5. One-dimensional Radiative Transfer in the Atmosphere Ourzero-dimensionalmodelofearth’stemperature(Model4)predictedavalueforearth’s surfacetemperatureofabout-20°C,whiletheobservedgloballyaveragedsurfacetemperatureis roughly14°C.Thetemperatureestimatefromthezero-dmodelisalittlebitcold,butthatmodellacks anatmosphere.Inthismodelwewillseehowaddinganatmosphereaffectsthesurfacetemperature. Ourgoalistostudythetransferofradiationupanddownthroughtheatmosphere. Onacleardaytheatmosphereisnearlytransparenttosolarradiation.Thesituationwith respecttoterrestrialradiationismuchmorecomplicated.Somewavelengthspassrightthroughthe atmospherewhileothersarecompletelyabsorbedwithinafewmeters.Thisisbecauseeachmolecular speciesintheatmosphere,N2,O2,H2Oandabout100othermolecules,hasadistinctandinsanely complicatedabsorptionspectrum,i.e.alistoffrequenciesthatitcanabsorbandothersthatitcannot. Wearegoingtoignorethedetailsandimaginewehaveonlytwotypesofradiation:solar,alsoknownas shortwave(SW),andterrestrial,alsoknownaslongwave(LW).Weimaginetheatmospheretoconsistof anumberoflayers.Theshortwaveradiationpassesthrougheachlayer,butafraction𝑘ofthelongwave radiationisabsorbed.Asafirsttry,wewillconstructa5layermodelwith𝑘 = 20%foreachlayer.Layer 1oftheatmosphereisclosesttothesurface,andlayer5isthetoplayer.Thelongwaveradiation absorbedbyalayerwillwarmthatlayer.Inequilibrium,eachlayermustradiateawayasmuchenergyas itabsorbs,otherwiseitwillgetwarmerorcoolerinviolationofitspostulatedequilibrium. Considerthelongwaveradiationfirst.Let’susethefollowingnotationfortheLWfluxesbetween layers:𝐿𝑊↑,(!!!)(!) and𝐿𝑊↓,(!!!)(!) ,wherethearrowsinthesubscriptstellwhethertheLWfluxis upwardordownward,thefirstnumberinthesubscripttellswhichlayerthefluxisemittedfrom,and thesecondnumbertellswhichlayertheLWfluxisdirectedtoward.Forexample,𝐿𝑊↑,!" istheupward LWfluxfromlayer3tolayer4.Therearealotoftermstokeeptrackofinthismodel,solet’swork throughanexamplewithnumbers.Supposewehave30Wm-2oflongwavedownwellingfromlayer5to layer4(𝐿𝑊↓,!" ),and300Wm-2upwellingfromlayer3to4(𝐿𝑊↑,!" ).Then66Wm-2areabsorbedinlayer 4(20%of30plus20%of300).Halfofthe66Wm-2areradiateddownwardsandhalfupwards.So 𝐿𝑊↓,!" = 30 − 6 + 33 = 57Wm-2,and𝐿𝑊↑,!" = 300 – 60 + 33 = 273Wm-2.SeetheFigure5.1for avisualrepresentationoftheflowoflongwaveradiationthroughalayeroftheatmosphere. Nowconsiderthesun’sradiation.Theshortwaveradiationfromthesun,𝑆/4,passesthrough theatmosphere.Afraction𝛼𝑆/4isreflectedatthesurfaceandescapestospace.Therestofthe shortwaveradiation,(1 − 𝛼)𝑆/4,isabsorbedatthesurface.Thesurfacealsoabsorbsalldownwelling longwaveradiationthatreachesit(𝑘 = 100% forthesurface).Theruleforthesurfaceboundary conditionis: 𝐿𝑊↓,!" + (1 − 𝛼)𝑆/4 = 𝐿𝑊↑,!" . where“layer0”isthesurface. Therulesfortheone-dimensionalradiativetransfermodelaresummarizedbelow,andshown visuallyinFigure5.1. MiddleAtmosphere(layers1-4) • • • Foragivenlayer,saylayer4,thereisupwardlongwaveincidentonthelayerfrombelowand downwardlongwaveradiationincidentfromabove.Afraction𝑘ofthisradiationisabsorbedby thelayer: (𝐿𝑊 absorbed by layer 4) = 𝑘 (𝐿𝑊↑,!" + 𝐿𝑊↓,!" ). Afraction(1 − 𝑘)oftheincidentlongwaveradiationistransmittedthroughthelayer. Thelayeremitsenoughradiationtobalancethetotalabsorbedradiation,andhalfofthe emittedradiationisdirectedupwardsandhalfdownwards: emitted 𝐿𝑊↑,!" = emitted 𝐿𝑊↓,!" = (𝐿𝑊 absorbed by layer 4)/2 = 𝑘 (𝐿𝑊↑,!" + 𝐿𝑊↓,!" )/2. • Thetotallongwaveradiationeitherupordownisequaltothetransmittedradiationplusthe emittedradiation.Forexample: 𝐿𝑊↑,!" = 1 − 𝑘 𝐿𝑊↑,!" + 𝑘 (𝐿𝑊↑,!" + 𝐿𝑊↓,!" )/2. total LW up LW",54 = 273 Wm 2 transmitted LW up (1 incident LW down LW#,54 = 30 Wm 2 k)LW",43 = 240 Wm 2 emitted LW up (kLW#,54 + kLW",43 )/2 = 33 Wm 2 absorbed LW up absorbed LW down kLW#,54 = 6 Wm kLW",43 = 60 Wm 2 2 atmosphere layer 4 emitted LW down (kLW#,54 + kLW",43 )/2 = 33 Wm transmitted LW down (1 k)LW#,54 = 24 Wm 2 incident LW up 2 LW",43 = 300 Wm 2 total LW down LW#,43 = 57 Wm 2 Figure5.1Schematicdiagramshowingtherulesforenergybalanceinlayer4oftheatmosphere. Surface • • • Solarradiationisabsorbedatthesurfaceonly.Thefluxofsolarradiationabsorbedbythe surfaceis(1 − 𝛼)𝑆/4,where𝑆 = 1400Wm-2isthesolarconstantand𝛼 = 0.3isthealbedo. Alldownwardlongwaveradiationthatreachesthesurfaceisabsorbed(𝑘 = 100%atthe surface) Theupwardlongwaveradiationemittedbythesurfaceisenoughtobalancethesolarradiation anddownwardlongwaveradiationthatitabsorbs: 𝐿𝑊↑,!" = 1 − 𝛼 𝑆/4 + 𝐿𝑊↓,!" (Remember,“layer0”isthesurface.) TopofAtmosphere(layer5) • Therulesarethesameatthetoplayeroftheatmosphereasforlayers1-4,exceptthatthereis nodownwardlongwaveradiationfromspace: 𝐿𝑊↓, !"#$% ! = 0Wm-2. Intherealworldthereisactuallyaverysmalldownwardfluxlongwaveradiationfromspace thatisleftoverfromthebigbang,butwewillignoreitinthismodel. Tocalculatethetablewebeginwithsomeinitialvalues,asshown.Thenapplytherulestoget newvaluesanditerateuntilnothingchanges.BesuretoconfigureExcelforMANUALandITERATIVE calculationasdescribedinmodel1.Figure5.2showsoneintuitivewaytoarrangethemodelinExcel. Figure5.2Onewayofarrangingthemodelinaspreadsheet.Thelogicofthemodelisreflectedbythe arrangementofthecells. Box5.1|Satelliteobservationsoflongwaveradiation Satellitesprovideaglobalviewofradiationatthetopoftheatmosphere.Measurementsofthefluxof longwaveradiationatthetopoftheatmospherefromNASA’sCloudsandEarth’sRadiantEnergySystem(CERES)1 instrumentareshowninFigure5.3.Bothfiguresshowtheaverageof15yearsofmeasurementstakenfrom March2000throughFebruary2015. Wecanunderstandthespatialvariationsinthefluxoflongwaveradiationusingintuitionfromour modelsofone-dimensionalradiativetransferandblack-bodyradiation.Firstnotethat,withtheexceptionof latitudesclosetotheequator,thelongwavefluxdecreasesasyoumovetowardsthepoles.Likeinourblackbodyradiationmodel,warmregionsemitmorelongwaveradiationthancoldregions. Neartheequatorthingsaremorecomplicated.Thefluxoflongwaveradiationisrelativelysmallover Indonesia,theAmazon,theCongoBasin,andanarrowstripspanningthePacificandAtlanticOceannearthe equator,andlargeovertheSaharadesert,Australia,SouthernAfrica,andmostoftheoceansbetween10°-30° latitude.Thesespatialvariationscanbeunderstoodbythinkingaboutcloudsandwatervaporintheatmosphere. Cloudsareblackbodiesforlongwaveradiation,andwatervaporisastronggreenhousegas.Thus,wherever therearehighcloudsandmoistair,theatmosphereisopaquetolongwaveradiation.Inourmodel,this correspondstoalargevalueofk.Overregionswherethelongwavefluxtospaceissmall(Indonesia,theAmazon, etc.),risingairanddeepcloudswithtopsataltitudesof10-12kmarecommon.Becausethecloudsareblack bodies,andbecausetheirtopsarehighandcold,emittedlongwaveradiationtospaceissmall.Similarly,in regionswherethelongwavefluxtospaceislarge(theSahara,Australia,etc.)itiscommontohavesinkingair thatisdryandcloud-free.Intheseregionsthesurfaceiswarm,surfacelongwaveemissionisrelativelylarge,and longwaveabsorptionbytheatmosphereisrelativelyweak.Thus,thefluxoflongwaveradiationatthetopofthe atmosphereislarge. Figure5.3Satelliteobservationsoftheupwardfluxoflongwaveradiationatthetopoftheatmosphereaveraged fromMarch2000throughFebruary2015.a)showsamap,whileb)showstheaverageacrosscirclesofconstant latitude. Exercises 5.1Prepareaspreadsheettodothemodel3radiativetransfercalculation.Includearesetmacro.Use5 layers.Refertoexcelspreadsheetexcel3_1D_radiative_transfer. 5.2Ifyouset𝑘 = 0foreverylayeroftheatmosphere(butnotthesurface!)doyourecoverthevalues fromthezero-dimensionalmodel(Model4)?Thisisagoodwaytocheckthatyourmodelisworking properly. 5.3Togettemperatures,notethateachlayerisagraybodysothattheenergyradiatedbyalayer 𝐴𝐵𝑆/2(𝐴𝐵𝑆standsfortotalabsorbedlongwaveradiation)is𝑘times𝐴 + 𝐵(𝑇 − 273).Thisimplies 𝑇 = 273 + ( !"# !! − 𝐴)/𝐵[K]or( !"# !! − 𝐴)/𝐵[°C]. Includethetemperatureofeachlayerinyourspreadsheet. 5.4ModifyyourmasterspreadsheettotreatvariousGreenhousescenarios.Howmuchmustyou increasethelongwaveabsorptiontocausethesurfacetemperaturetochange1degree? 5.5Howmightyouincludecloudinessinthemodel? 5.6Areyouimpressedthatthemodelgivesasurfacetemperatureof14C?Youshouldn’tbe.Itunedthe parameters𝑘untilIgotaplausibletemperature. References 1.CERESScienceTeam,Hampton,VA,USA:NASAAtmosphericScienceDataCenter(ASDC),Accessed August10,2016atdoi:10.5067/Terra+Aqua/CERES/EBAF-TOA_L3B.002.8 Solutions and hints HintforthoseworkinginPythonorMatlab:Ifyouaredoingthecalculationinaloopthenyoushould createvariablestosaveyourcomputedupward,downward,andabsorbedlongwavefluxesfromthe previoustimestepandusetheseinyourcalculations.Otherwiseyoursolutionmaygrowwithout bound. 5.1Thetrickypartisgettingthesurfaceboundaryconditionright.Atthesurfacetheincomingand outgoingfluxesmustbalance.Thesurfacemustradiateenoughlongwaveradiationtogetridofthe downwellingradiationandtheshortwaveradiationabsorbedthere.
© Copyright 2026 Paperzz