An International Journal of Optimization and Control: Theories & Applications Vol.4, No.1, pp.21-33 (2014) © IJOCTA ISSN: 2146-0957eISSN: 2146-5703 DOI: 10.11121/ijocta.01.2014.00175 http://www.ijocta.com Mond-Weir type second order multiobjective mixed symmetric duality with square root term under generalized univex function Arun Kumar Tripathy Department of Mathematics, Trident Academy of Technology F2/A, Chandaka Industrial Estate, In front of Infocity, Patia, Bhubaneswar-751024, India Email: [email protected] (Received July 10, 2013; in final form December 03, 2013) Abstract. In this paper, a new class of second order ( , ) -univex and second order ( , ) pseudo univex function are introduced with example. A pair Mond-Weir type second order mixed symmetric duality for multiobjective nondifferentiable programming is formulated and the duality results are established under the mild assumption of second order ( , ) univexity and second order pseudo univexity. Special cases are discussed to show that this study extends some of the known results in related domain. Keywords: Second order ( , ) univex, mixed symmetric duality, efficient solution, square root term, Schwartz inequality. AMS Classification: 90C29, 90C30, 90C46 Xu [19] formulated two mixed type duals in multiobjective programming and also proved duality theorems. Earlier, Chandra et al. [9] and Bector et al. [7,8] formulated mixed symmetric duality for a class of nonlinear programming problems. Yang et al. [20] discussed a mixed symmetric duality for a class of nondifferentiable nonlinear programming problems. Aghezzaf [2] formulated a second order multiobjective mixed type dual and obtained various duality results involving a new class of generalized second order (F,ρ)-convex function. Mishra et al. [14, 15] and Mishra [13] presented mixed symmetric first and second order duality in nondifferentiable mathematical programming problem under Fconvexity. Recently, Ahmad and Husain [3] discussed a pair of multiobjective mixed symmetric dual programs over arbitrary cones and established duality results under K-preinvex /K-pseudo invexity assumption. Also, Kailey et al. [10] established mixed second order multiobjective symmetric duality with cone 1. Introduction Mond [16] initiated second order symmetric duality type in nonlinear programming and proved second order symmetric duality theorems under second order convexity. Mangasarian [12] discussed second order duality in nonlinear programming under inclusion condition. Mond [16] and Mangasarian [12] also indicated possible computational advantages of the second order dual over the first order dual. Later, Bector and Chandra [6] presented a pair of Mond-Weir type second order dual programs and proved weak, strong and self duality theorems under pseudo bonvexity and pseudo convexity assumption. Ahmad and Sharma [5] established second order duality for non differentiable multiobjective programming under generalized F-convexity. The concept of mixed duality is interesting and useful both from theoretical as well as from algorithmic point of view. Corresponding Author. Email: [email protected] 21 A. K. Tripathy / Vol.4, No.1, pp.21-33 (2014) © IJOCTA 22 constrain under -bonvexity. Li and Gao [11] and Agarwal et al. [1] introduced a model of mixed symmetric duality for a class of non differentiable multiobjective programming problem with multiple arguments. In this paper, a pair of second order multiobjective mixed symmetric dual programs using square root term is formulated and duality theorems are proved for these programs under generalized ( , ) univexity. Special cases are discussed to show that this study extends some of the known results in related domain. 2. Notations and definitions Let R n and R m are n-dimensional and mdimensional Euclidean space respectively. R n m and R their respective nonnegative orthant. The following conventions for vectors x , u R n will be followed throughout this paper: x u xi u i , For any vector x u x i u i ; i 1, 2 ,.... n . x, u R n we denote Definition 2.1 A vector x X 0 is said to be an efficient solution of problem (P) if there exists no x X 0 such that f ( x ) f ( x ), f ( x ) f ( x ). Definition 2.2 A vector x X 0 is said to be a weakly efficient solution of problem (P) if there exists no x X 0 such that f ( x ) f ( x ). Definition 2.3 A vector x X 0 is said to be a properly efficient of problem (P) if it is efficient and there exists a positive constant M such that whenever f i ( x ) f i ( x ) for x X 0 and for i {1, 2, ...r }, there exist at least one j {1, 2, ..., r } such that f j ( x ) f j ( x ) and f i ( x ) f i ( x ) M ( f j ( x ) f j ( x )) . Definition 2.4 :( Schwartz Inequality) Let n n n be a positive semi x , y R and A R R n x u T xu i 1 i . i 1 Let X and Y are open subset sets of R n and R m respectively. Let f i ( x , y ) be a real valued twice differentiable function defined on X Y . Let x f i ( x , y ) and y f i ( x , y ) denote the gradient vectors of f i ( x , y ) with respect to first variable x and second variable y respectively. Also xx f i ( x , y ) and yy f i ( x , y ) denote the Hessian matrix of f i ( x , y ) with respect to the first variable x and second variable y respectively. For p R , x ( yy f i ( x , y ) p ) and m y ( yy f i ( x , y ) p ) are n m and matrix obtained by differentiating the elements of yy f i ( x , y ) p with respect to x and y respectively. Consider the following programming problem (MP): MP :( Primal) Minimize multiobjective X0 i i | K i | 1 , for i 1, 2; respectively such i i i that ( x , u , ) and 1 ( v , y , ) , i 1, 2. are convex on R n 1 , R m 1 respectively with R |K i | R |K i | i 0 i R i 0 ( x , u , (0, r )) 0, i i i and 1i ( v i , y i , (0, r )) 0, i 1, 2 and r R . b 0 and b 1 are non i for i negative function defined on R | J | R | J | and |K | |K | R R , i 1, 2. respectively . i i i Throughout this chapter, we assume that i i i 0 , 1 : R R satisfying 0 ( u ) 0 u 0, 1 (u ) 0 u 0 i i h ( x ) 0, x X R , n where f : X R r , h : X R m . Let i and 0 ( a ) 0 ( a ), i i 1 ( a ) 1 ( a ) for i 1, 2. f ( x ) ( f1 ( x ), f 2 ( x ), ....., f r ( x )) Subject to i i Let r , R . Suppose 0 and 1 are a real valued |J | |J | | J | 1 function defined on R R R and i mm 1 definite matrix, then x T A y ( x T A x ) 2 ( y T A y ) 2 , equality holds if for some 0, Ax Ay . be the set of all feasible solutions of problem (P); that i.e. X 0 { x X | h ( x ) 0} . i Now we define a new class of second order second order ( , ) -pseudo univex and second order ( , ) -quasi-univex as follows. Definition 2.5 A real-valued twice differentiable function f i (, y ) : X X R is said to be ( , ) -univex, Mond-Weir type second order multiobjective mixed symmetric duality … second order respect to ( , ) -univex qR n for at u X with b : X X R , n 1 R, : R R , if there exist : X X R R such that u f i (u , y ) x, u; uu f i ( u , y ) q , f : R R R defined as Let x 2 e y 2 . 2 xx f ( x , y ) (4 x 2 ) e 2 2 , f ( x , y ) f (u , y ) ( x u ) x f (u , y ) T with respect to q R n for b : X X R and : R R , if there exist : X X R R such that x Now f ( x , y ) is not convex at u=0, as second order ( , ) -pseudo univex at u X n 1 R, ( x , u ; ( u f i ( u , y ) uu f i ( u , y ) q , )) 0 f i ( x , y ) f i (u , y ) 0. b ( x , u ) 1 T q f ( u , y ) q uu i 2 Definition 2.7 A real-valued twice differentiable function f i (, y ) : X X R is said to be second order ( , ) -quasiunivex at u X with for Example 2.1 So we have x f ( x , y ) 2 xe x , Definition2.6 A real-valued twice differentiable function f i (, y ) : X X R is said to be respect to q R n then the above definitions reduce to second order F-convexity and second order F-pseudo convexity as introduced by Mishra [13]. f ( x, y ) e f i ( x , y ) f i (u , y ) b ( x , u ) 1 T q f ( u , y ) q uu i 2 23 b : X X R and n 1 R, : R R , if there exist : X X R R such that e e x x 2 2 e with F is sub linear in third argument and ρ=0, ) 1 2 q xx f ( u , y ) q T ( x u ) [ x f ( u , y ) xx f ( u , y ) q ] T e x 2 e u 2 ( x u )[ 2 ue e x 2 1 2 u (4 u 2 ) e 2 2 u 2 (4 u 2) e 2 u 2 ] 2 x 2 0, for u 0, x 12 . So f ( x , y ) is not second order convex/bonvex at u=0, Let : R R R 2 R defined as xu ( x , u ; ( a , )) (1 2 ) e u a ; : R R defined as ( x ) x ; T b : R R R defined as b ( x , u ) 1 . b ( x , u ) [ f ( x , y ) f ( u , y ) 1 2 q xx f ( u , y ) q ] T ( x , u , ( x f ( u , y ) xx f ( u , y ) q , )) x 2 e [ 2 ue 2 2 1 0 for u 0, x 0. f ( x , y ) f (u , y ) e F ( x , u ; u f ( u ) uu f ( u ) q ) d ( x , u ) u 0 ( x , u ; ( u f i ( u , y ) uu f i ( u , y ) q , )) 0. ( x , u ; ( u f ( u ) uu f ( u ) q , )) ( x u )( 2 ue 1 Now Remark 2.1 If we consider the case b 1, 2 Let q . Then f i ( x , y ) f i (u , y ) 0 b ( x , u ) 1 T q f ( u , y ) q uu i 2 Definition 2.8 A real valued twice differentiable function f is second order ( , ) - unicave and second order ( , ) -pseudounicave if f is second order ( , ) -univex and second order ( , ) pseudounivex respectively. u u u 2 2 1 2 (4 u 2) e 2 (4 u 2) e 2 u u 2 (1 2 ) e xu 2 ] e x 2 1 1 (1 2 ) 2 at u 0, e x 2 2 1 0 for 0, x R . So f ( x , y ) is second order ( , ) -univex function at u=0 . Hence from the above example it is clear that second order ( , ) -univex function is more generalized than convex and second order convex function. A. K. Tripathy / Vol.4, No.1, pp.21-33 (2014) © IJOCTA 24 Example 2.2 Let g : R R R defined as 3. Mond-Weir type second order mixed symmetric dual program g ( x , y ) x ln x y ln y , x g ( x , y ) 1 ln x , For N={1,2,…,n} and M={1,2,…,m}, let J 1 N and J 2 N \ J 1 . Similarly K 1 M and K 2 M \ K 1 . xx g ( x , y ) 1 x . Now g ( x , y ) is not convex at u=1, since Let J 1 denote the number of elements in J 1 . g ( x , y ) g (u , y ) ( x u ) x g (u , y ) The x ln x u ln u x x ln u u u ln u similarly. Notice that if | J 1 | 0 , then | J 2 | n . It T x ln x x x ln u x ln x x 0 for x (0, e ). Again g ( x , y ) g ( u , y ) q xx g ( u , y ) q 1 2 T ( x u ) [ x g ( u , y ) xx g ( u , y ) q ] T x ln x u 1 2u 1 x x ln u x u x ln x 2 x for u 1. 5 2 x ln x 5 2 2 x 0, for x [2, ) So g ( x , y ) is not second order convex/bonvex at u=1, Let : R R R 2 R defined as xu ( x , u ; ( a , )) (1 2 ) e u a ; : R R defined as ( x ) x ; T b : R R R defined as b ( x , u ) 1 . b ( x , u ) [ g ( x , y ) g ( u , y ) x ln x u ln u 1 2 q xx g ( u , y ) q ] T 1 2u (1 2 ) e xu xu ( u g uu gq ) (1 ln u u1 ) 0 x 2 0, at u 1, x 2 0 x 0, for 1. (1 2 ) e (1 2 ) e 1 Let q . x ( x , x ), x R 1 1 2 defined J1 J2 and x 2 R . Similarly, any y Y R , can be written as y ( y 1 , y 2 ) , m y R 1 K1 ,y R K2 R |K 1 | 2 |J1| Let f i : R gi : R R |J 2 | . R and R |K 2 | are thrice continuously differentiable functions. Let i R , p i1 R | K | , w i1 R | K 1 q R 1 i | J1 | ,q R 2 i 1| , a R |J 2 | 1 i 2 , pi R | J1 | |K 2 | 2 , wi R , a R 2 i |J 2 | |K 2 | , , p ( p1 , p 2 , ..., p r ), p ( p1 , p 2 , ..., p r ), 1 1 1 1 2 2 2 2 q ( q 1 , q 2 , ..., q r ), q ( q 1 , q 2 , ..., q r ), 1 1 1 1 2 2 2 2 a ( a1 , a 2 , ..., a r ), a ( a1 , a 2 , ..., a r ), 1 1 1 1 2 2 2 2 w ( w 1 , w 2 , ..., w r ), w ( w 1 , w 2 , ..., w r ), and 1 1 1 2 1 1 2 2 2 2 2 E i , E i , C i , C i are positive semi definite matrices of order | J 1 |, | J 2 |, | K 1 | and | K 2 | respectively for i 1, 2, ..., r . Now we formulate the following pair of multiobjective mixed symmetric dual programs and prove duality theorems: (SMSP): Second order mixed symmetric primal: 0 Now b ( x , y ) [ g ( x , y ) g ( u , y ) x ln x u ln u are is clear that any x X R n can be written as 1 Let ( x , u ; ( u g uu gq ), )) 0 (1 2 ) e numbers J 2 , K 1 , K 2 1 2u 1 2 q xx g ( u , y ) q ] T Minimize 0 , for x 0. H 1 ( x , y , w1 , p1 ), H ( x , y , w , p ) H 2 ( x , y , w 2 , p 2 ), ..., H ( x , y , w , p ) r r r Subject to So g ( x , y ) is second order ( , ) -pseudounivex function at u=1. Hence from the above example it is clear that second order ( , ) -pseudo-univex function is more generalize than convex and second order convex function. r [ i 1 y 1 1 1 f i ( x , y ) C i wi 1 1 1 y y 1 1 1 (3.1) 2 2 2 (3.2) f i ( x , y ) p i ] 0, i 1 r [ i 2 y 2 2 2 2 g i ( x , y ) C i w i 2 2 g i ( x , y ) p i ] 0, y y i 1 r 1 T (y ) [ i i 1 1 y 1 1 1 1 f i ( x , y ) C i wi 1 1 1 y y 1 1 f i ( x , y ) p i ] 0, (3.3) Mond-Weir type second order multiobjective mixed symmetric duality … 25 r 2 T (y ) 2 2 2 2 2 1 2 i [ y 2 g i ( x , y ) C i w i y 2 y 2 f i ( x , y ) p i ] 0, (3.4) i 1 Remark 3.1 Since the objective function of (MSP) and (MSD) contain the quadratic term like (xTAx) these problems are nondifferentiable multiobjective programming problems. ( x , x ) 0, (3.5) ( w i ) C i w i 1, i 1, 2, ...r . (3.6) ( w i ) C i w i 1, i 1, 2, ...r . (3.7) Theorem 3.1(Weak duality) Let 1 2 1 2 1 2 1 2 ( x , x , y , y , , w , w , p , p ) be feasible solution (3.8) of (SMSP) and ( u 1 , u 2 , v 1 , v 2 , , a 1 , a 2 , z 1 , z 2 ) feasible solution (MSD) and 1 1 T 2 1 T 2 1 2 2 r 0, i 1 i 1 (SMSD): Second order Mixed Symmetric Dual: Maximize G1 ( u , v , a1 , q1 ), G ( u , v , a , q ) G 2 ( u , v , a 2 , q 2 ), ..., G ( u , v , a , q ) r r r r 1. i u 1 fi (u , v ) 2 2 1 1 Ei a i 1 fi (u , v 1 1 u u 1 1 ) qi ] 0, 2 g i (u , v ) 2 2 Ei a i 2 2 u u 2 2 g ( u , v )] 0, (3.9) 1 [ f ( x , ) ( ) 1 i T i 1 1 is second order C i wi ] 1 [ g (, v i 1 2 T 2 2 ) ( ) E i a i ] i is second order i 1 (3.10) ( o , ) 2 -pseudo univex at u 2 for fixed v 2 r i [ 1 u 1 1 1 fi (u , v ) E i a i 1 1 1 1 u u 1 1 f ( u , v ) q i ] 0, (3.11) 4. [g (x i 2 i T 2 2 , ) ( ) C i w i ] is second i 1 i 1 r 2 T (u ) -univex at u 1 for fixed v 1 . ( 0 , ) r r 1 T is second (1 , ) -unicave at y for fixed x . i 1 (u ) 1 1 1 1 r u T ) () E i a i ] i 1 3. i 1 i r 2. i 1 [ i order r [ [ f (, v i 1 Subject to 1 be i [ 2 2 2 2 2 2 2 g ( u , v ) E a i 2 2 g i ( u , v ) q ] 0, i i u i u u 2 1 2 1; i 1, 2, .....r , 1 T ( ai ) 1 1 E i ai 2 T ( ai ) 2 2 E i ai 1; , i 1, 2, .....r , (3.13) (3.14) (3.15) 2 fixed x 2 . i 1 ( v , v ) 0, -pseudo unicave at y 2 for (1 , ) order (3.12) 5. 1 ( x 1 , u 1 ; ( 1 , )) ( u 1 ) T 1 0 0; where r 1 [ i 1 u 1 1 1 1 1 1 1 f ( u , v ) E i a i u 1u 1 f ( u , v ) q i ]. i 1 r 0, i 1. (3.16) i 1 6. 2 ( x 2 , u 2 ; ( 2 , )) ( u 2 ) T 2 0 where r f ( x 1 , y 1 ) g ( x 2 , y 2 ) (( x 1 ) T E 1 x 1 ) 2 i i i 1 2 T 2 2 1 T 1 1 (( x ) E i x ) 2 ( y ) C i w i H i ( x, y, w, p ) , ( y 2 )T C 2 w 2 1 ( p 1 )T 1 1 f ( x1 , y 1 ) p 1 i i i i y y 2 1 2 T 2 2 2 ( pi ) 2 2 g ( x , y ) pi y y 2 1 1 f ( u 1 , v 1 ) g ( u 2 , v 2 ) (( v 1 ) T C 1v 1 ) 2 i i i 1 2 T 2 2 1 T 1 1 (( v ) C i v ) 2 ( u ) E i a i G i (u , v , a , q ) , 1 ( u 2 )T E 2 a 2 ( q 1 )T 1 1 f ( u 1 , v1 ) q 1 i i i i u u 2 1 2 T 2 2 2 ( qi ) 2 2 g (u , u ) qi u u 2 for i 1, 2, ..., r . 0; where 2 [ 2 i u 2 2 2 2 2 2 2 g ( u , v ) E i a i u 2 u 2 g ( u , v ) q i ]. i 1 7. 1 ( v 1 , y 1 ; ( 1 , )) ( y 1 ) T 1 1 0; where r 1 [ i 1 y 1 1 1 1 1 1 1 f ( x , y ) C i w i y 1 y 1 f ( x , y ) p i ]. i 1 8. 1 ( v , y ; ( , )) ( y ) 2 2 2 2 2 T 2 0, where r 2 [ i 2 y 2 2 2 2 2 i 1 Then Inf ( SM SP ) Sup ( SM SD ). r Proof: Since [ f (, v i i 1 T 1 1 ) () E i a i ] is second i 1 order ( 0 , ) 1 2 2 g ( x , y ) C i w i y 2 y 2 g ( x , y ) p i ]. -univex at u 1 for fixed v 1 and 0, A. K. Tripathy / Vol.4, No.1, pp.21-33 (2014) © IJOCTA 26 with respect 0 : R 1 | J1 | | J1 | R 1 1 1 1 b ( x , u ) 0 0 R r i 1 1 to | J1 | 1 b0 : R R | J1 | R | J1 | R , 1 1 [ f (x ,v 1 i , we have r [ f ( x , y ) ( y ) 1 1 1 T i 1 1 1 C i wi ] 1 u 1 1 1 f i (u , v ) E i ai 1 1 1 1 u u 1 1 f i ( u , v ) q i ], )). 1 [( x ) 1 T we get 1 1 T 1 1 1 T 1 1 1 T 1 1 [ f ( u 1 , v1 ) ( u 1 ) T E 1 a 1 1 ( q 1 ) T 1 1 f ( u 1 , v1 ) q 1 ] i i i i u u i i 2 1 1 1 T 1 1 1 T 1 1 1 1 [ f i ( x , y ) ( y ) C i wi ( p i ) 1 1 f i ( x , y ) p i ] y y 2 r i i 1 1 (3.22) Now from (6), we get 1 ( x , u ; ( , )) ( u ) 2 Using (3.11) in the above inequality, we get 1 1 1 1 1 T 1 ( x , u ; ( , )) ( u ) 0 and with the 2 2 2 2 T 2 0 ( x , u ; ( , )) ( u ) 2 2 2 property of b and 0 1 0 2 T 2 0. , (3.17) becomes 2 2 [ f (x ,v 1 1 i 1 T [ g (, v Since i ( o , ) 2 i 1 r 1 1 1 T 1 1 i [ f i (u , v ) (u ) E i ai i 1 1 2 1 T (qi ) 1 1 1 u u 1 1 f i ( u , v ) q i ]. 2 using (3.23) with the properties of b and 0 [ f ( x , ) ( ) i [g (x we get T i 1 1 Ci wi ] is second order i [ g (u i 1 |K1 | R 1 1 1 1 b1 ( v , y ) 1 1 1 ( v , y ; ( R | K1 | 1 R 1 1 1 T 1 1 [ f i ( x , v ) ( v ) C i w i ] 1 1 1 T 1 1 i [ f i ( x , y ) ( y ) C i wi ] 1 ( p 1i ) T 1 1 f ( x 1 , y 1 ) p 1i y y 2 r i 1 [ 1 i Hypothesis 2 y 1 1 2 2 2 T 2 2 , v ) (u ) E i ai 1 2 1 T ( qi ) 2 2 u u 2 2 2 g i (u , v ) qi ] [g (x i 1 1 f i ( x , y ) C i wi 1 1 1 y y 2 , v ) ( v ) C i wi ] 2 , y ) ( y ) C i wi 1 ( p i ) 2 2 g i ( x , y ) p i ] y y 2 i 2 2 T 2 2 i 1 r 1 [g (x i i 2 2 T 2 2 1 T 2 2 2 i 1 1 f i ( x , y ) p i ], )). (3.25) Subtracting (3.25) from (3.24), we get (7) [ i i (3.24) in light of (3.3) implies r [x 1 y 1 1 1 1 f i ( x , y ) C i wi 1 1 1 y y 1 i 1 So from (3.19), (3.20) 1 1 b1 and 1 , we get (3.20) and with the property of E i ai v 2 2 2T 2 2 C i wi ] i 1 r 1 f i ( x , y ) p i ], )) 0. 2T i r 1 2 r (3.19) 1 2 T Similarly from the hypothesis (6), (8) and (3.12) 2 2 with the property of b 1 , 1 we get , we have i 1 1 ( v , y ; ( 2 , v ) ( x ) E i ai ] 1 r 1 2 i i 1 -unicave at y 1 for fixed x 1 , for 0 with respect to b11 : R | K | R | K | R , 11 : R R , 1 1 , r (1 , ) |K1 | 2 0 i 1 1 i 1 1 is second order -pseudo univex at u 2 for fixed v 2 and r 1 : R T ) () E i a i ] r (3.18) Now 2 i i 1 1 1 E i ai ] ) (x ) (3.23) r r 1 2 0 1 , which implies in light of (3.12) as 0 1 1 1 f ( x , y ) pi E i a i ( v ) C i wi ] i 0 i 1 1 y y i 1 0 ( x , u ; ( , )) ( u ) . 1 T ( pi ) 2 (3.21) 0 ( x , u ; ( , )) ( u ) 0 1 1 r ( i [ From the hypothesis (5), 1 1 Subtracting (3.21) from (3.18), we get (3.17) 1 1 T ) ( v ) C i wi ] i 1 i 1 1 1 i i 1 1 1 1 T 1 1 [ f i ( x , v ) ( x ) E i a i ] 1 1 1 T 1 1 i [ f i (u , v ) (u ) E i a i ] 1 ( q 1i ) T 1 1 f ( u 1 , v 1 ) q 1i u u 2 r 1 0 ( x , u ; r i 1 g (u 2 , v 2 ) u 2T E 2 a 2 i i i i g ( x 2 , y 2 ) y 2T C 2 w 2 i i i 1 2 g i (u , v ) qi 1T 2 2 2 pi 2 2 g i ( x , y ) pi y y 1T qi 1 2 2 2 u u 2 2 2 (3.26) Adding (3.22) and (3.26), we obtain r ( x ) 1 T i 1 1 1 1 T 1 1 2 T 2 2 2 T 2 2 E i ai ( v ) C i wi ( x ) E i a i ( v ) C i wi Mond-Weir type second order multiobjective mixed symmetric duality … i 1 r Theorem 3.2 (Strong Duality) Suppose [ f i ( u 1 , v 1 ) ( u 1 ) T E i1 a i1 1 ( q i1 ) T 1 1 f i ( u 1 , v 1 ) q i1 ] 2 u u [ f i ( x 1 , y 1 ) ( y 1 ) T C i1 w i1 12 ( p i1 ) T 1 1 f i ( x 1 , y 1 ) p i1 ] y y i 2 2 2 T 2 2 2 T 2 2 2 1 [ g ( u , v ) ( u ) E a ( q ) g ( u , v ) q ] 2 2 i i i i i i 2 u u 2 2 2 T 2 2 2 T 2 2 2 1 [ g ( x , y ) ( y ) C w ( p ) g ( x , y ) p ] 2 2 i i i i i i 2 y y r i 27 fi : R | J1 | R thrice |K1 | and R gi : R differentiable |J 2 | |K 2 | R be and let function 1 2 1 2 1 2 1 2 ( xˆ , xˆ , yˆ , yˆ , ˆ , wˆ i , wˆ i , pˆ i , pˆ i ) ( x1 ) T E 1i a 1 ( v 1 ) T C 1 w1 i i i i ( x 2 )T E 2 a 2 ( v 2 )T C 2 w 2 i i i i R be a weak efficient solution for (SMSP). Let be fixed 1 1 T 1 1 1 T 1 1 1 1 1 [ f i (u , v ) (u ) E i ai ( qi ) 1 1 f i (u , v ) qi ] u u 2 i 1 1 1 1 T 1 1 1 T 1 1 1 [ f ( x , y ) ( y ) C w ( p ) 1 1 f ( x , y ) p ] i 1 i i i i i i y y 2 in (MSD). Assume that r 1 2 T 2 2 2 T 2 2 2 2 2 r [ g i ( u , v ) ( u ) E i a i ( q i ) u 2 u 2 g i ( u , v ) q i ] 2 i . [ g ( x 2 , y 2 ) ( y 2 )T C 2 w 2 1 ( p 2 )T 2 2 g ( x 2 , y 2 ) p 2 ] i i i 1 i i i y y 2 i 1 T 1 1 2 T 2 2 2 T 2 1 1 1 1 1 T 2 1 1 1 1 T 1 1 1 1 T (( x ) 1 1 1 1 T 2 T 2 2 1 2 T 2 2 (( x ) E i x ) 2 (( v ) C i v ) 2 (( x ) E i x ) 2 (( v ) C i v ) 2 (3.28) Using (3.28) in (3.27), we get r 1 1 1 1 1 T 1 1 2 1 T 1 1 2 2 T 2 2 2 2 T 2 2 2 i [(( x ) E i x ) (( v ) C i v ) (( x ) E i x ) (( v ) C i v ) ] i 1 1 1 1 T 1 1 1 T 1 1 1 [ f (u , v ) (u ) E a 1 ( q ) 1 1 f i (u , v ) q ] i i i i u u 2 i r [ f i ( x1 , y1 ) ( y1 )T C 1 w1 1 ( p1 )T 1 1 f i ( x1 , y1 ) p1 ] i i i y y 2 i i [ g i ( u 2 , v 2 ) ( u 2 )T E 2 a 2 1 ( q 2 ) T 2 2 g i ( u 2 , v 2 ) q 2 ] i i i i u u i 1 2 2 2 2 T 2 2 2 T 2 2 2 1 [ g i ( x , y ) ( y ) C i wi 2 ( p i ) y 2 y 2 g i ( x , y ) p i ] 1 1 1 2 2 1 T 1 1 2 f i ( x , y ) g i ( x , y ) (( x ) E i x ) 1 r 2 T 2 2 2 1 T 1 1 2 T 2 2 i (( x ) E i x ) ( y ) C i wi ( y ) C i w i i 1 1 1 T 1 1 1 1 2 T 2 2 2 ( p i ) y1 y1 fi ( x , y ) p i ( p i ) y 2 y 2 g i ( x , y ) p i 2 2 are nonsingular for all i 1, 2,..., r ; matrix i y 1 ( 1 1 1 y y and f i pˆ i ) i y 2 ( 2 y y 2 2 g i pˆ i ) are positive definite or i 1 negative definite and (iii) the set y 1 1 1 f1 C1 wˆ 1 y y 2 2 g 1 C1 wˆ 1 y y 1 1 1 f1 pˆ 1 , ..., y 1 1 f r C r wˆ r 1 1 1 y y 1 f r pˆ r } y 2 2 2 2 g 1 pˆ 1 ,..., y 2 2 2 g r C r wˆ r are linearly independent. Then there exist a i1 R | J | , a i2 R | J 1 2| 2 2 y y 2 g r pˆ r } such that 1 2 1 2 1 2 1 2 ( xˆ , xˆ , yˆ , yˆ , ˆ , aˆ i , aˆ i , qˆ i 0, qˆ i 0) is feasible solution of (SMSD) and the two objective values are equal. Also if the hypotheses of theorem 3.1 are satisfied for all feasible solution of (SMSP) and (SMSD), then 1 2 1 2 1 2 1 2 is ( xˆ , xˆ , yˆ , yˆ , ˆ , aˆ i , aˆ i , qˆ i 0, qˆ i 0) efficient solution of (SMSD). 1 2 1 2 1 2 1 2 Proof. Since ( xˆ , xˆ , yˆ , yˆ , ˆ , wˆ i , wˆ i , pˆ i , pˆ i ) is a weak efficient solution of (SMSP) by Fritz-John condition [12] there exist 1 R, R | K1 | , R |K 2 | 1 , R | J1 | r r r R , R , R , 2 , R |J 2 | such that r [ i 1 1 x f i E i aˆ i 1 1 2 1 x1 ( y 1 y 1 f i pˆ i )] i 1 1 1 1 2 2 1 T 1 1 2 f i ( u , v ) g i ( u , v ) (( u ) E i u ) 1 r 2 T 2 2 1 T 1 1 2 T 2 2 i (( v ) E i v ) 2 ( y ) C i w i ( y ) C i w i i 1 1 1 T 1 1 1 1 2 T 2 2 2 ( p ) f ( x , y ) p ( p ) g ( x , y ) p 1 1 2 2 i i i i y y i y y i 2 2 r [ i 1 1 y x 1 1 1 1 f i x1 ( y 1 y 1 f i pˆ i )]( yˆ ) 0, i 1 and r { 1 1 1 1 f i ( xˆ , yˆ ) and 1 1 1 2 2 2 T 2 2 2 T 2 2 2 T 2 2 E i x ) 2 (( a i ) E i a i ) 2 (( v ) C i v ) 2 (( w i ) C i w i 1 1 T the { 1 1 (( x ) E i x ) 2 (( a i ) E i a i ) 2 (( v ) C i v ) 2 (( w i ) ) C i w i ) 2 2 T 2 2 g i ( xˆ , yˆ ) 2 1 1 1 y y i 1 ( x ) E i a i ( v ) C i wi ( x ) E i a i ( v ) C i wi 1 T 2 y y (ii) (3.27) From Schwartz inequality, (3.6), (3.7), (3.14) and (3.15), we have 1 1 r 1 T (i) the Hessian matrices (3.29) r [ i x 2 2 2 g i E i aˆ i 1 2 2 x 2 ( y 2 y 2 g i pˆ i )] i 1 r Inf ( M SP ) Sup ( M SD ). [ i 2 y x 2 2 2 2 2 g i x 2 ( y 2 y 2 g i pˆ i )]( yˆ ) 0, i 1 (3.30) A. K. Tripathy / Vol.4, No.1, pp.21-33 (2014) © IJOCTA 28 r ( r ˆi )[ i y ˆ ( 1 1 f i C i wˆ i ] 1 i i 1 1 1 y y 1 1 1 f )( yˆ pˆ i ) [ y ( 1 1 1 1 f i pˆ i )][( yˆ ) ˆi 1 1 y y 1 2 1 i pˆ i ] 0, ˆ 0, 2T ˆ 0, (3.47) r ( ˆi )[ y 2 g i i 2 2 C i wˆ i 1 1 xˆ 0, (3.49) 2 2 xˆ 0, (3.50) 1T 1 1 aˆ i E i aˆ i 1, i 1, 2,..., r , (3.51) 2T 2 2 aˆ i E i aˆ i 1, i 1, 2,..., r , (3.52) (3.32) ( , , , , , ) 0, (3.53) (3.33) ( , , , , , ) 0. (3.54) ] i 1 r ˆ ( i 2 y y g i )( 2 2 (3.48) (3.31) i 1 1T i 1 r 2 2 yˆ pˆ i ) i 1 r [ ( y 2 y 2 g i pˆ i )][( 2 y 2 2 2 yˆ ) ˆi 1 2 i pˆ i ] 0, 2 i 1 ( yˆ ) [ 1 1 T y fi 1 1 1 C i wˆ i ˆ 1i ] 1 1 fi p y y 1 i 0, i 1, 2, ..., r , Since ˆ 0, ( yˆ ) [ 2 2 T y gi 2 2 2 C i wˆ i ˆ i2 2 2 gi p y y ] 2 i 0, i 1, 2, ..., r , (3.34) implies that 1 0 , 2 0 . Consequently (3.34) and (3.35) implies that 1 1 T ( yˆ ) [ 1 T [( yˆ ) ˆi i pˆ i ] 1 [( 2 1 1 y y 2 2 T yˆ ) ˆi i pˆ i ] f i 0, i 1, 2, ...r ; 1 2 y y 2 g i 0, i 1, 2, ..., r ; (3.36) 1 1 1 1 T 1 1 1 i C i yˆ ( yˆ ) ˆi C i 2 i C i wˆ i , i 1, 2,..., r , 2 2 i C i yˆ ( 2 2 T 2 2 2 yˆ ) ˆi C i 2 i C i wˆ i , i 1, 2,..., r , 1 2 1 T 1 1 1 T 1 1 ( xˆ ) E i aˆ i (( xˆ ) E i xˆ ) , i 1, 2,..., r , 2 T ( xˆ ) 2 2 E i aˆ i 2 T (( xˆ ) 2 2 E i xˆ (3.35) (3.37) (3.38) (3.39) 1 y 2 1 1 1 y y f i pˆ i ] 0. 2 2 g i C i wˆ i and y 2 2 g i y i 1, 2 ,..... r . (3.55) 2 2 y y 2 g i pˆ i ] 0. (3.56) are nonsingular (3.35) and (3.36) (3.57) and ( 2 yˆ 2 ) ˆi i pˆ i2 . Using (3.57) in (3.31) we get ( ˆi )[ y 1 f i C i wˆ i ( y 1 y 1 f i pˆ i )] 1 i (3.58) 1 1 i 1 r 1 1 1 i [ y 1 f i C i wˆ i y 1 y 1 f i pˆ i ] 0, i 1, 2,..., r , (3.41) r ( ) 1 y y 1 f i C i wˆ i 1 1 1 ( yˆ ) ˆi i pˆ i 1 2 [ i y 2 gi 2 2 C i wi ˆ i2 ] 2 2 gi p y y ˆ [ i y 1 1 1 1 ( y 1 y 1 f i pˆ i )]( yˆ ) 0. (3.59) i 1 i 1 2 T 1 fi matrix for implies (3.40) ) , i 1, 2,..., r , 1 y 2 T yˆ ) [ 2 Since r 1 T ( ) ( and r 1 2 inequalities (3.47) and (3.48) Similarly by using (3.58) in (3.32), we get 0, i 1, 2,..., r , r i 1 (3.42) ( i 1 1 2 ˆi )[ y 2 g i C i wˆ i y 2 y 2 g i pˆ i )] i 1 r ( yˆ ) 1 T [ i y 1 fi 1 1 C i wˆ i y1 y1 1 f i pˆ i ] 0, (3.43) i 1 r 1 2 ˆ [ i ( y 2 y 2 g i pˆ i )]( 2 y 2 2 2 yˆ ) 0. (3.60) i 1 r 2 T ( yˆ ) [ i y 2 2 2 2 g i C i wˆ i y 2 y 2 g i pˆ i ] 0, (3.44) i 1 i [( wˆ i ) C i wi 1] 0, i 1, 2,..., r , 1 T 1 1 (3.45) Multiplying (3.59) by ( 1 yˆ 1 ) T (3.55) the result reduces to and using r i [( wˆ i ) C i w i 1] 0, i 1, 2, ...r , 2 T 2 2 (3.46) 1 1 T ( yˆ ) i i 1 y 1 1 1 1 ( y 1 y 1 f i pˆ i )( yˆ ) 0. (3.61) Mond-Weir type second order multiobjective mixed symmetric duality … And multiplying (3.60) by ( 2 2 T yˆ ) and using ( 2 T yˆ ) i y 2 ( 2 y y ˆ i2 )( 2 gi p 2 2 yˆ ) 0. (3.62) Using the hypothesis (2) in (3.61) and (3.62), we ŷ 1 i 1 i 1 get r r 2 r i 1 (3.56), we get 1 i 2 2 2 [ x 2 g i E i aˆ i ] , which by (3.67) gives ˆi [ x f i E i aˆ i ] 1 and 1 1 r (3.63) ˆ [ 1 0. 2 aˆ i ] 2 gi E x 2 i i i 1 2 Now ( xˆ 1 ) T i [ x 2 yˆ . (3.64) Therefore (3.59) and (3.60) reduced to i ˆi )[ y 1 f i C i wˆ i ( y y i ˆi )[ y 2 2 2 g i C i wˆ i y y 1 1 1 1 1 (3.65) 2 (3.66) i 1 r ( 2 2 g i pˆ i )] 0 . i 1 Using hypothesis (iii) in (3.65) and (3.66) we get i ˆi , i 1, 2 ,..... r . (3.67) If 0, then i 0; i 1, 2 ,..... r . and (3.63) and (3.64) implies 1 2 0. Therefore (3.29) and (3.30) implies 1 2 0 and (3.37), (3.38) implies i 0, i 1, 2 ,..... r . Thus ( , , , , , ) 0 . 0. (3.68) Since i 0, i 1, 2 ,.... r , (3.67) implies i 0, i 1, 2, ....r . (3.69) Using (3.63) in (3.57) and (3.64) in (3.58), we get i pˆ i 0, for i 1, 2 ,.... r and j 1, 2 . (3.70) j (3.71) Again using (3.63) and (3.71) in (3.29) and (3.64) and (3.71) in (3.30), it gives i 1 2 2T 2 xˆ 2 2 g i E i aˆ i ] i 1 [ x1 f i E aˆ ] 1 0. (3.75) 1 1 1 1 2 2 2 2 C i yˆ tC i wˆ i , C i yˆ tC i wˆ i . (3.77) This is a condition of Schwartz Inequality. Therefore ( yˆ 1 ) T C i1 wˆ 1i (( yˆ 1 ) T C i1 yˆ 1 ) ( wˆ 1i T C i1 wˆ 1i ) (3.78) 2 T 2 2 2 T 2 2 2T 2 2 ˆ ˆ ˆ ˆ ˆ ˆ and ( y ) C i w i (( y ) C i y ) ( w i C i w i ) . (3.79) In case i 0 , from (3.45) and (3.46), we get 1 2 1 2 1T 1 1 2T 2 2 wˆ i C i wˆ i 1, wˆ i C i wˆ i 1 so we get 1 2 and 1 1 T 1 1 1 T 1 1 ( yˆ ) C i wˆ i (( yˆ ) C i yˆ ) 2 2 T 2 2 2 T 2 2 ( yˆ ) C i wˆ i (( yˆ ) C i yˆ ) 1 2 and . 2 i i t 0. implies C i1 yˆ 1 2 2 C i yˆ 0. Hence 1 T 1 1 1 T 1 1 ( yˆ ) C i wˆ i (( yˆ ) C i yˆ ) 2 0 2 T 2 2 2 T 2 2 ( yˆ ) C i wˆ i (( yˆ ) C i yˆ ) 1 1 2 So (3.77) and 0. Thus in either case 1 i 1 i (3.74) (by using (3.50)) Also from (3.63), (3.64) and (3.53), we have 1 2 1 2 yˆ 0, yˆ 0. (3.76) Hence from (3.51), (3.52) and from (3.71) to (3.76), we get 1 2 1 2 1 2 1 2 is a ( xˆ , xˆ , yˆ , yˆ , ˆ , aˆ i , aˆ i , qˆ i 0, qˆ i 0) feasible solution of (SMSD). 2 i t , then t 0 . From (3.37), (3.38), Let i (3.63) and (3.64), we get r 1 i 0, (by using (3.49) ) In case i 0 we get Using (3.69) in (3.70), we obtain j pˆ i 0, for i 1, 2 ,.... r and j 1, 2 . (3.73) 1 2 This is a contradiction to (3.54). Hence 1T 1 xˆ 1 1 f i E i aˆ i ] r f i pˆ i )] 0 . 0. i 1 and ( xˆ 2 ) T i [ x r ( 1 (3.72) 2 r and 29 1 T 1 1 1 T 1 1 ( yˆ ) C i wˆ i (( yˆ ) C i yˆ ) 2 and and (3.80) 1 2 T 2 2 2 T 2 2 ( yˆ ) C i wˆ i (( yˆ ) C i yˆ ) 2 . (3.81) A. K. Tripathy / Vol.4, No.1, pp.21-33 (2014) © IJOCTA 30 Therefore using (3.39), (3.40), (3.78) and (3.79), we get 1 1 1 1 2 2 1T 1 1 2T 2 2 f i ( xˆ , yˆ ) g i ( xˆ , yˆ ) ( xˆ E i xˆ ) 2 ( xˆ E i xˆ ) 2 1 2 1 2 1 2 1 2 ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , ˆ , qˆ 0 , qˆ 0 ) of (SMSD) and an index i such that 1 2 1 2 1 2 {G i ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0) 1T 1 1 2T 2 2 yˆ C i wˆ i yˆ C i wˆ i 1 2 1 2 1 2 G i ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , 0, 0)} 1 1 2 2 1T 1 1 2T 2 2 f i ( xˆ , yˆ ) g i ( xˆ , yˆ ) ( xˆ E i aˆ i ) ( xˆ E i aˆ i ) G ( xˆ 1 , xˆ 2 , yˆ 1 , yˆ 2 , aˆ 1 , aˆ 2 , 0, 0) j M 1 2 1 2 1 2 G j ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0) ( yˆ 1T 1 1 C i yˆ ) ( yˆ 1 2 2T 2 2 C i yˆ ) . (3.82) i 1, 2, 3, ..., r ; for each or 1 2 (3.84) and for all j satisfying j 1 2 1 2 1 2 G ( xˆ , xˆ , yˆ , yˆ , wˆ , wˆ , 0, 0) 1 2 1 2 1 2 1 2 H i ( xˆ , xˆ , yˆ , yˆ , wˆ , wˆ , pˆ 0, pˆ 0) G j ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0), 1 2 1 2 1 2 1 2 G i ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , qˆ 0, qˆ 0) 1 2 1 2 1 2 whenever G i ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0) 1 for each i 1, 2 ,3,...... r , or H ( xˆ1 , xˆ 2 , yˆ 1 , yˆ 2 , wˆ 1 , wˆ 2 , 0, 0) G ( xˆ1 , xˆ 2 , yˆ 1 , yˆ 2 , aˆ1 , aˆ 2 , 0, 0). (3.83) 2 1 2 1 2 (3.85) 1 2 1 2 1 2 G i ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , 0, 0) (3.86) This implies that So the objective values of both problems are equal. Now we claim that 1 2 1 2 1 2 1 2 ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , , qˆ 0, qˆ 0) is properly efficient solution for (SMSD). First we have to show it is an efficient solution of (SMSD). If this would not be the case, then there would exist a feasible solution 1 2 1 2 1 2 1 2 of (SMSD) ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , ˆ , qˆ 0, qˆ 0) such that 1 2 1 2 1 2 1 2 G ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , qˆ 0, qˆ 0) 1 2 1 2 1 2 1 G ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , qˆ 0, qˆ 2 1 2 1 2 1 2 1 2 G ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , qˆ 0 , qˆ 0 ) . This is a contradiction to Theorem 3.1. Hence ( xˆ 1 , xˆ 2 , yˆ 1 , yˆ 2 , aˆ 1 , aˆ 2 , , qˆ 1 0 , qˆ 2 0 ) is an efficient solution of (SMSD). Now we have to claim 1 2 1 2 1 2 0 ) is properly efficient for (SMSD). For that rewriting the objective function of (SMSD) into minimization form we get m in 1 G i ( xˆ , 2 1 2 1 2 1 xˆ , yˆ , yˆ , aˆ , aˆ , qˆ 0, qˆ 2 0) If ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , , qˆ 0 , qˆ 0 ) were not properly efficient for (SMSD), then for every scalar M 0 , there exist a feasible solution 1 2 1 2 1 2 1 2 (3.87) for all j satisfying 1 2 1 2 1 2 1 2 1 2 1 2 G j ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , 0, 0) G j ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0), (3.88) whenever G i ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0) 1 2 1 2 1 2 1 2 1 2 1 2 G i ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , 0, 0) (3.89) Since M 0 and using (3.88) in (3.87), we get G i ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0) 1 2 1 2 1 2 1 2 1 2 1 2 G i ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , 0, 0) 0. Using (3.83) in (3.90), we G i ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0) 1 2 1 2 1 2 1 2 1 2 1 2 H i ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , 0, 0) 0 G i ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0) 1 ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , , qˆ 0 , qˆ 2 G j ( xˆ 1 , xˆ 2 , yˆ 1 , yˆ 2 , aˆ 1 , aˆ 2 , 0, 0) , M G ( uˆ 1 , uˆ 2 , vˆ 1 , vˆ 2 , aˆ 1 , aˆ 2 , 0, 0) j 0). This by (3.83) gives 1 2 1 2 1 2 1 2 H ( xˆ , xˆ , yˆ , yˆ , wˆ , wˆ , pˆ 0 , pˆ 0 ) 1 1 2 1 2 1 2 1 2 1 2 1 2 G i ( uˆ , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0) G i ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , 0, 0) 2 1 2 1 2 1 2 1 2 1 2 H i ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , 0, 0). For each ˆi 0 , we have r ˆ {G ( uˆ i i 1 , uˆ , vˆ , vˆ , aˆ , aˆ , 0, 0)} 2 1 2 1 2 i 1 r ˆ H i i 1 2 1 2 1 2 ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , 0, 0). i 1 This again contradicts Theorem 3.1. (3.90) obtain Mond-Weir type second order multiobjective mixed symmetric duality … Hence 1 ( xˆ , xˆ , yˆ , yˆ , aˆ , aˆ , , qˆ 0 , qˆ 1 31 2 1 2 1 2 1 (x 0 ) is 2 jT E i x ) 2 s ( x | C i ) and j j j 1 j C i y ) 2 s ( y | D i ) , where E i and properly efficient solution of (SMSD). (y Theorem 3.3 (Converse Duality) C i are positive semi definite, jT j fi : R be | J1 | thrice R |K1 | and R differentiable gi : R |J 2 | functions ( uˆ , uˆ , vˆ , vˆ , ˆ , aˆ i , aˆ i , qˆ i , qˆ i ) 1 2 1 2 1 2 1 2 R |K 2 | and x1 x1 f i ( xˆ , yˆ ) be a weak x 2 x 2 g i ( xˆ , yˆ ) 2 and 2 1 1 i 1 and 1 1 i i 1 ( x1 x1 g i qˆ i ) 2 x 1 j 0, j j j b 1, I , C i { E i x ; x j D i {C i y ; y j j j jT C i y j j j j with jT j Ei x j 1}, 1}, 1 (x r i x ( x x f i qˆ i ) j ( x , u ; ( f ( u ), )) F ( x , u ; f ( u )) 3. If are nonsingular for all i 1, 2 ,..... r . (ii) The matrix r j then our problem (MSP) and (MSD) reduces to the pair of dual and dual results given by Li and Gao [11], Mishra et al. [14, 15]. let in (SMSD). Assume that (i) the Hessian matrices 1 j C i w i z i , E i a i w i , i 1, 2, ..., r ; j 1, 2, R efficient solution for (SMSD). Let ˆ be fixed 1 j j j Let j jT (y jT E i x ) 2 s ( x | C i ) and j j j 1 j C i y ) 2 s ( y | D i ), where E i and j j j j j C i are positive semi definite matrices, j C i w i z i , E i a i w i , i 1, 2, ..., r ; j 1, 2, j j j j j j are positive definite or negative definite and C i w i y 1 f ( x , y ) E i a i x1 f ( u , v ) (iii) The set and then our problem (MSP) and (MSD) reduce to the problem (MP) and (MD) given by Agarwal et al. [1]. { { x 1 1 1 1 1 1 1 f1 E1 aˆ1 1 1 f1 qˆ1 , ..., 1 f r E r aˆ r 1 1 f r qˆ r } x x x x x x 2 2 2 g1 E1 aˆ1 2 2 x x 2 g1 qˆ1 , ..., x 2 1 and 4. 2 2 2 g r E r aˆ r 2 2 g r qˆ r } x x If 1 1 1 1 1 1 b 1, I , | J 2 | 0, | K 2 | 0, 0, ( x , u ; ( u f ( u ) uu f ( u ) q , )) F ( x , u ; u f ( u ) uu f (u ) q ) are linearly independent. Then there exist 1 |K | |K | 1 2 wi R 1 , w i R 2 1 2 1 2 1 2 1 2 ( uˆ , uˆ , vˆ , vˆ , ˆ , wˆ i , wˆ i , qˆ i 0, qˆ i 0) such that is feasible solution and, C i E i 0, i 1, 2,..., r , then the problem (SMSP) and (SMSD) reduces to a pair of problems (MP) and (MD) and the results studied by Suneja and Lalita [17]. of (SMSD) and the two objective values are equal. 5. If b 1, I , | J 2 | 0, | K 2 | 0, 0, Also if the hypotheses of theorem 3.1 are satisfied ( x , u ; ( u f (u ) uu f (u ) q , )) F ( x , u ; u f (u ) uu f (u ) q ), for all feasible solution of (SMSP) and (SMSD), efficient solution of (SMSP). in (SMSP) and (SMSD), then we obtain a pair of nondifferentiable second order symmetric dual in multiobjective program considered by Ahmad and Husain [4]. Proof: It follows on the lines of theorem 3.2. 5. Conclusion 4. Special Case 1. If | J 2 | 0,| K 2 | 0 , then our problem reduces to a pair of (MP) and (MD) given by Thakur et al. [18]. In this article, a new pair of nondifferentiable multiobjective second order mixed symmetric dual programs is presented and duality relations between primal and dual problems are established. The results developed in this paper improve and generalize a number of existing results in the literature. The results discussed in this paper can be extended to higher order as well as to other generalized convexity assumptions. 1 2 1 2 1 2 1 2 ( uˆ , uˆ , vˆ , vˆ , ˆ , wˆ i , wˆ i , qˆ i 0, qˆ i 0) then 2. If ( x , u ; ( f ( u ), )) F ( x , u ; f ( u )) b 1, I , C i { E i x ; x j D i {C i y ; y j j j j jT C i y j j j jT j Ei x 1}, j 1}, is properly with 0, A. K. Tripathy / Vol.4, No.1, pp.21-33 (2014) © IJOCTA 32 These results can be extended to the case of continuous – time problems as well. Acknowledgments The author is thankful to the referees for their valuable suggestions for the improvement of the paper. References [1] Agarwal, R.P., Ahmad, I., Gupta, S. K. and Kailey, N., Generalized second order mixed symmetric duality in non differentiable mathematical programming, Abstract and Applied Analysis, Hindawi Publishing Corporation, Article ID. 103587, doi: 10, 1155/2011/103587 (2011). [2] Aghezzaf, B., Second order mixed type duality in multiobjective programming problems, Journal of Mathematical Analysis and Applications, 285, 97-106 (2003). [3] Ahmad, I. and Husain, Z., Multiobjective mixed symmetric duality involving cones, Computers & Mathematics with Applications, 59 (1), 319-326 (2010). [4] [5] [6] [7] Ahmad, I. and Husain, Z., Nondifferentiable second order duality in multiobjective programming, Applied Mathematics Letters, 18, 721-728 (2005). Ahmad, I. and Sharma, S., Second order duality for non differentiable multiobjective programming, Numerical Functional Analysis and Optimization, 28 (9), 975-988 (2007). Bector, C. R. and Chandra, S., Second order symmetric and self dual programs, Opsearch, 23, 89-95 (1986). Bector, C. R., Chandra, S. and Abha, On mixed symmetric duality in Mathematical programming, Journal of Mathematical Analysis and Applications, 259, 346-356 (2001). [8] Bector, C. R., Chandra, S. and Goyal, A., On mixed symmetric duality in multiobjective programming, Opsearch, 36, 399-407 (1999). [9] Chandra, S., Husain, I. and Abha, On mixed symmetric duality in mathematical programming, Opsearch, 36 (2), 165-171 (1999). [10] Kailey, N., Gupta, S. and Danger, D., Mixed second order multiobjective symmetric duality with cone constraints, Nonlinear Analysis: Real World Applications, 12, 3373-3383 (2011). [11] Li, J. and Gao, Y., Nondifferentiable multiobjective mixed symmetric duality under generalized convexity, Journal of Inequalities and Applications, doi: 10.1186/1029-24x-2011-23 (2011). [12] Mangasarian, O.L., ‘Second order and higher order duality in nonlinear programming, Journal of Mathematical Analysis and Applications, 51, 607-620 (1975). [13] Mishra, S.K., Second order mixed symmetric duality in nondifferentiable multiobjective mathematical program-ming, Journal of Applied Analysis, 13 (1), 117-132 (2007). [14] Mishra, S. K., Wang, S. Y. and Lai, K. K., Mond-Weir type mixed symmetric first and second order duality in nondifferentiable mathematical program-ming, Journal of Nonlinear and Convex Analysis, 7 (3), 189-198 (2006). [15] Mishra, S. K., Wang, S. Y., Lai, K. K. and Yang, F. M., Mixed symmetric duality in nondifferentiable mathematical programming, European Journal of Operational Research, 181, 1-9 (2007). [16] Mond, B., Second order duality for nonlinear programs, Opsearch, 11, 90-99 (1974). [17] Suneja, S. K., Lalita, C.S. and Khurana, S., Second order symmetric dual in multiobjective programming, European Journal of Operational Research, 144, 492500 (2003). [18] Thakur, G. K. and Priya, B., Second order duality for nondifferentiable multiobjective programming involving (Φ,ρ)-univexity, Kathmandu University Journal of Science, Engineering and Technology, 7 (1), 99-104 (2011). [19] Xu, Z., Mixed type duality in multiobjective programming problems, Journal of Mathematical Analysis and Applications, 198, 621-635 (1996). Mond-Weir type second order multiobjective mixed symmetric duality … [20] Yang, X. M., Teo, K. L. and Yang, X. Q., Mixed symmetric duality in nondifferentiable Mathematical programming, Indian Journal of Pure and Applied Mathematics, 34 (5), 805-815 (2003). Arun Kumar Tripathy is an Assistant Professor in Mathematics at Trident Academy of Technology (under B.P.U.T), Bhubaneswar, Odisha, India. He has received his MPhil in Mathematics from Ravenshaw College (Utkal University), Odisha. He has submitted his PhD 33 Thesis to Utkal University. He has 10 years research experience. His research interests are in non-linear mathematical programming and convex analysis. He has qualified for CSIR (NET), GATE. He has published many papers in reputed international and national journals such as Applied Mathematics And Computation (Elsevier Science), OPSEARCH (Springer), International Journal of Mathematics and Operational Research (Inderscience), Journal of Applied Analysis and Computation, Journal of Mathematical Modeling and Algorithm in Operation Research (Springer) and many more.
© Copyright 2025 Paperzz