Page 1 of 17 Post Algebra 2 Summer Packet Simplify. 1. −5 + 8 − 9 2. −36 + (−11) Evaluate each expression for the given value of the variable. 6( s − 2) − 4( s + 1) ;s = 3 3s + 1 3. −a2 + 4a − 17; a = 5 4. 5. 12x − 9(x − 1); x = 2 6. c(3 − a) − c2; a = 4, c = −1 Simplify by combining like terms. 7. 4m − 7n − 2m + 6n 9. t + t2 2 +t +t 2 8. 1 2 ( x + 6 y ) − (4 y − x 2 ) 2 10. x(x − y) + y(y − x) Solve each equation. 11. 4w − 17 = 3w − 11 13. 7h − 4 = 5h + 16 12. 3r + 3.7 = 5r − 2.5 14. 5(w + 2) − 11 = 2w + (9 − 7w) Page 2 of 17 Post Algebra 2 Summer Packet 15. 3(5t + 2) = 36 16. 2(5d + 13) − 14 = 8 17. 7(a + 5) − 12 = 3(a + 2) 1 7 18. 3 x − = 5 x + + 4 x − 1 2 2 Solve each equation for x. State any restrictions on the variables. 19. tx − ux = 3t 20. 21. a(x + c) = b(x − c) 22. x−3 +3= a 6 x+3 2 =t t Solve each formula for the indicated variable. 23. R = 1 (r1 + r2 ), for r2 2 25. S = ℓw + wh + ℓh, for w 24. P = 2ℓ + 2w, for ℓ 26. S = L(1 − r), for r Page 3 of 17 Post Algebra 2 Summer Packet Write an equation and solve each problem. 27. The length of a rectangle is 5 cm greater than its width. The perimeter is 106 cm. Find the dimensions of the rectangle. 28. Two buses leave Dallas at the same time and travel in opposite directions. One bus averages 58 mi/h, and the other bus averages 52 mi/h. When will they be 363 mi apart? Solve each inequality. Graph the solutions on a number line. 29. 3m + 7 ≥ 4 30. 5 − 6x < 7 31. 10 − x ≥ −2(3 + x) 32. 2y + 3 < 3y − 5 Solve each compound inequality. Graph the solutions. 33. −1 < 5 − 4x < 11 34. 3x − 1 ≤ 5 or 2x − 4 ≥ x 35. −3t ≤ 12 and −2t > −6 36. −5 < 2x + 5 < 3 Page 4 of 17 Post Algebra 2 Summer Packet Solve each equation. Check for extraneous solutions on a number line. 37. 2x + 3 = 5 38. x + 6 = 2x 39. 3x + 6 = −12 40. 5x + 1 + 6 = 21 Suppose f(x) = 3x –4 and g(x) = | x | + 3. Find each value. 1. ƒ(2) 1 2. f + g (−2) 3 3. f (1) g (1) Find the slope of each line. 5. 3x − 5y = 15 7. through (6, 1) and perpendicular to y = 8. 6. through (−2, 7) and (4, 1) 3 1 x+ 2 4 9. 5x − y = −7 Write in slope-intercept form the equation of the line with the given slope through the given point. Page 5 of 17 Post Algebra 2 Summer Packet 1 10. slope = 6; , 2 2 11. slope = 1 ; (4, 3) 4 12. slope = −2; (0, 0) Write in slope-intercept form the equation of the line through each pair of points. 13. (0, 0) and (−2, 3) 14. (1, 5) and (−3, 3) 15. (−4, 1) and (−2, −2) Write in point-slope form the equation of the line through each pair of points. 16. (0, 1) and (3, 0) 1 2 3 5 17. , and − , 2 3 2 3 18. (−3, −2) and (1, 6) Write an equation for each line. Then graph the line on the graphs below. 19. through (−1, 3) and parallel to y = 2x + 1 3 20. through (2, 2) and perpendicular to y = − x + 2 5 21. through (−3, 4) and vertical Page 6 of 17 Post Algebra 2 Summer Packet 22. through (4, 1) and horizontal Solve each system using substitution or elimination. 1. y = 2x + 8 y = 3x − 1 2. 2 x − y = 2 2 x − 2 y = 4 3. − x + y = 2 2 x + y = −1 4. y = x − 2 x + y = 10 5. y = 7 − x x + 3 y = 11 6. x − 2 y = 10 y = x − 11 7. y = x +3 5 x + y = 9 8. 5x + 4 y = 2 −5 x − 2 y = 4 9. y = 2x + 3 5 x − y = −3 Page 7 of 17 Post Algebra 2 Summer Packet 14 x + 2 y = 10 10. x − 5 y = 11 2 y = −4 x 11. 4 x + 2 y = −11 2 x − 5 y = 11 12. 4 x + 10 y = 18 Factor each expression completely. 1. x2 + 4x + 4 2. x2 – 7x + 10 3. x2 + 7x – 8 4. x2 – 6x 5. 2x2 – 9x + 4 6. x2 + 2x – 35 7. x2 + 6x + 5 8. x2 – 9 9. x2 – 13x – 48 10. x2 – 4 11. 4x2 + x 12. x2 – 29x + 100 13. x2 + 5x – 24 14. x2 – x – 72 15. 4x2 – 4x – 15 Page 8 of 17 Post Algebra 2 Summer Packet 16. 2x2 – 5x – 7 17. x2 – 11x 18. 10x2 – 17x + 3 Graph each quadratic function on the graphs below. Identify the axis of symmetry and the coordinates of the vertex. 1. y = x2 + 5 3. y = –x2 + 7x – 2 Simplify each expression. 2. y = x2 – 4x – 3 Page 9 of 17 Post Algebra 2 Summer Packet 4. (3 + i) – (7 + 6i) 6. (–4 – 9i) + (5 – 7i) 8. ( −9 − 2 )( ) −4 + 1 5. (3 – 4i)(5 + 2i) 7. 3 −25 + 4 9. (5i + 4) – (4i – 3) Solve each quadratic equation by taking square roots, factoring, or quadratic formula. 10. x2 – 16 = 0 11. 2x2 – 3x – 11 = 0 12. x2 + 3x – 10 = 0 13. 3x2 + 48 = 0 14. x2 – 5x + 4 = 0 15. 2x2 – x + 1 = 0 16. 3x2 + 5x = 2 17. 2x2 – 3x = –1 Page 10 of 17 Post Algebra 2 Summer Packet 18. x2 – 144 = 0 19. x2 – 6x – 7 = 0 20. 5x2 = 15x 21. 2x2 + 5 = 11x Write each polynomial in standard form. Then classify it by degree and number of terms. 1. 4x4 + 6x3 − 2 − x4 2. 9x2 − 2x + 3x2 3. 4x(x − 5)(x + 6) Write a polynomial function with rational coefficients in standard form with the given zeros. 4. 2, 3, 5 5. −1, 0, 1 For each function, determine the zeros and their multiplicity. 6. y = (x − 1)2(2x − 3)3 7. y = (3x − 2)5(x + 4)2 8. y = 4x2(x + 2)3(x + 1) Page 11 of 17 Post Algebra 2 Summer Packet Solve each equation. 9. (x − 1)(x2 + 5x + 6) = 0 10. x3 − 10x2 + 16x = 0 11. (x + 2)(x2 + 3x − 40) = 0 12. x3 + 3x2 − 54x = 0 13. x3 − 27 = 0 14. x4 − 5x2 + 4 = 0 15. x4 − x = 0 16. x4 − 81 = 0 Divide using long division. 17. (x3 + 9x2 + 26x + 24) ÷ (x + 4) 18. (2x3 − 11x2 + 2x + 15) ÷ (x + 1) Page 12 of 17 Post Algebra 2 Summer Packet Divide using synthetic division. 19. (x3 + 5x2 − x + 1) ÷ (x + 2) 20. (3x3 − x2 + 2x − 5) ÷ (x − 1) Simplify each radical expression. Use absolute value symbols as needed. 1. 4. 3 400x 2 y 6 2. 64a 6b 2 5. 3 −125a9 3. 4 81x5 y 9 50 s 2t 4 6. 4 Simplify each expression. Rationalize all denominators. Assume that all positive. 256x16 y 28 variables are Page 13 of 17 Post Algebra 2 Summer Packet 200 x3 y 7. 2 xy 5 8 x 3 ⋅ 2 x5 10. 8. (8 − 3 2 )(8 + 3 2 ) 9. 1 3+5 11. 63 + 2 28 − 5 7 12. 2 1+ 2 Simplify each expression. Assume that all variables are positive. 3 16 x5 y10 4 13. 81xy 2 14. (−64) − 23 2 1 15. a 3 ⋅ a 2 Solve each equation. Check for extraneous solutions. 16. 18. 3 x−3 =1 17. x+7 =x+1 3x − 8 = 2 19. (2 x + 1) 3 = 3 1 Page 14 of 17 Post Algebra 2 Summer Packet 20. 4 x2 − 5 = 4 21. 3( x + 1) 3 = 48 Let ƒ(x) = x2 + 5 and g(x) = x – 7. Perform each function operation. the domain of each. 22. f ( x) g ( x) 23. ƒ(x) − 2g(x) 24. ƒ(x) ⋅ g(x) For each pair of functions, find f(g(x)) and g(ƒ(x)). 25. ƒ(x) = 3x + 5, g(x) = x2 + 1 27. f(x) = 2 x − 1 , g(x) = 5x + 3 26. ƒ(x) = x2 − 5x + 2, g(x) = 2x 28. ƒ(x) = −2x2, g(x) = x + 4 Then find Page 15 of 17 Post Algebra 2 Summer Packet Let ƒ(x) = 5x – 4 and g(x) = x2 – 1. Find each value. 29. g(ƒ(−1)) 30. f(g(2)) 31. g(ƒ(0)) Give the parent function and describe the transformations for each function listed below. 32. y = | x + 3 | − 2 33. y = | x | + 2 34. ƒ(x) = (x + 2)2 − 4 35. ƒ(x) = 36. y = | x − 4 | 37. 3 x+2 9 x − 63 + 4 Simplify each expression. 1. x2 − 5x x 2 − 25 2. x2 − 5x x 2 − 25 Page 16 of 17 Post Algebra 2 Summer Packet 3. 5. 3x3 x 2 − 25 ⋅ x2 + 6 x + 5 x+2 x + 4x + 4 2 x2 + 2 x+2 2 7. x 3 y 9. 4. x 2 − 3x − 10 2 x 2 − 11x + 5 ÷ x2 − 5x + 6 2 x2 − 7 x + 3 6. 8. x+2 x + 4x + 4 2 1+ + 2 x+2 2 3 4 9 3 + 4x x−9 10. 3 − 1 x +5 2 Solve each equation. Check each solution. 11. 1 = x 2 x+3 12. 3x 5x +1 = 4 3 Page 17 of 17 Post Algebra 2 Summer Packet 13. x −1 x = 6 4 14. 15. 7 7x = −4 2 8 16. 4 + 17. 1 5 1 + 2 = 2x + 2 x −1 x −1 18. 19. 2 3x − 1 5 + = 3 6 2 20. 4 x = x 4 2y 8 = y −5 y −5 2y 2 y 1 + = − 5 6 2 6 7 x − 5x 2 + 2 3 = x 2 x − 10
© Copyright 2026 Paperzz