers have different needs, priorities, and resources, even within a
it cannot serve as a comprehensive analysis of all the issues
particular stakeholder group. For instance, an EPI manager within a
surrounding introduction in a particular country; prequalification
country may want multi dose vials to minimize cold chain burdens,
processes are necessarily operating at the global level, and they are
but a health worker in the same country may have concerns about
focused on efficacy and supply, rather than behavioral, policy, or
opening a multi dose vial for a small session size and wasting
demand-side impacts of introduction.
doses,27 particularly if there’s uncertainty about the ability to restock
in a timely manner. In addition, constraints differ between campaign
There is a need to balance country and global perspectives. A
settings and routine administration; some vaccines must fit in both
one-size-fits-all, global approach commonly seen in low income
contexts, as they are administered in both settings or transitioned to
countries can lead to programs or policies that don’t meet the needs
routine after an initial campaign period.
of specific countries, or that don’t fit the needs of certain regions
within a country.24 For instance, a country with limited cold storage
High-priority data gaps have not been identified and addressed.
may need to prioritize low volume above all other considerations,
Important information such as wastage rates, cold chain capacity,
regardless of international recommendations. Countries may also
session sizes, safety outcomes, and cost per administered dose can
find that session sizes in urban locations vary drastically from those
be very difficult to pin down, particularly at subnational levels.28,29
in hard to reach areas, thus necessitating different size containers.
The lack of data, particularly on safety, hinders evidence-based
And in some cases, the initial investment of funding and human
decision-making, and there is little ability to prioritize within existing
resources necessary to set up— and maintain— an improved cold
data gaps. Additional data on safety are needed for countries,
chain may be out of reach, even if the investment case itself is clear.
manufacturers, and donors to make better decisions; these data
Cold chain investments are not always as high as they may seem
should be incorporated into available tools such as HERMES to
initially, however, and are often a cost-effective way to ensure that
facilitate decisions based on all factors that should be considered.
25
other priorities of coverage and safety are considered. This decision,
therefore, should be taken with those objectives in mind, also taking
into account that capacity may need to be added anyway to prepare
for future vaccine introductions.
6 | Coverage, Cost, and Safety Impacts of Primary Container Choice • 2013
HOW CAN PRIMARY CONTAINER DECISIONS BE
IMPROVED?
The public health community will be facing some very important decisions in the
near future, which have implications not only for countries that introduce new
vaccines, but for manufacturers who supply new product and countries, and
donors who fund the process. Introduction of inactivated polio vaccine (IPV),
recently recommended by SAGE30, and other new vaccines that will significantly
expand countries’ immunization programs will have significant implications for all
stakeholders. Individual decisions, made on the basis of up-front indicators such as
cost or cold chain expense, have the potential to work against the long-term needs of
disease reduction and eradication effort in hard to reach locations. If multi dose vials
are used in hard-to-reach areas with small session sizes, potential impacts include
high wastage levels, potentially resulting in insufficient supply; containers unopened
and children turned away if a sufficient number of children are not in a session;
a health worker spending additional time in outreach, which has direct costs and
opportunity costs; or the retention of open multi dose vials, risking contamination.
Single or low dose vials avoid those particular pitfalls, but they too come with
downsides. Some have suggested that perhaps a five dose vial is a solution, but it
is important to evaluate whether that it will in fact address the issues that are to be
solved. Further, both global and country guidance will need to be vaccine specific,
taking into account price of vaccine, safety implications, how it is used, and other
factors. More data are needed to understand the risks to enable all stakeholders to
make fully informed decisions.
It is clear that there is no “one size fits all” solution; answers will be very context
specific, and some trade-offs will be unavoidable. However, running scenarios and
modeling the impact in multiple ways may help answer some important questions
and allow for more informed decision-making. Tools such as HERMES and other
models can help provide detailed and dynamic simulations of country supply
chains,31 and be adapted to evaluate coverage and safety implications. In addition,
a comprehensive approach makes it possible to identify and evaluate innovative
opportunities, such as regional procurement or multiple presentations within a
single country. Also, the manufacturers’ perspective will need to be considered as
economies of scale derived from focus on a small number of product presentations
can be important.
Having the data to support decisions could then result in policies that can be
evaluated in the context of the complex and dynamic environment that exists
today. Although there may still be trade-offs, the decision to select for instance
INTERNATIONAL VACCINE
ACCESS CENTER AT JOHNS
HOPKINS BLOOMBERG
SCHOOL OF PUBLIC HEALTH
IVAC aims to improve access to lifesaving vaccines by ensuring that the
evidence required for decision-making
is generated and synthesized, made
available to policy-makers, and results
in concrete action. Since 2003 – at
the start of the Pneumococcal Accelerated Development and Introduction Plan
(PneumoADIP), and continuing with the
launch of IVAC in 2009 – we have cultivated broad networks of stakeholders
in order to integrate apparently disparate aspects of immunization systems,
identify opportunities, anticipate needs,
and build effective partnerships.
Our HERMES team consists of experts
from a variety of disciplines including
operations research/industrial engineering, vaccinology, epidemiology,
medicine, infectious diseases, computer
science, and modeling from the Johns
Hopkins School of Public Health, the
University of Pittsburgh, and Pittsburgh
Supercomputing Center (PSC). The
HERMES team focuses on developing
computational models and tools to help
various decision makers better understand and assist vaccine distribution.
Our work involves working closely with
a wide range of collaborators.
a single dose vial in some countries or a ten dose container for the majority of a
country and single, two or five dose container for the hard to reach areas will help
in making better informed decisions to meet coverage goals, and in turn protect
more children from vaccine-preventable diseases.
International Vaccine Access Center (IVAC) • Johns Hopkins Bloomberg School of Public Health | 7
International Vaccine Access Center. Meeting Minutes. A Roundtable on Consideration for Primary Vaccine Container Selection in Developing Countries – Defining the Evidence
and Framework for Decision Making. May 9-10, 2012. International Vaccine Access Center. http://www.jhsph.edu/research/centers-and-institutes/ivac/resources/primary-containerroundtable/Primary-Container-Roundtable-Minutes.pdf. Accessed March 20, 2013.
1
UNICEF Supply Division. Pneumococcal Conjugate Vaccine: Current Supply & Demand Outlook. February 2013. http://www.unicef.org/supply/files/PCV_Supply_
Status_2013February_UNICEF_SD_Final.pdf
2
Steinglass R. 5-dose vials of measles vaccine for routine immunization programs? Technet-21. http://www.technet21.org/index.php/forum/technet21/vaccine-presentation-packaging-and-wastage/2791-5-dose-vials-of-measles-vaccine-for-routine-immunization-programs.html#p3965. Published September 21, 2011. Accessed March 20, 2013.
3
Hutchins SS, Jansen HA, Robertson SE, Evans P, Kim-Farley RJ. Studies of missed opportunities for immunization in developing and industrialized countries. Bulletin of the World
Health Organization. 1993;71(5):549-60.
4
Lee, BY, Assi TM, Rookkapan K et al. Replacing the ten-dose vaccine presentation with the single-dose presentation in Thailand. Vaccine. 2011;29(21):3811-7. doi: 10.1016/j.
vaccine.2011.03.013.
5
Drain PK, Nelson CM, Lloyd JS. Single-dose versus multi-dose vaccine vials for immunization programmes in developing countries. Bulletin of the World Health Organization.
2003;81(10):726-31.
6
Parmar D, Baruwa EM, Zuber P, Kone S. Impact of wastage on single and multi-dose vaccine vials. Human Vaccines. 2010;6(3):270-278. doi: 10.4161/hv.6.3.10397.
7
Lee BY, Norman BA, Assi TM el al. Single versus multi-dose vaccine vials: an economic computational model. Vaccine. 2010;28(32):5292–5300. doi: 10.1016/j.vaccine.2010.05.048.
8
Lee BY, McGlone SM. Pricing of new vaccines. Hum Vaccin. 2010;6(8):619-26. doi: 10.4161/hv.6.8.11563.
9
10
Pereira CC, Bishai D. Vaccine presentation in the USA: economics of prefilled syringes versus multidose vials for influenza vaccination. Expert Rev Vaccines. 2010;9(11):1343-9.
doi: 10.1586/erv.10.129.
11
DeBaun, B. Transmission of infection with multi-dose vials. Infection Control Resource. Vol.3, No.3: 1-7. http://www.infectioncontrolresource.org/Past_Issues/IC11.pdf. Published
2005. Accessed March 20, 2013.
12
Miller MA, Pisani E. The cost of unsafe injections. Bulletin of the World Health Organization. 1999;77(10):808-811
13
Ekwueme DU, Weniger BG, Chen RT. Model-based estimates of risks of disease transmission and economic costs of seven injection devices in sub-Saharan Africa. Bulletin of the
World Health Organization. 2002;80(11):859-870.
14
Pruss-Ustun A, Rapiti E, Hutin Y. Estimation of the global burden of disease attributable to contaminated sharps injuries among health care workers. Am J Ind Med.
2005;48(6):482-90. doi: 10.1002/ajim.20230.
15
Gross L. A broken trust: lessons from the vaccine–autism wars. PLoS Biol. 2009;7(5): e1000114. doi: 10.1371/journal.pbio.1000114.
16
Khetsuriani N, Imnadze P, Baidoshvili L et al. Impact of unfounded vaccine safety concerns on the nationwide measles-rubella immunization campaign, Georgia, 2008. Vaccine.
2010;28(39):6455-62. doi: 10.1016/j.vaccine.2010.07.043.
17
Miller MA, Pisani E. The cost of unsafe injections. Bulletin of the World Health Organization. 1999;77(10):808-811.
18
World Health Organization. Immunization Practices Advisory Committee (IPAC): 28 - 29 September 2011 Final meeting report and recommendations. WHO/IVB. http://www.who.
int/immunization_delivery/systems_policy/IPAC_2011_September_report.pdf. Accessed March 20, 2013.
19
Parmar D, Baruwa EM, Zuber P, Kone S. Impact of wastage on single and multi-dose vaccine vials. Human Vaccines. 2010;6(3):270-278. doi: 10.4161/hv.6.3.10397.
20
Levin CE, Nelson CM, Widjaya A, Moniaga V, Anwar C. The costs of home delivery of a birth dose of hepattis B vaccine in prefilled syringe in Indonesia. Bulletin of the World Health
Organization. 2005;83(6):456-461.
21
Lee, BY, Assi TM, Rookkapan K et al. Replacing the ten-dose vaccine presentation with the single-dose presentation in Thailand. Vaccine. 2011;29(21):3811-7. doi: 10.1016/j.
vaccine.2011.03.013.
22
Drain PK, Nelson CM, Lloyd JS. Single-dose versus multi-dose vaccine vials for immunization programmes in developing countries. Bulletin of the World Health Organization.
2003;81(10):726-31.
23
Revised procedure for WHO prequalification of vaccines. http://www.who.int/immunization_standards/vaccine_quality/pq_revision2010/en/index.html. Accessed April 5, 2013
24
International Vaccine Access Center. Meeting Minutes. A Roundtable on Consideration for Primary Vaccine Container Selection in Developing Countries – Defining the Evidence
and Framework for Decision Making. May 9-10, 2012. International Vaccine Access Center. http://www.jhsph.edu/research/centers-and-institutes/ivac/resources/primary-containerroundtable/Primary-Container-Roundtable-Minutes.pdf. Accessed March 20, 2013.
25
World Health Organization. Assessing the programmatic suitability of vaccine candidates for WHO prequalification. WHO/IVB/12.10. http://apps.who.int/iris/bitstream/10665/76537/1/WHO_IVB_12.10_eng.pdf. Published October 2012. Accessed March 20, 2013.
26
World Health Organization. Assessing the programmatic suitability of vaccine candidates for WHO prequalification. WHO/IVB/12.10. http://apps.who.int/iris/bitstream/10665/76537/1/WHO_IVB_12.10_eng.pdf. Published October 2012. Accessed March 20, 2013.
27
Lorenson K, Kristensen D, Huong V el al. Results from a survey of immunization stakeholders in Vietnam regarding the presentation, packaging, and distribution of human papillomavirus vaccines. Seattle: PATH; 2009.
28
Guichard S, Hymbaugh K, Burkholder B et al. Vaccine wastage in Bangladesh. Vaccine. 2010;28(3):858-63. doi: 10.1016/j.vaccine.2009.08.035
29
The United Nations Children’s Fund. Vaccine wastage assessment: Field assessment and observations from national stores and five selected states of India. UNICEF. www.unicef.
org/india/Vaccine_Wastage_Assessment_India.pdf. Published April 2010. Accessed March 20, 2013.
30
http://www.who.int/immunization/sage/meetings/2012/november/news_sage_ipv_opv_nov2012/en/
31
Lee, BY, Assi TM, Rookkapan K et al. Replacing the ten-dose vaccine presentation with the single-dose presentation in Thailand. Vaccine. 2011;29(21):3811-7. doi: 10.1016/j.
vaccine.2011.03.013.
8 | Coverage, Cost, and Safety Impacts of Primary Container Choice • 2013
International Vaccine Access Center (IVAC) • Johns Hopkins Bloomberg School of Public Health | 9
International Vaccine Access Center (IVAC)
Johns Hopkins Bloomberg School of Public Health
Rangos Bldg, Suite 600
855 N. Wolfe Street • Baltimore, MD 21205
www.jhsph.edu/ivac
10 | Coverage, Cost, and Safety Impacts of Primary Container Choice • 2013