Slide 1 ___________________________________ 7 Quantitative Composition of Compounds ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Black pearls are composed of calcium carbonate, CaCO3. The pearls can be measured by either weighing or counting. Foundations of College Chemistry, 14th Ed. Morris Hein and Susan Arena Copyright © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ ___________________________________ Chapter Outline 2 ___________________________________ 7.1 The Mole ___________________________________ 7.2 Molar Mass of Compounds 7.3 Percent Composition of Compounds ___________________________________ 7.4 Calculating Empirical Formulas ___________________________________ 7.5 Calculating the Molecular Formula from the Empirical Formula ___________________________________ ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ The Mole 3 ___________________________________ Individual atoms are tiny and have such a small mass, more convenient units for atoms are needed to be useful on the macroscale. ___________________________________ Analogy Fruit in a supermarket is “counted” by weighing the mass of fruit. If the average mass for a piece of fruit is known, the number of pieces of fruit can be calculated. Example ___________________________________ ___________________________________ ___________________________________ If one orange has a mass of 186 g, then 75 oranges have what mass? 186 g = 13,950 g = 13.95 kg 1 orange Chemists count atoms in a similar way, by weighing. 75 oranges × © 2014 John Wiley & Sons, Inc. All rights reserved. ___________________________________ Slide 4 ___________________________________ The Mole The standard unit of measurement for chemistry. 1 mole = 6.022 x 1023 ___________________________________ objects The number represented by 1 mole, 6.022 x 1023, is also called Avogadro’s number. ___________________________________ Such a large number is useful because even the smallest amount of matter contains extremely large numbers of atoms. ___________________________________ The mole is similar to other common units of counting. ___________________________________ Example ___________________________________ 1 dozen = 12 objects ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 5 ___________________________________ The Mole ___________________________________ Moles can be used to describe elements, particles or compounds. ___________________________________ Mole is often abbreviated as mol. 1 mol of atoms = 6.022 x 1023 atoms ___________________________________ 1 mol of molecules = 6.022 x 1023 molecules ___________________________________ 1 mol of electrons = 6.022 x 1023 electrons Avogadro’s number can be used as a conversion factor. 1 mol 6.022 x 1023 objects 6.022 x objects 1 mol © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 6 ___________________________________ 1023 ___________________________________ ___________________________________ The Mole ___________________________________ How does the mol relate to masses of elements? ___________________________________ The atomic mass of 1 mol of any element is defined as the amount of that substance that contains the same number of particles as exactly 12 g of 12C. ___________________________________ ___________________________________ 1 mol of any element contains the same number of atoms, but can vary greatly in the overall mass. (Atoms of different elements have different masses) ___________________________________ ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Molar Mass 7 ___________________________________ Molar Mass: the atomic mass of an element or compound (in grams) which contains Avogadro’s number of particles. ___________________________________ Molar masses are expressed to 4 significant figures in the text. ___________________________________ Determining Molar Mass Convert atomic mass units on the periodic table to grams and sum the masses of the total atoms present. ___________________________________ ___________________________________ Example CaF2 Molar Mass CaF2 = 40.08 g + 2(19.00) g = 78.08 g Ca © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ 2F ___________________________________ Using the Mole and Molar Mass Concepts 8 ___________________________________ We can use both the mol and molar mass as conversion factors. ___________________________________ How many moles of lead does 15.0 g of Pb represent? Solution Map g Pb ___________________________________ mol Pb The conversion factor relates g of Pb to moles of Pb. ___________________________________ 1 mol Pb 207.2 g Pb or 207.2 g Pb 1 mol Pb (Obtain molar mass from the periodic table.) ___________________________________ Calculate 1 mol Pb = 7.24 x 10-2 mol Pb 15.0 g Pb × 207.2 g Pb © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ ___________________________________ Using the Mole and Molar Mass Concepts 9 ___________________________________ How many moles of mercury does 23.0 g of Hg represent? a. 4.62 x 103 mol Hg b. 1.15 x 10-1 mol Hg c. 1.15 x 101 mol Hg d. 4.62 x 10-3 mol Hg ___________________________________ Solution Map g Hg mol Hg ___________________________________ The conversion factor needed: ___________________________________ 1 mol Hg 200.6 g Hg or 1 mol Hg 200.6 g Hg ___________________________________ Calculate 23.0 g Hg × 1 mol Hg = 1.15 x 10-1 mol Hg 200.6 g Hg © 2014 John Wiley & Sons, Inc. All rights reserved. ___________________________________ Slide ___________________________________ Using the Mole and Molar Mass Concepts 10 ___________________________________ How many Au atoms are contained in 16.0 g of Au? Solution Map g Au mol Au ___________________________________ atoms Au Two conversion factors are needed: ___________________________________ 1 mol Au 6.022 x 1023 atoms Au ___________________________________ 1 mol Au 197.0 g Au and Calculate 16.0 g Au × ___________________________________ 6.022 x 1023 atoms Au 1 mol Au × 197.0 g Au 1 mol Au ___________________________________ = 4.89 x 1022 atoms Au © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Using the Mole and Molar Mass Concepts 11 ___________________________________ How many Ti atoms are contained in 7.80 g of Ti? g Ti b. 2.25 x 1026 atoms Ti c. 9.81 x 1022 d. 6.20 x 10-22 ___________________________________ Solution Map a. 2.71 x 10-25 atoms Ti mol Ti atoms Ti ___________________________________ Two conversion factors are needed: atoms Ti atoms Ti 1 mol Ti 1 mol Ti and 6.022 x 1023 atoms Ti 47.87 g Ti ___________________________________ Calculate ___________________________________ 1 mol Ti 7.80 g Ti × 47.87 g Ti 6.022 x 1023 atoms Ti × 1 mol Ti ___________________________________ = 9.81 x 1022 atoms Ti © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Using the Mole and Molar Mass Concepts 12 ___________________________________ What is the mass of 2.13 x 1018 atoms of Li? Solution Map atoms Li mol Li ___________________________________ grams Li ___________________________________ Two conversion factors are needed: 1 mol Li 6.941 g Li and 1 mol Li 6.022 x 1023 atoms Li ___________________________________ Calculate 2.13 x 1018 1 mol Li atoms Li × 6.022 x 1023 atoms Li ___________________________________ × 6.941 g Li 1 mol Li ___________________________________ = 2.46 x 10-5 g Li © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Using the Mole and Molar Mass Concepts 13 ___________________________________ What is the mass of 1.28 x 108 atoms of Ne? a. 4.29 x 10-15 g Ne b. 5.35 x 1032 g Ne c. 3.06 x 10-17 g Ne d. 1.11 x 1031 g Ne Calculate 1.28 x 108 ___________________________________ Solution Map atoms Ne mol Ne grams Ne ___________________________________ Two conversion factors are needed: 1 mol Ne 1 mol Ne and 20.18 g Ne 6.022 x 1023 atoms Ne ___________________________________ ___________________________________ 1 mol Ne 20.18 g Ne atoms Ne × × 1 mol Ne 6.022 x 1023 atoms Ne ___________________________________ = 4.29 x 10-15 g Ne © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Using the Mole and Molar Mass Concepts 14 ___________________________________ What is the mass of 1.05 mol of Ag? Solution Map mol Ag ___________________________________ grams Ag ___________________________________ One conversion factor is needed: 1 mol Ag 107.9 g Ag ___________________________________ Calculate ___________________________________ 1.05 mol Ag × 107.9 g Ag = 113. g Ag 1 mol Ag © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ ___________________________________ Using the Mole and Molar Mass Concepts 15 ___________________________________ What is the mass of 8.21 mol of K? ___________________________________ Solution Map a. 321. g K mol K b. 2.10 x 10-2 g K ___________________________________ grams K One conversion factor is needed: c. 113. g K ___________________________________ 1 mol K 39.10 g K d. 1.11 x 1012 g K ___________________________________ Calculate 8.21 mol K × 39.10 g K 1 mol K ___________________________________ = 321. g K © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Using the Mole and Molar Mass Concepts 16 ___________________________________ How many hydrogen atoms are in 1.00 moles of H2 molecules? Solution Map mol H2 molecules H2 ___________________________________ atoms H2 ___________________________________ Two conversion factors are needed: 1 mol H2 6.022 x 1023 molecules H2 and 1 molecule H2 2 atoms H ___________________________________ Calculate 1.00 mol H2 ___________________________________ 6.022 x 1023 molecules H2 2 atoms H × × 1 molecule H2 1 mol H2 ___________________________________ = 1.20 x 1024 atoms H2 © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Using the Mole and Molar Mass Concepts 17 ___________________________________ How many sulfur atoms are in 2.27 mol of S8 molecules? a. 1.33 x 10-23 atoms S8 b. 7.53 x 1022 atoms S8 d. 2.08 x 10-25 atoms S8 1.00 mol S8 × mol S8 molecules S8 atoms S8 ___________________________________ Two conversion factors are needed: c. 4.82 x 1024 atoms S8 Calculate ___________________________________ Solution Map 1 mol S8 1 molecule S8 and 6.022 x 1023 molecules S8 8 atoms S ___________________________________ ___________________________________ 6.022 x 1023 molecules S8 8 atoms S × 1 molecule S8 1 mol S8 ___________________________________ = 4.82 x 1024 atoms S8 © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 18 ___________________________________ Molar Mass of Compounds ___________________________________ Much like an element, molar mass can be defined for a compound. ___________________________________ Molar Mass (MM): mass of one mole of the formula unit of a compound. ___________________________________ The molar mass of a compound is equal to the sum of the molar masses of all the atoms in the molecule. ___________________________________ ___________________________________ Example H2O Molar Mass = MMO + 2MMH = 16.00 g + 2(1.008 g) = 18.02 g © 2014 John Wiley & Sons, Inc. All rights reserved. ___________________________________ Slide ___________________________________ Molar Mass of Compounds 19 ___________________________________ What is the molar mass of aluminum hydroxide, Al(OH)3? ___________________________________ Al(OH)3 a. 43.99 g Using the atomic masses of each element: ___________________________________ 1 Al = 1(26.98 g) = 26.98 g ___________________________________ b. 78.00 g c. 75.99 g 3 O = 3(16.00 g) = 48.00 g d. 46.00 g 3 H = 3(1.008 g) = 3.024 g ___________________________________ 78.00 g ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Molar Mass of Compounds 20 ___________________________________ The molar mass of a compound contains Avogadro’s number of formula units/molecules. H2 O H 2O 2 x (6.022 x 1023) H atoms 6.022 x 1023 O atoms 6.022 x 1023 H2O molecules 2 mol H atoms 1 mol O atoms 1 mol H2O molecules 2 x 1.008 g = 2.016 g H 16.00 g O 18.016 g H2O ___________________________________ ___________________________________ ___________________________________ Reminder: Pay close attention to whether the desired unit involves atoms or formula units/molecules. ___________________________________ Example Cl2 ___________________________________ Contains 2 mol of Cl atoms but only 1 mol of Cl2 molecules. © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Molar Mass of Compounds 21 ___________________________________ As for elements, we can use both the mol and molar mass of formula units/molecules as conversion factors. ___________________________________ How many moles of NaCl are there in 253 g of NaCl? Solution Map g NaCl ___________________________________ mol NaCl To convert between g of NaCl and moles, we must first calculate the molar mass of NaCl. MM = 22.99 g + 35.45 g = Calculate 253. g NaCl × 1 mol NaCl 58.44 g NaCl ___________________________________ 58.44 g NaCl ___________________________________ = 4.33 mol NaCl ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Molar Mass of Compounds 22 ___________________________________ How many moles of TiCl4 are there in 12.5 g of titanium(IV) chloride? a. 0.0659 mol TiCl4 ___________________________________ Solution Map b. 0.0321 mol TiCl4 g TiCl4 c. 2.37 x 103 mol TiCl4 d. 1.01 mol TiCl4 ___________________________________ mol TiCl4 ___________________________________ MMTiCl4 = 47.87 g + 4(35.45) g = 189.7 g TiCl4 ___________________________________ Calculate 12.5 g TiCl4 × 1 mol TiCl4 = 0.0659 mol TiCl4 189.7 g TiCl4 © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ ___________________________________ Molar Mass of Compounds 23 ___________________________________ What is the mass of 3.45 mol of Li2O? Solution Map mol Li2O ___________________________________ g Li2O To convert between mol of Li2O and g, we must first calculate the molar mass of Li2O. ___________________________________ MMLi2O = 2(6.941) g + 16.00 g = ___________________________________ 29.88 g Li2O Calculate 3.45 mol Li2O × 29.88 g Li2O 1 mol Li2O ___________________________________ = 103. g Li2O © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ ___________________________________ Molar Mass of Compounds 24 ___________________________________ What is the mass of 1.23 mol of PH3? a. 3.62 x 10-2 g PH3 b. 1.22 x 10-6 g PH3 c. 39.33 g PH3 ___________________________________ Solution Map mol PH3 g PH3 ___________________________________ MMPH3 = 30.97 g + 3(1.008) g = 33.99 g PH3 d. 41.8 g PH3 ___________________________________ Calculate ___________________________________ 1.23 mol PH3 × 33.99 g PH3 1 mol PH3 = 41.8 g PH3 © 2014 John Wiley & Sons, Inc. All rights reserved. ___________________________________ Slide ___________________________________ Molar Mass of Compounds 25 ___________________________________ How many molecules of H2S are present in 7.53 g of H2S? How many atoms of H are present in the sample? ___________________________________ Solution Map g H2S mol H2S molecules H2S atoms H ___________________________________ MMH2S = 2(1.008) g + 32.07 g = 34.09 g H2S Calculate 1 mol H2S 7.53 g H2S × 34.09 g H2S × ___________________________________ 6.022 x 1023 molecules H2S 1 mol H2S ___________________________________ = 1.33 x 1023 molecules H2S 1.33 x 1023 molecules H2S × 2 atoms H = 2.66 x 1023 atoms H 1 molecule H2S © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 26 ___________________________________ ___________________________________ Molar Mass of Compounds ___________________________________ How many molecules of H2O2 are there in 0.759 g of the compound? ___________________________________ a. 4.29 x 10-23 molecules H2O2 b. 1.55 x 1025 molecules H2O2 c. 3.95 x 1024 molecules H2O2 g H2O2 Solution Map mol H2O2 molecules H2O2 ___________________________________ d. 1.34 x 1022 molecules H2O2 ___________________________________ MMH2O2 = 2(1.008) g + 2(16.00) g = 34.02 g H2O2 0.759 g H2O2 × 1 mol H2O2 6.022 x 1023 molecules H2O2 × 34.02 g H2O2 1 mol H2O2 ___________________________________ ___________________________________ = 1.34 x 1022 molecules H2O2 © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 27 ___________________________________ Percent Composition of Compounds ___________________________________ Percent = parts per 100 parts ___________________________________ Percent composition: mass percent of each element in a compound ___________________________________ Molar mass: total mass (100%) of a compound ___________________________________ % composition is independent of sample size % composition can be determined by: 1. Knowing the compound’s formula or 2. Using experimental data © 2014 John Wiley & Sons, Inc. All rights reserved. ___________________________________ ___________________________________ Slide 28 ___________________________________ Percent Composition from the Compound’s Formula ___________________________________ Two Step Strategy ___________________________________ 1. Calculate the molar mass of the compound. 2. Divide the total mass of each element by the compound’s molar mass and multiply by 100. % of the element = Total element mass Compound molar mass ___________________________________ ___________________________________ × 100 ___________________________________ ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 29 ___________________________________ Percent Composition of Compounds ___________________________________ Calculate the percent composition of K2S. Step 1 Calculate compound molar mass ___________________________________ MMK2S = 2(39.10) g + 32.07 g = 110.3 g Step 2 Calculate % composition of each element. %K= %S= 2(39.10) g K 110.3 g 32.07 g S 110.3 g ___________________________________ × 100 = 70.90 % K ___________________________________ × 100 = 29.10 % S ___________________________________ Notice the sum of the percentages must equal 100%. This provides another way of determining the % composition of a specific element, if the other %s are known. © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 30 ___________________________________ ___________________________________ Percent Composition of Compounds ___________________________________ Calculate the percent composition of O in H2O2. a. 94.07 % b. 5.93 % c. 88.9 % d. 11.1% ___________________________________ Step 1 Calculate molar mass ___________________________________ MMH2O2 = 2(1.008) g + 2(16.00)g = 34.02 g ___________________________________ Step 2 Calculate % composition O %O= 2(16.00) g O 34.02 g ___________________________________ × 100 = 94.07 % O ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 31 ___________________________________ Percent Composition of Compounds ___________________________________ Calculate the % composition of K2CrO4. Step 1 Calculate compound molar mass ___________________________________ MMK2CrO4 = 2(39.10) g + 52.00 g + 4(16.00) g = 194.2 g ___________________________________ Step 2 Calculate % composition %K= % Cr = %O= 2(39.10) g K 194.2 g 52.00 g Cr 194.2 g 4(16.00) g O 194.2 g × 100 = 40.27 % K ___________________________________ × 100 = 26.78 % Cr ___________________________________ × 100 = 32.95 % O ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 32 Percent Composition from Experimental Data ___________________________________ Two Step Strategy ___________________________________ ___________________________________ 1. Calculate the mass of the compound formed. 2. Divide the mass of each element by the total mass and multiply by 100. % of the element = Total element mass Total compound mass ___________________________________ ___________________________________ ___________________________________ × 100 ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 33 ___________________________________ Percent Composition from Experimental Data ___________________________________ When heated in air, 1.63 g of Zn reacts with 0.40 g of oxygen to give ZnO. Calculate the percent composition of the compound formed. Step 1 Calculate the mass of the compound formed. ___________________________________ ___________________________________ Mass compound = MassZn + MassO = 1.63 g + 0.40 g = 2.03 g compound Step 2 Calculate % composition % Zn = %O= 1.63 g Zn 2.03 g 0.40 g O 2.03 g ___________________________________ × 100 = 80.3 % Zn ___________________________________ × 100 = 20. % O 100.3% Total should be +/0.5% of 100 © 2014 John Wiley & Sons, Inc. All rights reserved. ___________________________________ Slide ___________________________________ Percent Composition from Experimental Data 34 ___________________________________ Aluminum chloride forms by reaction of 13.43 g of Al with 53.18 g of chlorine. What is the percent composition of Cl in the compound? ___________________________________ ___________________________________ a. 53.2 % Step 1 Calculate the mass of the compound formed. b. 79.8 % Mass compound = MassAl + MassCl c. 20.2 % = 13.43 g + 53.18 g = 66.61 g compound d. 46.8 % Step 2 Calculate % composition % Cl = 53.18 g Cl 66.61 g 35 ___________________________________ ___________________________________ × 100 = 79.8 % © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ ___________________________________ Empirical and Molecular Formula ___________________________________ Empirical Formula: smallest whole number ratio of atoms in a compound ___________________________________ Molecular Formula: actual formula of a compound. Represents the total number of atoms in one formula unit of the compound. ___________________________________ Whole number multiple of the empirical formula Example Acetylene (C2H2) and ___________________________________ Benzene (C6H6) Both have the same empirical formula CH. ___________________________________ Each compound is a multiple of CH. Acetylene C2H2 = (CH)2 © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 36 ___________________________________ Benzene C6H6 = (CH)6 ___________________________________ Empirical and Molecular Formula Formula Composition %C %H ___________________________________ Molar Mass (g/mol) CH (empirical formula) 92.3 7.7 13.02 C2H2 (acetylene) 92.3 7.7 26.04 (2 x 13.02) C6H6(benzene) 92.3 7.7 78.16 (6 x 13.02) ___________________________________ ___________________________________ Each compound has very different chemical and physical properties even though they share the same empirical formula. ___________________________________ Compounds with the same empirical formula have the same percent composition. ___________________________________ Molar mass = molar mass of the empirical unit × multiple of the unit ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 37 ___________________________________ Calculating Empirical Formulas ___________________________________ To calculate an empirical formula, you need to know: ___________________________________ 1. The elements present in the compound ___________________________________ 2. The atomic masses of each element (from the Periodic Table) ___________________________________ 3. The ratio (by mass or %) of the combined elements ___________________________________ ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 38 ___________________________________ Calculating Empirical Formulas ___________________________________ Strategy to Calculate an Empirical Formula: 1. Assume a starting mass of the compound (usually ___________________________________ 100.0 g) and express the mass of each element in grams. 2. Convert g of each element to mol using molar mass. ___________________________________ (These numbers may or may not be whole numbers.) 3. Divide each of the mole amounts from Step 2 by the ___________________________________ smallest mole amount. The new numbers are the subscripts in the empirical formula. ___________________________________ Special Case: If fractions are encountered, multiply by a common factor to provide whole numbers for each subscript. © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 39 ___________________________________ ___________________________________ Calculating Empirical Formulas ___________________________________ Calculate the empirical formula for a compound that contains 11.19% H and 88.79% O. ___________________________________ Step 1 Find amounts of each element In a 100.0 g sample, there are ___________________________________ 11.19 g H and 88.79 g O ___________________________________ Step 2 Convert g to moles using element molar masses 11.19 g H × 1 mol H 1.008 g H = 11.10 mol H ___________________________________ 88.79 g O × 1 mol O 16.00 g O = 5.549 mol O ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 40 ___________________________________ Calculating Empirical Formulas ___________________________________ Step 3 Convert to whole numbers by dividing by the smallest mole amount. 11.10 mol H 5.549 mol O 5.549 mol O 5.549 mol O ___________________________________ ___________________________________ = 2.000 ___________________________________ = 1.000 ___________________________________ Empirical formula is H2O © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 41 ___________________________________ ___________________________________ Calculating Empirical Formulas ___________________________________ Calculate the empirical formula for a compound that contains 56.68% K, 8.68% C and 34.73% O. a. K3C2O3 b. K4C2O6 c. K2CO3 d. KCO2 In a 100.0 g sample, there are Step 2 Convert g to moles 56.69 g K × × 34.73 g O × 1 mol K 39.10 g K 1 mol C 12.01 g C 1 mol O 16.00 g O ___________________________________ = 1.447 mol K ___________________________________ = 0.723 mol C ___________________________________ = 2.171 mol O © 2014 John Wiley & Sons, Inc. All rights reserved. 42 ___________________________________ 56.68 g K, 8.68 g C and 34.73 g O 8.68 g C Slide ___________________________________ Step 1 Find amounts of each element ___________________________________ Calculating Empirical Formulas ___________________________________ Calculate the empirical formula for a compound that contains 56.68% K, 8.68% C and 34.73% O. ___________________________________ Step 3 Convert to whole numbers by dividing by the smallest mole amount. a. K3C2O3 b. K4C2O6 c. K2CO3 d. KCO2 ___________________________________ 1.447 mol K = 2.000 0.723 mol 0.723 mol C = 1.000 0.723 mol ___________________________________ 2.171 mol O = 3.000 0.723 mol ___________________________________ ___________________________________ Empirical formula is: K2CO3 © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ Calculating Empirical Formulas 43 ___________________________________ Calculate the empirical formula for a compound that contains 2.233 g Fe and 1.926 g S? a. FeS2 Step 1 Find amounts of each element b.Fe3S2 Already provided in problem ___________________________________ 2.233 g Fe and 1.926 S c. FeS d. Fe2S3 ___________________________________ Step 2 Convert g to moles 2.233 g Fe × 1 mol Fe 55.85 g Fe = 0.03998 mol Fe 1.926 g S × 1 mol S 32.07 g S = 0.06006 mol S ___________________________________ ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide ___________________________________ ___________________________________ Calculating Empirical Formulas 44 ___________________________________ Step 3 Convert to whole numbers by dividing by the smallest mole amount. Common Fractions 0.03998 mol Fe Decimal Fraction = 1.000 × 2 = 2.000 0.03998 mol 0.25 1/4 0.06006 mol S 0.03998 mol = 1.502 × 2 = 3.000 Empirical formula is Fe2S3 0.33… 1/3 0.5 1/2 0.66…. 2/3 0.75 3/4 ___________________________________ ___________________________________ ___________________________________ To get a whole number, multiply the decimal by the corresponding number in the denominator of the fraction. Example After dividing, you get 0.75 (=3/4) Multiply by the denominator 4(0.75) = 4(3/4) = 3 © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 45 ___________________________________ ___________________________________ Calculating the Molecular Formula from the Empirical Formula ___________________________________ If molar mass is known, the molecular formula can be calculated from the empirical formula. ___________________________________ ___________________________________ ___________________________________ Molecular formula is a multiple of the empirical formula. Need to determine the value of n. ___________________________________ Solving for n n = Molar mass Mass of empirical formula ___________________________________ = number of empirical units in the molecular formula © 2014 John Wiley & Sons, Inc. All rights reserved. ___________________________________ Slide 46 ___________________________________ Calculating the Molecular Formula from the Empirical Formula ___________________________________ The molecular formula can be calculated from the empirical formula if the compound’s molar mass is known. ___________________________________ Molecular formula = multiple of the empirical formula ___________________________________ (EF)n = MF ___________________________________ Determining the multiple n gives the molecular formula n = ___________________________________ Molar mass = number of empirical units Mass of empirical formula in the molecular formula © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 47 ___________________________________ ___________________________________ Calculating the Molecular Formula from the Empirical Formula ___________________________________ A compound with the empirical formula NH2 was found to have a molar mass of 32.05 g. What is the molecular formula? n = ___________________________________ Molar mass Mass of empirical formula n = ___________________________________ = number of empirical units in the molecular formula 32.05 14.01 + 2(1.008) ___________________________________ = 2 ___________________________________ ___________________________________ Molecular formula = (NH2)2 = N2H4 © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 48 Calculating the Molecular Formula from the Empirical Formula ___________________________________ A compound with the empirical formula NO2 was found to have a molar mass of 92.00 g. What is the molecular formula? ___________________________________ a) NO2 b)N2O4 n = 92.00 g 14.01 + 2(16.00) g ___________________________________ ___________________________________ ___________________________________ = 2 c) N3O6 d) N4O8 ___________________________________ Molecular formula = (NO2)2 = N2O4 ___________________________________ © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 49 ___________________________________ Calculating the Molecular Formula from the Empirical Formula ___________________________________ Propylene contains 14.3 % H and 85.7 % C and has a molar mass of 42.08 g. What is its molecular formula? ___________________________________ Plan Calculate empirical formula and then determine the molecular formula ___________________________________ Step 1 Find compound masses In 100.0 g of compound, 14.3 g H and 85.7 g C Step 2 Convert g to moles 1 mol H = 14.2 mol H 14.3 g H × 1.008 g H ___________________________________ 1 mol C = 7.14 mol C 12.01 g C ___________________________________ 85.7 g C × © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 50 ___________________________________ ___________________________________ Calculating the Molecular Formula from the Empirical Formula ___________________________________ Step 3 Convert to whole numbers by dividing by the smallest mole amount. 14.2 mol H = 1.99 7.14 mol ___________________________________ ___________________________________ Empirical formula = CH2 7.14 mol C = 1.00 7.14 mol ___________________________________ With EF, calculate the molecular formula n = 42.08 g 12.01 + 2(1.008) g ___________________________________ = 3 ___________________________________ Molecular formula = (CH2)3 = C3H6 © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 51 ___________________________________ Calculating the Molecular Formula from the Empirical Formula ___________________________________ Calculate the molecular formula for a compound that contains 80.0% C and 20.0% H with a molar mass of 30.00 g. a. CH3 b. CH2 c. C2H6 d. C2H4 ___________________________________ Plan Calculate empirical and then molecular formula ___________________________________ Step 1 Find compound masses In 100.0 g of compound, 20.0 g H and 80.0 g C ___________________________________ Step 2 Convert g to moles 1 mol H 20.0 g H × 1.008 g H ___________________________________ 80.0 g C × 1 mol C 12.01 g C = 19.8 mol H ___________________________________ = 6.66 mol C © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 52 ___________________________________ Calculating the Molecular Formula from the Empirical Formula ___________________________________ Step 3 Convert to whole numbers by dividing by the smallest mole amount. ___________________________________ 19.8 mol H = 2.97 6.66 mol ___________________________________ 6.66 mol C = 1.00 6.66 mol Empirical formula = CH3 From empirical formula, calculate the molecular formula n = 30.00 g 12.01 + 3(1.008) g ___________________________________ ___________________________________ = 2 ___________________________________ Molecular formula = (CH3)2 = C2H6 © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 53 ___________________________________ Learning Objectives ___________________________________ 7.1 The Mole ___________________________________ Apply the concept of the mole, molar mass, and Avogadro’s number to solve chemistry problems. ___________________________________ 7.2 Molar Mass of Compounds Calculate the molar mass of a compound. ___________________________________ 7.3 Percent Composition of Compounds ___________________________________ Calculate the percent composition of a compound from its chemical composition and from experimental data. © 2014 John Wiley & Sons, Inc. All rights reserved. Slide 54 ___________________________________ ___________________________________ Learning Objectives ___________________________________ 7.4 Calculating Empirical Formulas ___________________________________ Determine the empirical formula for a compound from its percent composition. ___________________________________ 7.5 Calculating the Molecular Formula from the Empirical Formula ___________________________________ Compare an empirical formula to a molecular formula and calculate a molecular formula from an empirical formula, using the molar mass. © 2014 John Wiley & Sons, Inc. All rights reserved. ___________________________________ ___________________________________
© Copyright 2025 Paperzz