The Nanoconverter : a novel flexure-based mechanism to convert microns into nanometers Dr S. Henein CSEM [Since 2006] : Senior R&D Engineer, Swiss Center for Electronics and Microtechnology BFH [Since 2005]: Lecturer, Bern University of Applied Sciences PSI [2004-2006] : Group Head, Division of Mechanical Engineering Sciences, Paul Scherrer Institut Dr M. Stampanoni, U. Frommherz, M. Riina Paul Scherrer Institut 7th International Conference of the European Society for Precision Engineering & Nanotechnology Bremen, Germany, 23rd May 2007 Outline • Introduction: context and goal of this development • Examples from the state of the art • Working principle of the Nanoconverter • First implemented version • First application (Phase Constrast Interferometry) • Conclusion & Prospects | Nanoconverter | S. Henein | Page 1 Goal • Produce a linear motion with better than 10 nanometer accuracy over 15 microns motion range • Avoid using piezo-actuators and associated driving electronics • Use any commercial « Pusher » units (stepper motor & lead screw) having an accuracy of 1 micron • Reduction factor: goal 100, wish 1000 • Linear reduction (constant reduction factor over the full motion range) • Simple interface to pusher • Simple design | Nanoconverter | S. Henein | Page 2 Examples of reduction and amplification mechanisms Adjustable Strut Elliptical motion amplifier Super Amplified Piezoelectric Actuator, N. Lehrmet, Flux Magazine, Cedrat-Technologies, Jan. 2000 Application of spring strips to instrument design, E. M. Eden, Notes of Applied Science No.15, 1956 | Nanoconverter | S. Henein | Page 3 Examples of reduction and amplification mechanisms Flexible Cell for Precision Weighing Scales (Mettler-Toledo) [E.Hungerbühler et al. (1994), Device for reducing the force in a force measuring apparatus, in particular a scale, US Patent 5,340,952] | Nanoconverter | S. Henein | Page 4 Working principle Patent EP06021785 : Henein, S. (2006), Device for converting a first motion into a second motion responsive to said first motion under a demagnification scale,, Holder: Paul Scherrer Institut Intermediate Stage Output Stage xo Shim Input Stage Converting Blade x1 0 0 C’ y A’ A y1 C L y x 0 B’ B 0 y1 y1 = − 3x12 (5L) x x1 x1 ≅ x 3( x + x0 ) 2 3x 2 6 x0 3x02 − = x+ y= 5L 5L 5L 5L Reduction factor: x 5L i= = y 6 x0 | Nanoconverter | S. Henein | Page 5 Differential linear conversion Nanoconverter motions 60 y1, y2, y [microns] 40 y1 y2 y 20 0 -20 -40 -60 -1500 -1000 -500 0 x [microns] 500 1000 1500 | Nanoconverter | S. Henein | Page 6 Reduction factor as a function of the offset (e.g. for L=30 mm) Nanoconverter reduction factor Reduction factor 1000 500 0 0 200 400 600 800 xo: offset [microns] ZOOM 1000 1200 1400 Demagnification ratio 110 100 90 80 220 230 240 250 260 xo: offset [microns] 270 280 | Nanoconverter | S. Henein | Page 7 Second order error Effect of the shortening of the acturator blades Second order motion error (x-x1)/i [Nanometers] 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -15 -10 -5 0 5 10 Output motion (y) [Microns] 15 20 | Nanoconverter | S. Henein | Page 8 1st Version | Nanoconverter | S. Henein | Page 9 1st Version Main blades Lenght: 30 mm Thickness: 0.35 mm Width: 10 mm Fixed Outer Frame Output Stage (nano-motion) Input Stage (micro-motion) 100 mm length Offset: 0.25 mm Reduction factor: 100 Material : Stainless Steel Böhler W720 Manufacturing: Wire-EDM (Monolithical) Intermediate Stage Converting Blade Actuator mounting hole Grating mounting holes | Nanoconverter | S. Henein | Page 10 Front view 100 mm Outer frame Converter blade Output stage (fine motion) Input stage (coarse motion) Intermediate stage | Nanoconverter | S. Henein | Page 11 2nd version: wide field-of-view | Nanoconverter | S. Henein | Page 12 Specifications • Compatible with any commercial linear actuator with a motion range of ± 1.4 mm, and a force of 40 N • Fixed reduction factor: i = 100 • Offset: xo = 0.25 mm • Outer dimensions: 100 x 50 x 10 mm • Wire-EDM, 2D, monolithical • Input motion accuracy ± 1 microns • Output motion range : ± 14 microns • Output motion accuracy ± 10 nanometers • Footprint compatible with the Linos Micro & Macro Benches | Nanoconverter | S. Henein | Page 13 Driving force Elastic restoring forces 50 40 Restoring forces [N] 30 Blades Preload Springs Total Admissible force of springs Weight 20 10 0 -10 -20 -1500 -1000 -500 0 500 Actuator motion [Microns] 1000 1500 | Nanoconverter | S. Henein | Page 14 Swiss-Light-Source Synchrotron Radiation Facility TOMCAT Beamline: Tomographic Microscopy and Coherent Radiology Experiment (M. Stampanoni) cSAXS Beamline: Coherent Small Angle X-ray Scattering, (F. Pfeiffer) | Nanoconverter | S. Henein | Page 15 Differential Phase Contrast | Nanoconverter | S. Henein | Page 16 Differential Phase Contrast setup Differential-Phase-Contrast Interferometer setup in the SLS Radiation Facility, TOMCAT Beamline, Marco Stampanoni | Nanoconverter | S. Henein | Page 17 1st Application: Differential Phase Contrast (DPC) Interferomtery Differential-Phase-Contrast Setup Phase gradient image (right) of a human hair with knot compared to classical absorption image (left) Trends in synchrotron-based tomographic imaging: the SLS experience, M. Stampanoni et al., Proceedings of SPIE, Vol. 6318, Developments in X-Ray Tomography V, Ulrich Bonse, Editor, 2006 | Nanoconverter | S. Henein | Page 18 3D Visualization and Quantification of Angiogenesis Sample: Melanoma’s metastasis in cervical lymph nodes Tomographic Reconstruction Light Microscopy Pr ed t c ote ge a im Blood vessel 150 µm ● ● Tumoral tissue Conventional staining for visual microscopy Physical slice thickness: 6 µm ● ● ● ● ● Sample fixed in paraffin Phase scan @ 17.5 keV, 3rd Talbot distance Virtual slice thickness : 3.5 µm Isotropic voxel size: 3.5 µm Grating Scanning steps 200 nm F. Marone and M. Stampanoni, TOMCAT in collaboration with R. Marone, University of Basel | Nanoconverter | S. Henein | Page 19 Conclusion • Key advantages • Wide range of reduction factor achievable: typically 20 to 1000 • Linear conversion (reduction factor fixed over the full motion range) • Planar design (2D), monolihtically manufacturable by EDM, Laser, Etching...etc • Open issues • Linearity of the conversion • Stiffness and dynamical behavior • Prospects • Tunable design • Dedicated actuator (direct screw-nut, cam, piezo... etc) • High stiffness design based on necked down flexures • Very wide spectrum of application | Nanoconverter | S. Henein | Page 20 Acknowledgments • Brainstorming : P. Boillat • Detailed drawings : U. Frommherz & M. Vitins • Manufacturing : Urs Bugmann & Heinrich Blumer • Testing : M. Riina • Application (Swiss Light Source, PSI) : M. Stampanoni & F. Pfeiffer • Contact Person for patent issues: A. Waser (PSI) • Publication: EUSPEN [Henein, S. et al. (2007), The Nanoconverter: a novel flexure-based mechanism to convert microns into nanometers, Proc. of the 7th EUSPEN International Conference, Bremen] | Nanoconverter | S. Henein | Page 21 Thank you for your attention.
© Copyright 2026 Paperzz