Lecture 6Section 7.7 Inverse Trigonometric Functions Section 7.8 Hyperbolic Sine and Cosine Jiwen He 1 1.1 Inverse Trig Functions Inverse Sine Inverse Since sin−1 x (or arcsin x) 1 domain:[− 12 π, 12 π] range:[−1, 1] 2 sin(sin−1 x) = x 3 4 domain:[−1, 1] range:[− 12 π, 12 π] Trigonometric Properties 5 sin(sin−1 x) = x cos(sin−1 x) = x 1 − x2 1 sec(sin−1 x) = √ 1 − x2 cot(sin−1 x) = tan(sin−1 x) = √ csc(sin−1 x) = p √ 1 − x2 1 − x2 x 1 x Differentiation Theorem 1. 1 d sin−1 x = √ . dx 1 − x2 Proof. Let y = sin−1 x. Then x = sin y, d sin−1 x = dx d dy 1 1 1 1 = . = =√ cos y cos(sin−1 x) sin y 1 − x2 Theorem 2. Z 1 d du sin−1 u = √ , dx 1 − u2 dx Integration: u-Substitution 6 √ 1 du = sin−1 u + C 1 − u2 Theorem 3. g 0 (x) Z p 1 − (g(x))2 dx = sin−1 (g(x)) + C Proof Let u = g(x). Then du = g 0 (x) dx, Z Z g 0 (x) 1 p dx = √ du = sin−1 u + C = sin−1 (g(x)) + C 2 1 − u2 1 − (g(x)) Z Z 1 1 x √ Examples 4. dx = √ du = sin−1 u+C = sin−1 +C. Note 2 2 2 1−u Z 4 − x 1 2 √ that 4 − x2 = 4 1 − x2 . Let u = x2 . Then du = 12 dx. dx = 2x − x2 Z 1 √ du = sin−1 u + C = sin−1 (x − 1) + C. Note that 2x − x2 = 1 − (x2 − 1 − u2 2x + 1) = 1 − (x − 1)2 (complete the square). Let u = x − 1. Then du = dx. 1.2 Inverse Tangent Inverse Tangent tan−1 x (or arctan x) 7 8 y = tan x domain:(− 12 π, 12 π) range:(−∞, ∞) Trigonometric Properties 1 x tan(tan−1 x) = x cot(tan−1 x) = x 1 + x2 p sec(tan−1 x) = 1 + x2 1 cos(tan−1 x) = √ 1 + x2 √ 1 + x2 csc(tan−1 x) = x sin(tan−1 x) = √ Differentiation Theorem 5. d 1 tan−1 x = . dx 1 + x2 Proof. Let y = tan−1 x. Then x = tan y, d tan−1 x = dx d dy 1 1 1 1 = = . 2 = −1 (sec y)2 1 + x2 tan y sec(tan x) Theorem 6. Z d 1 du tan−1 u = , dx 1 + u2 dx 9 1 du = tan−1 u + C 1 + u2 Integration: u-Substitution Theorem 7. Z g 0 (x) dx = tan−1 (g(x)) + C 1 + (g(x))2 Proof Let u = g(x). Then du = g 0 (x) dx, Z Z g 0 (x) 1 dx = du = tan−1 u + C = tan−1 (g(x)) + C 1 + (g(x))2 1 + u2 Z Z 1 1 1 x 1 1 dx = du = tan−1 u + C = tan−1 + C. 2 2 4+x 2 1+u 2 2 Z2 1 x 2 x 1 2 dx = Note that 4+x = 4 1 + 2 . Let u = 2 . Then du = 2 dx. 2 + 2x + x2 Z 1 du = tan−1 (x+1)+C. Note that 2+2x+x2 = 1+(x2 +2x+1) = 1+(x+ 1 + u2 Z e−x 2 dx = 1) (complete the square). Let u = x + 1. Then du = dx. 1 + e−2x Z 1 − du = − tan−1 (e−x ) + C. Note that 1 + e−2x = 1 + (e−x )2 (complete 1 + u2 the square). Let u = e−x . Then du = −e−x dx. Examples 8. Quiz Quiz 10 Let f 0 (t) = kf (t). 1. For f (0) = 4, f (t) =: (a) kt + 4, 2. For k > 0, double time T =: (a) 1.3 Inverse Secant Inverse Secant sec−1 x 11 4 , k (b) 4ekt , (b) ln 2 k (c) 4e−kt . (c) − ln 2 . k y = sec x domain:[0, 21 π)∪( 12 π, π] range:(−∞, −1]∪[1, ∞) 12 Trigonometric Properties sec(sec−1 x) = x √ csc(sec−1 x) = √ x2 − 1 sin(sec−1 x) = x p −1 tan(sec x) = x2 − 1 x x2 −1 1 cos(sec−1 x) = x cot(sec−1 x) = √ 1 x2 −1 Differentiation Theorem 9. d 1 √ sec−1 x = . dx |x| x2 − 1 Proof. Let y = sec−1 x. Then x = sec y, d sec−1 x = dx d dy 1 1 1 √ = = . 2 (sec y tan y) sec y |x| x2 − 1 Theorem 10. Z d 1 du √ sec−1 u = , 2 dx |u| u − 1 dx 13 1 du = sec−1 |u| + C u u2 − 1 √ Integration: u-Substitution Theorem 11. Z g 0 (x) p dx = sec−1 (|g(x)|) + C g(x) (g(x))2 − 1 Proof Let u = g(x). Then du = g 0 (x) dx, Z Z 1 g 0 (x) p √ dx = du = sec−1 (|g(x)|) + C 2 u u2 − 1 g(x) (g(x)) − 1 Z Z √ 1 1 1 √ √ Examples 12. du = sec−1 x + C. Note that dx = 2 2 2 x x−1 √ u u −1 √ x − 1 = ( x)2 − 1. Let u = x. Then x = u2 , dx = 2udu. 1.4 Other Trig Inverses Other Trigonometric Inverses Other Trigonometric Inverses 14 π 2 π −1 −1 tan x + cot x = 2 π sec−1 x + csc−1 x = 2 sin−1 x + cos−1 x = or or or π − sin−1 x 2 π cot−1 x = − tan−1 x 2 π csc−1 x = − sec−1 x 2 cos−1 x = Differentiation Theorem 13. d d 1 cos−1 x = − sin−1 x = − √ dx dx 1 − x2 d d 1 cot−1 x = − tan−1 x = − dx dx 1 + x2 d d 1 csc−1 x = − sec−1 x = − √ dx dx |x| x2 − 1 Quiz (cont.) The value, at the end of the 4 years, of a principle of $100 invested at 4% compounded 3. annually: (a) 400(1 + 0.04), (b) 100(1 + 0.04)4 , (c) 100(1 + 0.16). 4. continuously: (a) 100e0.04 , (b) 100e0.16 , (c) 100(1 + 0.04)4 . 2 2.1 Hyperbolic Sine and Cosine Definition Hyperbolic Sine and Cosine 15 Definition 14. sinh x = Theorem 15. 1 x e − e−x , 2 cosh x = 1 x e + e−x 2 d cosh x = sinh, dx d sinh x = cosh, dx Identities 16 17 cosh2 x − sinh2 x = 1 sinh(x + y) = sinh x cosh y + cosh x sinh y cosh(x + y) = cosh x cosh y + sinh x sinh y cos2 x + sin2 x = 1 sin(x + y) = sin x cos y + cos x sin y cos(x + y) = cos x cos y − sin x sin y Outline Contents 1 Inverse Trig Functions 1 18 1.1 1.2 1.3 1.4 Inverse Sine . . . . Inverse Tangent . . Inverse Secant . . . Other Trig Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 11 14 2 Hyperbolic Sine and Cosine 15 2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 19
© Copyright 2026 Paperzz