Multiplying Polynomials December 1, 2014 Pages 40 – 41 in Notes Warm-Up – Left Side • Simplify. (Distribute and Combine Like Terms if possible) x(2x – 1) 3(2x – 1) x(2x – 1) + 3(2x – 1) x(x2 + 4x + 16) -4(x2 + 4x + 16) x(x2 + 4x + 16) – 4(x2 + 4x + 16) Objective • add, subtract, and multiply polynomials.[7B] Essential Question How will multiplying polynomials help me with quadratic functions? Multiplying polynomials is… • just like creating multiple distributions, doing the distributions, and then combining like terms to simplify. • “Like” terms = exact same variables to the exact same powers. • Combine by adding the coefficients. How do we do this? • Multiply each term in the first polynomial by all terms in the second. Example 1 • (4x + 1)(3x – 2) 4x(3x – 2) + 1(3x – 2) 12x2 – 8x + 3x – 2 12x2 – 5x – 2 Example 2 • (x + 2)(x2 + 3x – 1) x(x2 + 3x – 1) + 2(x2 + 3x – 1) x3 + 3x2 – x + 2x2 + 6x – 2 x3 + 5x2 + 5x – 2 Example 3 • xy(5x2 + 8x – 7) 5x3y + 8x2y – 7xy Example 4 • (3x – 2y)(2x2 + 3xy – y2) 3x(2x2 + 3xy – y2) – 2y(2x2 + 3xy – y2) 6x3 + 9x2y – 3xy2 – 4x2y – 6xy2 + 2y3 Combine Like Terms: 6x3 + 5x2y – 9xy2 + 2y3 Assignment 1. 2. 3. 4. 5. 6. 7. 8. 7x3(2x + 3) 3x2(2x2 + 9x – 6) xy2(x2 + 3xy + 9) 2m2(6m3 + 14m2 – 30m + 14) (x – y )(x2 – xy + y2) (2x + 5y)(3x2 – 4xy + 2y2) (x3 + x2 + 1)(x2 – x – 5) (4x2 + 3x + 2)(3x2 + 2x – 1) Reflection – Left Side • Write about one way you think we might use multiplying polynomials while studying quadratic functions.
© Copyright 2026 Paperzz