The land quality concept as a means to improve communications about soils J. Bouma Member Scientific Council for Government Policy,the HagueandProfessor ofSoils,Lab. Soil Science andGeology,Wageningen University, theNETHERLANDS E-mail: [email protected] Summary Soilexpertise isnot communicated effectively enough tothepublic atlarge,nortoplanners andpoliticians. Useoftheland quality (LQ)conceptand emphasis onsoilbehaviorasa function ofmanagement areexpected tobehelpful in improvingcommunications. Existing definitions of"soil quality"and"sustainable landmanagement"areanalyzed toderivea procedure for defining LQindicators ofsustainable land management. Land-ratherthan soil qualitiesareconsidered toreflect theimpact oftheclimateandthelandscape onsoil behavior. Land quality isdifferent fordifferent typesoflanduseandattention isarbitrarily confined heretoagriculture.Simulation modeling ofcropgrowth and solutefluxesisused to define land quality (LQ)astheratiobetween yield andpotential (orwater-limited)yield (x 100), whichdefines a"yield gapLQ".Forsoilswithnutrient mining,anutrient-depletion LQis defined. Theactual agro-ecological condition and itspotential,both expressed byLQ'sfora given pieceofland,isconsidered hereasindependent input intobroader land-use discussions which tendtobedominated bysocio-economic andpolitical considerations. Agro-ecological considerations shouldnotbeheld hostage toactualsocio-economic and political considerations,which maychange inthenearfuture while LQ'shaveamuch morepermanent character. Theproposed yield-gap LQreflects yieldsandrisksofproduction as simulations aremadefor manyyears,and soilandwaterquality associated withtheproduction processis taken intoaccount.Yields andpollutionrisksareexpressed for Dutchconditions intermsof theprobability that groundwater ispolluted withnitrates.Theproposedprocedure requiresthe selection ofacceptableproduction andpollutionrisks,before aLQvaluecanbeobtained. Existingdefinitions implicitly emphasizethefieldandfarm level.However, LQisalso important attheregional and higherlevel,which,sofar, hasreceived littleattention.Then, again,anagro-ecological approach issuggested whendefining LQ'sasinput intothe planningprocess,emphasizingnotonlyanindependent assessment ofthepotential for agricultural production,butofnatureconservation aswell. Keywords:agro-ecosystems, nitratepollution,riskassessment, potential cropyields Introduction Thecondition ofsoils isgenerallynotaprime concern when environmental problemsare discussed insociety.Globalclimate change duetogreenhouse gasses,the"ozon hole",solid andliquidwastedisposal and, increasingly, waterquality andworldwide watershortageshave beenmoresuccessful incatchingtheimagination ofthepublic atlarge.These,ofcourse,are worthyobjectives ofconcern andstudy,butseriousconcernsaboutthe environmental degradation ofsoilsresulting from intensive forms oflanduseexceedingtheecological carryingcapacityhavewidelybeenreported butdon't appeartoleadtoalarmoraction(e.g. Oldeman, 1994).Approximately 15%ofthetotal landsurface oftheworld isdegradedasa resultofadversehumanaction.Worldwide,about 38% oftheagricultural landisaffected by significant human-induced soildegradation,ofwhich 56%iscausedbywatererosion,28% bywinderosionand 7%bynutrientdecline.Substantialareasofprimeagricultural landare, withoutmuchopposition,permanentlytaken outofproductionwhenused for cityexpansion andconstruction ofshoppingmallsorroads.Howcanthisrelativeindifference beexplained? Withoutmakingattemptstospeculateaboutthepsychologyofpublicawareness,wemay statethatthesoil scienceprofession hasbeenlessthansuccessful incommunicatingits expertiseeffectively tothepublic,toregulatorsandtopoliticians.InthispaperIwillattempt tobriefly analyzethisproblem.Ofcourse,thechallengeistoimproveourefforts toshowthat soilsareimportant.Onewaytodosoistodevelop indicatorsthatcanquicklyexpressthe valueorqualityofsoils.Suchindicatorsarecrucialinthemodern worldwhereattention spansareveryshortandwhereattention isincreasinglyattunedtoattractive" soundbites". Soilorlandqualitycouldbeanideal indicator aswillbefurther explored inthispaper.Our colleaguesineconomicsand sociologyhaveused attractiveindicators for years(theGross NationalProductmayserveasanarbitraryexamplehere).Suchindicatorshavesofarnot beendefined for soils(Pieri etal.,1995). Whendiscussing soilqualityindicatorsinthecontext ofachievinganeffective external communication,wemust linksoilsandtheirpropertieswithfunctioning anduse.Thisnot onlyrelatestoagriculture,butalsotonature areasandrecreational facilities. Usepatternsand managementpracticesareonlyacceptablewhentheyaresustainableinthelongrun.Wewill therefore discussthesoilqualityaspectinthecontextofsustainable landuseand management. Sustainablelandmanagement hasbeendiscussed widelywithin soilscience andagronomy andguidelines havebeenproposed byFAO(1993).Theseguidelineslist four criteria for sustainable landmanagementrelatingtoagriculture:(1)production shouldbemaintained;(2) risksshould notincrease;(3)qualityofsoilandwatershouldbemaintained,and(4)systems shouldbeeconomically feasible andsociallyacceptable.Soilqualityispartofthis definition andthistermhas,inturn,beendefined inanother contextas:"thefitness ofaspecific kindof soiltofunction within itscapacityandwithinnaturalandmanaged ecosystemboundaries,to sustainplantandanimalproductivity, maintainairandwaterqualityandsupporthuman healthandhabitation"(Karlenetal, 1997).Eventhough itistemptingtodiscussthese definitions assuch,wewouldratherfocus onajoint analysisofbothdefinitions, leadingto descriptionsofsoilquality indicatorsthathaverelevancefor sustainable land management. Overall,theobjective istodevelopexpressionsfor soilqualitythatmayservetoimprove communication ofsoilexpertisetousersandstakeholders.Attention inthispaperwill therefore bepaidtodiscussionson:(1)creatingawarenessaboutsoils;(2)sustainable land management; (3)soil quality and soil quality indicators,and (4)useofthequalityconceptto improvecommunication. The focus willbeonthefieldlevel,theusualarea ofactivityof farmers. However, thequalityconcept isalsoimportant atotherspatial scales,which haveto beconsidered whendealingwithpolicy issues inregions orcountries. Inthisbroader context, soilqualityhasnotyetbeen analyzed andthisissuewilltherefore alsobeexplored inthis paper. Creating awareness about soils Eventhough manypeople haveastrong affinity with"the land"theyliveon,itisarather abstract affinity. Soilsoccur indarknessbelow the surface oftheearth and, incontrastto weatherandwater, arenotdirectlyvisibleandcannot beexperienced bythesensesunless exposed inaholeorinanexcavation.Thevertical succession oflayers,which is characteristic for soils,canbeshown inmonoliths andcanbedisplayed onwallsof offices, schoolsand otherbuildings.IntheUSA, everyStateoftheUnion hasa"StateSoil",justlike a"StateBird","StateAnimal"etc.Thevertical succession oflayers inany soil isoften quite beautiful, certainly when awide arrayofcolorsisexposed asinpodzols and gleysoils. Successful exhibitions ofsoilmonoliths havebeenheld inart galleries!Butsoilsrepresent morethanjust prettypictures!Toreallyunderstand thesignificance ofsoils,a functional approach isneeded which demonstrates functioning within alandscapecontext asgoverned byinteracting physical,chemical andbiological processes.Morespecifically, functioning relatestosupplyingwaterandnutrientstoagricultural cropsand varioustypesofnatural vegetation,purification ofpercolatingwastewaterandcarrying loads.Allthese functions takentogetherdeterminethevalueofsoils for society. Howcan the functioning of soilsbecharacterized? Yields ofcropsareoften known,asare typesofnaturalvegetation thatoccurondifferent soiltypes.Chemical,physicaland hydrological properties areoften known toacertain extentbutoften inarather qualitative, descriptive andstaticmanner.Howcanwecatch theeffects ofinteractingphysical,chemical and biological processes,which determine thedynamic character ofsoilsandtheir functioning inecosystems? Manymonitoring techniques areavailablenowtomeasurevarying soilproperties overtime. Useoftransducers, recorders andproximal andremote sensingtechniques allowsusto"take thepulse ofmotherearth"(e.g.Bouma, 1999).Suchtechniquesare,however, costlyand widespread application istherefore unlikely.Theadvance ofcomputer simulation ofsoil processeshas,however,proved tobequitehelpful indocumenting effects of soilprocesses andthe impact ofman. (e.g.Alcamo, 1999).Someexampleswill becited later inthispaper. Useofcomputersimulation techniques todemonstrate thedynamic behavior ofsoilsasa function ofmanagement byman ismuchmoreattractive for themodernsoil userthan classic soil interpretations, aspresented insoil surveys,which listrelative suitabilities ofsoilsfora seriesof landuses.Thesophisticated modernuserwantsarangeofoptionstochoosefrom whencopingwith land-useproblems.Heisusedtomakinghisownchoices anddoesnotlike tobepresented withsingle"best"solutionstoproblems,developedbyotherswithouthis activeparticipation.Hewantsresearchers todefine a"windowofopportunity"for anygiven soil,whilehe(orshe)makestheappropriatechoices. Weexpectthatgeneralsoilawareness can increasewhensoilqualities aredefined inthe contextofcharacteristic "windowsofopportunity"for anygivensoil,andwhenthesesoil qualitiesarecommunicated effectively tovarioususersofsoil information. Sustainable land management Intheirdefinition ofsustainableland management, FAO(1993)clearlyfocused on agricultural production.Thiscanbeachoice,butweshouldrealizethat landmanagement has broaderimplicationsthanagricultural production alone.Thisisexpressed inthedefinition of soilqualitywherenaturalecosystemsarementioned aswellashumanhealth andhabitation. Bethatasitmay,itshouldberecognized thatFAO(1993)defines sustainable land management andnotsustainabilityassuch.Emphasis istherefore onspecific actionbyman andnotonvagueconceptual definitions, whichisattractive.Theelementsofthe definition arelogicalbuttheyshould, forbetter understanding,begrouped intotwocategories.The first threedefine plausibleagro-ecological aspects:productivity,risksduringproduction and qualityofsoilandwater.Thefourth category isdifferent: economic feasibility (whichalso stronglyeffects social acceptability) islargelybeyondthecontrol ofthe landmanager.Even thoughamanagement schememaybesustainable from anagro-ecological pointofview,it canbeeconomicallyunsustainablebecauseofpoorprices for agriculturalproduce.This shouldcertainlybeconsidered butitisunwisetonotexplorevarious agro-ecological management options,evenwhenatthispoint intimetheseoptionsarenoteconomicallyor sociallyfeasible. Timesmaychange:doublingoftheworldpopulation, exhaustion of fossil fuels requiringgrowthofenergycropsandneedsforrawplantmaterialtobegrown in future byfarmers assourcematerials for industry, arelikelytochangewhatmayatthispointintime beanegativeeconomicoutlook for agriculturalproduction.Agro-ecological research, focused ondeveloping future sustainable landmanagementpractices,shouldnotbeheldransomto currenteconomicconditions. How,then,tocharacterizeagriculturalproduction,productionrisksandthequalityofsoiland water?Monitoringofagriculturalproduction systemscanproviderelevant information but proceduresaretediousand costlyandmonitoringoverperiods ofmanyyearsisneededto coverunusualweatherconditions.Thelatterareneeded toadequatelyexpressrisksof production,which areassociatedwithadverseconditionsthatonlyoccur occasionally. Monitoringoversuchextendedperiods oftimeissimplynotfeasible. Fortunately, inrecent years,systemsanalysisofagriculturalproduction systems,usingcomputersimulation ofcrop growth,hasdevelopedtotheextentthatmethodsareoperational andveryuseful forthe analysis ofsustainable management systems. Examples willbeprovided inalatersection of thispaper. Soil quality Manystudieshavebeen made about soil quality (e.g. Doran andJones, 1996)but there isas yetnot awell defined, universal methodologytocharacterize soilquality andtodefine aset ofclear indicators.Doran and Jones(1996)present four physical, four chemical andthree biological indicators which, according totheauthors,togetherrepresent aminimal datasetto characterize soil quality. But noexamples areprovided. Gomesetal.(1996)define six indicators andthreshold values for measuring sustainabilityofagricultural production systems atthe farm level. Implicitly, higherdegreesofsustainability correspond with higher soil qualities.Otherexamplesof soilquality studies asreported byDoran andJones(1996) list seriesofsoilcharacteristics as indicators ofsoilqualitybutnonereally addressthe broad spirit orscopeofthe Karlen et al.(1997) definition. Anumberofgeneral considerations canbe madewhendefining soil quality: Any"fitness ofaspecific kind ofsoilto function" depends stronglyonclimatic conditions, which varyamongclimatic zoneswhile theweatheralsovariesatanygiven location during theyear.Aside from this,soilsareparts of landscapes and their functioning isstrongly affected bytheirposition inthese landscapes.Toconsider"soil"without theclimaticand landscape context,when defining quality, isnotrealistic.Weshouldtherefore speakabout " landquality"ratherthan "soil quality"(Pieri etal, 1995),astheterm" land"expresses the broadercontext inwhich thesoil functions. "Fitness to function" willalwaysbeconsidered inpractice inrelation toothersoils. Production levelsinyearswith favorable weather maynot betoodifferent among different soilsbuthighquality soilstend toproduce wellunderadverseconditionswhenothersoils don't deliver.Ofcourse,production figures alonearenotenough:cost andquality ofproduce mustbeconsidered aswell.When similaryieldsarereached atlowercostsorwith ahigher quality, thequalityofthesoil maybeconsidered to behigheraswell.Butherethe management factor is introduced. Apotentiallyhigh-quality soil can still have lowyields,resulting from poormanagement, while low-quality soilsmay havehigh yields duetoexcellent management. When defining landquality for agiventypeofsoil,attention shouldbefocussed oneffects ofawiderangeof management typesasapplied for agiven growingseason. Studyingasinglegrowingseason onagiven farm will notprovideuseful information toderive representative land quality indicators. Infact, ahigh landquality impliesthathigh yieldsmaybeobtained even under adverse conditions andundermediocremanagement. High quality landhasahigh resilience, which isbestdescribed astheabilitytobouncebackafter theeffects ofpoormanagement or poorweatherconditionshavebeen suffered. Lowquality landdoesnothavesuchresilience. Theabovepointdescribed short-term effects ofmanagement during agrowingseason.For instance, compaction of structure whendrivingoverwet landwhichqualifies aspoor management. When the farmer would havewaited afew days,compaction mightnothave occurred. Butthereisalsoalong-term effect ofmanagement. Whenpoormanagement leads to,for instance,erosion orstrongsubsoilcompaction,changes inthesoilarepermanent. Lost soilwillnotreturn and subsoil compaction isdifficult toremove. Long-term management mayalsobe favorable, for instancewhen increasingtheorganicmattercontentofthesoilby organicmanuring.Droogers andBouma(1997)usedthetermgenoform todescribethe genetic soiltypeandphenoform todescribelong-term effects ofmanagement inthe samesoil type. "Fitness tofunction" iscloselytied tolandutilization type.The function isquitedifferent in naturalecosystems orinagricultural production systems.When functioning isdirected towards:"human health andhabitation"onecould also thinkabouthousingdevelopmentsand recreation facilities. Here,attention will,arbitrarily,beconfined toagricultural production systems,which isinlinewiththeearlierdiscussion onsustainablemanagementsystems. Thedefinition ofsoilqualitymentions:"aspecific kind ofsoil",which isnot further explained. Webelievethatitwouldbewisetousesoilsurveysandsoiltaxonomy systems heretodefine specific soiltypes(genoforms, asmentioned above)thatarewelldefined, also intermsoftheirpositions inlandscapesasshownonsoilmaps.IntheUSA,thesoilseries wouldbeaproper "carrier"ofinformation. Inthecontext ofthelandqualityconcept, however, emphasiswouldbeonland behavior intermsofcropproduction,itsrisksand environmental sideeffects. Theimplicithypothesiswould bethateachsoilseries,occurring inagivenagro-ecological zonewithacharacteristic climate,hasacharacteristicrangeof productionrates,risksandsideeffects. Wemaycallthisacharacteristic"windowof opportunity". Wellexpressed phenoforms ofagivengenoform mayhave significantly different windows!Also,different genoforms havenotalwaysdifferent rangesofproperties: twosoilsmaybegenetically different butmayfunction identically. Inallcasessuchranges shoulddefine landquality.Again,highqualitylandperforms welleven underadverse conditions intermsofweatherandmanagement. Lowqualitylandperforms poorlyeven undergoodconditions ofweather andmanagement.Thebigchallengenowistoquantify such broaddescriptions. The landqualityconceptshouldalsoindicatewhetherornotquality canbeimproved by management, eithershort-orlongterm.Isthereanabsolutetheoretical upperlevelof production? Ifso,howcan itbereached? Canitbereached withoutadversity affecting environmental quality?Howdoesthatlevelcomparewiththelevelofothersoilsinother areas? Suchquestionsarelikelytobeaskedbyfarmers andother landusersandtheyneedto beaddressed. Considering theabove,wedecidedtousesimulation modelingofcrop growth,asa function ofwaterandnutrient regimes,asameanstocharacterize agriculturalproduction ofagiven typeofsoil, located within agivenclimaticzone.Thismaybeeitheragenoforni orwell defined phenoforms ofagivengenoform. Ofcourse,suchsimulations should bevalidatedby field measurements. Models effectively integrate soilandweather astheycalculate daily production values.Indeed,data arethusgenerated tocharacterize " land"qualities.By calculatingpotential productions,anabsoluteupper yield level isobtained for anygivensite (atleast for agivenplantvariety).Potential productions arebased onclimatic dataonlyas wellasplant parameters specific for agivenspecies.Water andnutrient supplyaresupposed tobeoptimalwhilepestsand diseases donotoccur. Water-limited yields canalsobe calculated,takingintoaccount thewaterthatcanbesupplied undernatural conditions tothe cropatthegivensitebythesoil,again assuming thatpestsanddiseases donotoccur.Such yieldsare lowerbecause watersupplyisnotalways optimal.Ofcourse,pestsanddiseases mayoccurbuttheyoccur independently ofthe siteconditionsthat areusedtocalculate waterlimited yields.Onemajor advantage ofsimulation models isthat calculations canbemade for manyyears,providingexpressions fortheeffect ofthevaryingweatherconditions thatcould neverbeobtainedbymonitoring.This,however, isonlytrue whenmodelshavebeen independently validated usingfieldmeasurements! Someexamples willnowbepresented to illustratetheproposed procedure. Land quality indicators Exploratory studiesfor seven major tropical geno-and phenoforms Boumaetal.(1998)studied sevenmajor tropicalsoilsto illustrateuseofthe land quality concept for exploratorypurposes (Table 1).Potential andwater-limited productionswere calculated intermsof" grain equivalents",andsoil dataneeded for themodel included estimated infiltration rates,depthofrootingandavailablewater. Thereaderisreferred tothe sourcepublication for details(Bouma etai, 1998;Penning deVriesetal., 1995a, 1995b). Landquality(LQ)wasdefined as: LQ=(yield /potential yield)x 100. Yieldwasexpressed hereasacalculated water-limited yield,butreal yieldscould beusedas well.Threehypotheticalphenoforms weredefined inthisexploratorystudyfor eachofthe seven genoforms inTable 1.Effects oferosionwereexpressed byremoving theupper40cm to50cmofsoil,depending onsoilproperties.Compaction was expressed byrestricting rootingto40cm,adepthatwhich aplowpan mayoccur. Limingexpresses apotentially favorable effect ofmanagement. Acidsubsoilsthatrestrict rootingcanbeopenedupbydeep liming.Potential productions,aspresented inTable 1,varybetween 8and23tons/ha, illustratingclimatic effects intermsofradiation andtemperature. LQvalueswererelatively high, indicatingrelativelyhighrainfall ratesleadingtoproduction valuesthatarerelatively closetopotential values.TheZambia soil,however, occurringinadryerclimatehadaLQof only50.Real yieldscanalsobeused intheequation,rather thanwater-limited yields.Then, animpression isobtained oftheyieldgap forthegiven siteand fortheactual landqualityof themanagement systembeingused. Erosion clearly leadstoreductions ofLQvalues, particularlyintheOrthicAcrisol inChinawhereerosionresults intheoccurrence ofanacid subsoil nearthe soilsurface whichrestrictsrooting.Theeffects ofcompaction arestronger thanthoseoferosion undertheassumed conditionshere,whileliminghasastrongeffect due todeeperrooting.Valuesreported arerelativeLQvaluesinrelationtothevalueforthesite based onwater-limited yields.Anabsolute LQvaluecanalsobedefined when calculated yieldsarecomparedwiththehighestpotentialproductionthatispossibleintheworld (estimated tobe41.1tons/ha).Then, LQvaluesarerelativelylowintherangeof20-39. Theexploratory analysispresentedhereallowsaroughestimateoftherelativeeffects of somemanagement measures,usingasimplesimulation model andestimatesofchangesin soilparametersthat areassociatedwithcertaineffects ofmanagement. Also,averageclimatic datawereusedhere.Runningthemodelfor anumberofyearswithreal-timeweatherdata would havegivenabetterimpression aboutyield stabilityandrisks.Still,theexploratoryLQ analysispresented herecan,inouropinion,beuseful whendiscussingpossibleeffects of different typesofmanagementandincomparingdifferent soils. Table 1.Potentialyields,intermsofgrain-equivalents,forsevenmajorsoiltypesofthetropicsand derivedrelativeandabsolutelandquality(LQ)values,basedonwater-limitedandpotentialyields. AbsoluteLQvaluesarederivedfromthemaximumpotentialyieldintheworldof41. 1 ton/ha/yr. Valuesarederivedforthesevengenoformsandforthreehypotheticalphenoforms,expressingthe effects oferosion,compactionandliming,(after Boumaetal., 1998). Soil Name Type Prot.Prod. Rel. Absolute Tons Land Land Dry Quality Quality Matter/ Water Erosion Comp Liming Water 1 Ferric Acrisol China Ha*Yr 13 Limited 96 85 action 75 100 Limited 32 2 Orthic Ferralsol Indonesia 18 90 75 70 100 39 3 Cambic Colombia 12 96 80 72 100 31 Arenosol 4 FerricLuvisol Nigeria 14 90 75 55 90 32 5 Ferralic Nigeria 14 85 70 50 85 30 Arenosol 6 Orthic Acrisol China 8 90 50 85 100 20 7 Orthic Ferralsol Zambia 23 50 40 30 50 27 Yieldgapandsoil nutrientbalances in Africa InaWorld-Bank funded study, Bindraban etal.(2000) studied land quality indicators for African soilsalsousingpotential,water-limited, nutrient-limited andactual yields.Incontrast totheexploratory studyofBoumaet al.(1998),theyused specific data forfieldsites.The difference between actual andpotential yield expresses theyieldgap,which isconsidered to representtheLQindicator. This isnotunlikethe approach followed byBouma et al.(1998) exceptthat thelatterauthors expressed LQasanumberbetweenzeroandonehundred and thattheyalsodefined anabsolute LQ.Thedifference betweenpotential and water-limited yieldprovidesan indication what might beachieved byimprovedwatermanagementwhile thedifference between water-limited andnutrient-limited yield indicatesthepotential impact ofimproved fertilization. Bindraban etal.(2000) also added asecond LQ,which defines the soilnutrient balance.Thisishighly relevant for Africa wheresoilminingisrampant.Thesoil nutrient balance isthenetdifference betweengrossinputsandoutputs ofnutrients tothe systemand isexpressed inrelation tothesoilnutrient stock.Ofcourse,effects ofdepletion aremuchworseinsoilswithalowstock ofnutrients ascomparedwith soilshavingahigh stock.Combiningfiveclasses fornutrient stockwithfive classesofN-Pdepletion resultsin sixclasses forthenutrient depletion LQ. Theattractiveaspect ofthisstudyis itsemphasisontheintegrated characterization ofthe entireland systemusingquantitative and specifically defined techniques,suchas simulation modeling andnutrient budgeting. Balancingproduction andenvironmental requirements in aprimeagricultural soilin theNetherlands Application ofsimulation techniques for aseriesofgrowing seasons,expressing climate variability, wasrealized inamoredetailed Dutch case studyinaprime agricultural soil (DroogersandBouma, 1997;Bouma andDroogers, 1998).Threephenoforms were identified inthefieldandwerestudied.Here,onlyconventional arable land isshown (CONV)and land affected bybiodynamic farming for aperiod of60years(BIO).The lattersoilhada significantly higherorganicmattercontent (appr.4%versus2%) asaresult ofbiological management. Amoredetailed simulation modelwasused inthisstudy,allowing calculations ofcropgrowth and associated water andnitrogen regimes.Calculationsweremadefor a 15yearperiod usingreal-timeweatherdata andalargesetofnitrogen fertilization rates.Results couldtherefore beexpressed asprobability curves(Figure 1)listingtheprobability thata certain yieldwould beexceeded onthe vertical scale andtheyield itselfonthe horizontal scale.Threeyieldcurvesareshown inthefigureandtheyexpresstheprobability (never,3% and 10%oftheyears)thatnitrate leachingwillexceed theenvironmental threshold value for nitratecontentofgroundwater. Thus,risksareexpressed inquantitativetermsby combining theuncertainty ofyieldsduetovariableweather indifferent yearswith the associated leachingofnitrates.Onemorecurve isshown:thedarksolid,andalmostvertical, line representspotential yield. 'O 2500 5000 7500 10000 uw 0 2500 5000 7500 10000 1 Yield (kgha'1) Yield (kgha ) ExceedingN-leaching never 3% 10% ; | Potential production 1 | /. / y / Figure 1.Probabilitiesthatyieldsofwheatareexceededasafunction ofthreeprobabilitiesthatthe thresholdvaluefornitrateleachingtothegroundwaterisexceededaswell.Dataarebasedon simulationsfora30-yearperiodforaprimeagriculturalsoilintheNetherlands(after Droogersand Bouma,1997). ThegraphsinFigure 1 force theusertomakechoicesaboutriskstotakewhenbalancing yieldversusnitrate leaching.Thisisarelevantkeyproblem inDutch agriculturewhere production interestshavetobebalanced against environmental restraints.Again,land quality canbeexpressedby:(actual/potential yield)x 100. Assuming,arbitrarily, ayield levelthathasaprobabilityof20%ofbeingexceeded and a 10% probabilitythatnitrate leachingwill exceedthethreshold,aLQvalueof89isobtained for BIOand84forCONV.Ifhowever,the leachingprobabilityisreducedto 3%, LQvalues become73and60.Ifleachingisneverallowed,LQvaluesbecome61and 33, demonstrating thehigher"quality"oftheBIOsoil.Different LQvaluesareobtainedwhen different exceedancevalues for yieldprobabilityareused.Theycanallbederived from Figure 1 as needed.Figures suchasFigure 1 aresuitabletoallowtheusertomakechoices.Tothedismay ofsome,theydonotprovideclear-cut answersandjudgements.Scienceprovides thetoolsto userstoallow themtoexercisetheirresponsibility. Sciencedoesnottakeawaytheir responsibilitybutallowsusers,beit farmers,plannersorpoliticians,tomakemorerational choices. Goingbacktothedefinition ofsoilquality, theprocedure illustrated heretoestimateLQ values,coversyieldsindifferent years,risksinvolved andenvironmental sideeffects interms 10 ofnitratepollution ofgroundwater, which isthe most important problem inDutchsoils. Elsewhere otherproblems mayfigure.Thiscomesclosetowhat Karlen etal.(1997)must havehad inmind. LQ's are also indicators for sustainable land management, as defined above.Theydefine production levelsovertheyearsandrisksinvolved aswell asthequality ofwater. Management practices,defined inthiscontext, relateonlytonitrogen fertilization andmanagement includes,ofcourse,much morethan that. AnyLQvalueindicates ayield gap,beingthedifference between observed yieldsandthepotential one.Alogical question is howtobridge theyield gap.Toanswer that question all factors, which affect real yields,have tobe identified. Land quality at larger scales Landqualities,discussed sofar, werederived for individual piecesofland corresponding with acertain soilseriesandareimplicitly focused onthefarmer orlocal land user.Attention was confined toagricultural production and,intheDutchcase study,on important aspectsof environmental quality.Thedefinition ofsoilquality (Karlen etal., 1997)isfocused ona "specific kind ofsoil"andhas,therefore, abuilt-in spatial scaledimension. But theLQ concept notonlyrelatestoplotsorfields wheresinglekindsofsoiloccur,but alsotolarger areassuchascommunities,regions,countriesand even largerentitieswheremany different soilsoccur. Inthatcontext, LQ'sarealsoimportant butquestions arenowasked by politicians,plannersandrealestatebrokers,ratherthan farmers.Howshouldthe qualityof landinalargeareabejudged? Asoilmapcanbeused todistinguish allsoilseriesorsoil associations thatoccurintheareaand individual landqualitiesofthedifferent soilseriescan beconsidered fordifferent landusecategories.Anaverage land quality, weighted byrelative areasoccupied bythedifferent soil series,couldthentheoreticallybe calculated. Functioning oflandwithinnatural ormanaged ecosystem boundaries,sustaining plantand soilproductivity, maintenance ofsoil andwaterqualityandsupport ofhuman healthand habitation"aremanybutnotnecessarily allelements ofimportance whendealingwith landin largerareas.Infrastructure isimportant, but,particularly, socio-economic conditionsthat determinethepopulation pressure onthe land.Aswiththediscussion onfields and farms,we advocate anapproach inwhichthequalityofland inaregion isfirstjudged intermsofits owninherentproperties.Next,theseproperties willbeonlyone(and asitturnsoutinreal life, aratherminor) factor indetermining themostdesirable landuseinaregionwhichishighly influenced bysocio-economic andpolitical considerations andwhich willalwaysbetheresult oftradeoffs between manyconflicting landuseoptions.The relevant question hereis,then, howthequalityofthe landcanplayarolewhen weighing suchalternativeoptions. Clearly, restricting theattention toagriculture inthiscontext astheonlyland-usetypeis unsatisfactory. Asidefrom agricultural issues,regional land-useplans arelikelytodealwith establishingnatureareas,transport corridorsand locations forhousing and industrial development. Because oftherelativelyhigh capital expenditure associated withbuilding 11 activities,LQ's for landinagivenareawhenconsidering suchactivities isboundtobe relativelyunimportant.Drainingofpotential building sitesoraddingthick layersofsandto increasethesupportcapacityoflandthathasalownaturalcarryingcapacity, isfinancially no problem.Fornatureareasand, lessso,for agriculture,whicharemuchlesscapital intensive, thepictureisdifferent. Local conditions ofthelandareveryimportant indetermining water, nutrientandtemperature regimesthat governoccurrenceofnatural vegetationsbutthatalso increasinglyhaveanimpactontypesofagriculture thatareecologicallybalanced.The approach totake,therefore, wouldbetodefine LQ's foragriculture andnature for land occurring intheareatobeconsidered andtointroducethisintimeintothebroader land-use planningprocess.LQ's for agriculturehavebeendiscussed above.LQ's fornaturerequirea separate discussion,whichisbeyondthescopeofthistext. Modern land-use planning increasingly usessimulation modelinginthecontext ofsystems analysistoderiveoptimal land-usepatterns inaregion.Thisapproachwasrecently demonstrated inCostaRica(Bouman etal., 1999).Thus,interests ofagriculture andnature would,asisoften thecase,notbearest-factor left behindafter land-usedecisionshave alreadybeentakenbased ondemands from housing,industryandinfrastructure. Rather,these interestsofagricultureandnaturewouldbesubmitted atanearlytimeallowinga significant effect onthedecisionmakingprocess bypointingoutwhereprime landislocated for agricultureandnature.UseofLQindicators canbequitehelpful here!Ofcourse,thepolitical processmaystill ignorethis,butnobodywouldbeabletoclaimafterwards that theydidnot know. Usingthe quality concept toimprove communications about soils Expression oftheproductive capacity oflandinrelation toenvironmental requirementsin termsofasingleindicator,which isrelated topotentialproduction, canbehelpful inour opiniontocommunicatemoreeffectively withstakeholders aboutuseoflandin future as comparedwithcurrent conditions,whereemphasisismoreonthepropertiesoflandrather thanonitsbehavior.Theindicator, asproposed,providesaqualitymeasurefor agivensoil type,butbyrecognizingoccurrence ofgenoforms andphenoforms, it acknowledges importanteffects ofmanagement.Thus,characteristic "windows ofopportunity"areobtained for anysoiltypeoccurring inagivenagro-ecological zone.Useofactualyieldsprovidesan impressionofyield gaps,whiletheabsolutequalitymeasureranksthesoilonaglobalscale. Wecertainlycannotpreserveallland foragriculturalproduction.However,thequality measurediscussed heremayhelptomoreeffectively showwhich landisparticularly valuable anddeservesmore attention. Studiesdiscussed abovehaveanexploratory character. Before possibleimplementation ofthe schemeonawiderscale,attention shouldbepaid tounified procedures for determining potentialyieldsanduseofsimulation models,includingacriticalanalysisofdatademands. 12 Conclusions Theproblem ofworldwide land degradation and indiscriminate useofprimeagricultural land fordevelopment isinsufficiently recognized bysocietyat large.Onereason is therather ineffective mannerinwhich soil scientistspresent theirexpertise.Wesuggest that creative useoftheland-qualityconcept, leadingtospecific indicators,mayraisepublic awareness of theimportanceofthe land. Existing definitions ofsoil quality andsustainable land management haveseveral elementsin common.Anapproach isproposed heretodefine aland qualityindicator for sustainable land management focused onagricultural landusewhich integrateselements ofyield, riskand environmental qualityusing quantitative,reproducibletechniques such assimulation modelingornutrient budgeting.Well intentioned normative and descriptiveapproaches will notbeenough. Socio-economic andpolitical conditions areveryimportant when defining land qualityand sustainable land management. Weadvocate,however, aseparate assessment oftheagroecologicalpotential oftheland which should,inanearlyphaseofdiscussions withall stakeholders,beintroduced as independent input intobroader land usediscussions.The future oftheland cannot beheld hostagetoeconomic conditionsoftheday. Landqualities,discussed inliterature,havesofar implicitlybeen focused on field and farm levelandonagricultural landuse,the latterincreasinglywithin anecologically sound context. Landqualitiesarealso important at largerscales,such astheregional andnational leveland thisrequiresadditional research becauseasinglefocus onagriculture isnotrealistic inthis caseasmanyother forms oflandusepresent theirdemands aswell. References Alcamo,J. 1999.Thescience indiplomacy andthediplomacy inscience. Environment ScienceandPolicy2,363-368. Bindraban,P.S.,Verhagen,A.,Uithol,P.W.J.&Henstra,P.,2000.Aland quality indicator for sustainable landmanagement: theyieldgap.Thecaseofsub-saharan Africa. World BankInstitutereport 106.AB-DLOWageningen, TheNetherlands. Bouma,J., 1999.Newtoolsandapproaches for landevaluation.TheLand 3. 1,3-10. Bouma,J.&Droogers,P., 1998.Aproceduretoderive landquality indicators for sustainable agricultural production. Geoderma 85, 103-110. Bouma,J.,Batjes, N.H.&Groot,J.J.R., 1998.Exploring landqualityeffects onworld food supply.Geoderma 86,43-59. 13 Bouman,B.A.M.,Jansen,H.G.P., Schipper,R.A.,Nieuwenhuyse,A.,Hengstdijk, H,& Bouma,J., 1999.Aframework for integrated biophysicalandeconomic landuseanalysis atdifferent scales.Agric.Ecosystems andEnvironment 75,55-73. Droogers,P.&Bouma,J., 1997.Soilsurveyinputinexploratory modelingof sustainable landmanagementpractices.SoilSei.Soc.Amer.J.61,1704-1710. Doran,J.W.&Jones,A.J.(eds), 1996.Methods for assessingsoilquality. SSSASpecial Publication 49. SoilSei.Soc.America,Madison, USA.410pp. Foodand AgriculturalOrganization (FAO), 1993. FESLM:Aninternational framework for evaluatingsustainable landmanagement.World ResourcesReport 73.FAO,Rome,Italy. 125pp. Gomes,A.A., Swetekelly,D.E.,Syers,J.K. &Coughlan,K.J., 1996.In:Methods for Assessing SoilQuality.Doran,J.W.&Jones,A.J.(Eds).SSSA SpecialPublicationno.49, 401-409. Karlen,D.L.,Mausbach,M.J.,Doran,J.W.,Cline,R.G.,Harris,R.F.&Schuman,G.E., 1997. SoilQuality:AConcept,Definition andFramework for Evaluation. SoilSei.Soc.Amer.J. 61,4-10. Oldeman,L.R. 1994Theglobalextentofsoildegradation. In:Soilresilienceandsustainable landuse.Greenland,D.J.&Szabolcs,I.(Eds).CAB International.Wallingford, 99-118. PenningdeVries,F.W.T.,vanKeulen, H.&Rabbinge,R., 1995a.Natural resourcesandthe limitsoffood production.In:Bouma, J.et.al.(Eds).Ecoregionalapproaches for sustainable landuseandfood production. KluwerAcedemicPress.Dordrecht,The Netherlands,pp65-89. PenningdeVries,F.W.T.,vanKeulen,H.&Luvten,J.C., 1995b.Theroleofsoilsciencein estimating globalfood securityin2040.In:Wagenet,R.J.,Bouma,J.&Hutson,J.L.(Eds). Theroleofsoilscience ininterdisciplinary research. SoilSei.Soc.Amer. Spec.Publ.45: 17-37,Madison,USA. Pieri,C , Dumanski,J.,Hamblin,A.&Young,A., 1995.LandQuality Indicators.World BankDiscussion Papers315.World Bank,Washington,D.C.USA.51pp. 14
© Copyright 2026 Paperzz