Guess-and-CheckExplanations 1.Joehas𝑥dollars.Hespendshalf,getsanother$10,spendshalfofwhathehasnow,and endsupwith$8.Find𝑥. (A)8 (B)10 (C) 12 (D) 18 Guess-and-Check: Startwitheither(B)or(C).Ifwestartwith(B),thecalculationis:Joestartswith$10;he spendshalf,sohe’sdownto$5;getsanother$10,puttinghimat$15;andspendshalfof thatamount,endingupat$7.50.Sinceheneedstoendupat$8,thisistoolow.Wecan crossout(B),aswellas(A),whichisevenlower.Goingthroughthesameprocesswith answerchoice(C)leavesJoewith$8,thecorrectanswer. Algebra: Theeasiestmethodistoworkbackwards.IfJoespendshalfofanamounttoendupwith $8,hemusthavehad$16before.Hehad$16aftergetting$10additional,sohehad$6 beforethat.Hethereforehad$6afterthefirsttimehespenthalfofhismoney,sohemust havestartedwith$12. ! !!" ! Anequationcouldalsowork: ! = 8. Solvingthisequationwillyield𝑥 = 12 2.Iftheproductoftwice𝑥andthreelessthan𝑥is56,whichofthefollowingcouldbe𝑥? (A)7 (B)8 (C)9 (D)10 Guess-and-Check: ThisisatextbookexampleofwhenyoucanusetheGuess-and-Checkstrategy:whena questionasksforthevalueofx,givesyounumbersasanswerchoices,andlookslikeit mighttakeawhiletosolveusingequationsandalgebra. EverytimeweusetheGuess-and-Checkstrategy,westartwitheither(B)or(C).Ifweplug inanswerchoice(B)first,thequestionreads:“Iftheproductoftwice8andthreelessthan 8is56….” Productmeansmultiply,sowe’llmultiply“twice8”and“threelessthan8”-inotherwords, we’llmultiply16and5.Thatgetsus80;we’relookingfor56,soclearlyanswerchoice(B) istoohigh.[Ifwehadstartedwithchoice(D),thatwouldhavegivenus140,muchtoohigh, andwewouldhavethentriedanswerchoice(B).] Since(B)istoohighandtheanswermustbetheonlyloweranswer,(A).Wedon’teven needtocheckit. Algebra: Translatethequestionintoanequation:2𝑥(𝑥 − 3) = 56;thendistributetoget2𝑥 ! − 6𝑥 = 56.Sincethisisaquadratic(𝑥 ! )equation,wemustmakeonesideequalzeroand thensolve: 2𝑥 ! − 6𝑥 − 56 = 0 2 𝑥 ! − 3𝑥 − 28 = 0 𝑥 ! − 3𝑥 − 28 = 0 𝑥 − 7 𝑥 + 4 = 0 𝑥 = 7 𝑎𝑛𝑑 𝑥 = −4 3.Giventhediagramabove,whatis𝑥? (A)15 (B)20 (C)25 (D)35 Guess-and-Check: Westartwitheither(B)or(C);let’sstartwith(B).If𝑥is20,then∠𝐶is60°,sincethesmall trianglemustaddupto180°.Butif∠𝐶is60°,thenthelargertriangleaddsupto195°, whichisimpossible. Soweknowthat20iswrong,butwedon’tknowwhetherourrealanswermustbehigher orlower.That’sOK;let’stry(C)andseewhathappens.Usingthesameseriesof calculations,if𝑥is25thenthelargertrianglewouldaddupto190°.Ouranswerchoices looklikethis: (A)15 (B)20195 (C)25 190 (D)35 Avalueof180°canonlybeattheverybottomofthislist,sotheanswermustbe(D). Algebra: Thelargertrianglemustaddupto180°,anditalreadyhasanglesof50°and85°.Therefore thethirdangle(inthelower-rightcorner)is180° − 50° − 85° = 45°.Thesmalltriangle alsoaddsupto180°,andithasanglesof100°,45°,and𝑥°.Wesetup100° + 45° + 𝑥° = 180andsolvefor𝑥 = 35. Ifyourquestion#4isaboutgolf,seethenextpage. 4.Fredhas$1’s,$5’s,and$20’s.Hehasfifteenbillsandatotalof$119.Ifhehasequal numbersof$1’sand$20’s,howmany$5’sdoeshehave? (A)7 (B)9 (C)11 (D)13 Guess-and-Check Asalways,westartGuess-and-Checkwitheither(B)or(C).Ifwestartwith(B),weassume thatFredhas9five-dollarbills.Sincehehas15totalbills,hehas15 − 9 = 6otherbills besidesthefives.Thequestionsaysthatthesearesplitevenlybetweenonesandtwenties, sotheremustbe6 ÷ 2 = 3ofeach.HowmuchmoneywouldFredhaveinthisscenario?He wouldhave9 $5 + 3 $1 + 3 $20 = $108.Thisisnottherightanswer,sowewrite downthisnumbernexttoanswerchoice(B). Wedon'tknowimmediatelywhetherweneedmoreorfewerfive-dollarbills,sowenow try(C).WeassumethatFredhas11five-dollarbills.Sincehehas15totalbills,hehas 15 − 11 = 4otherbillsbesidesthefives.Thequestionsaysthatthesearesplitevenly betweenonesandtwenties,sotheremustbe4 ÷ 2 = 2ofeach.Howmuchmoneywould Fredhavenow?Hewouldhave11 $5 + 2 $1 + 2 $20 = $97.Wewritethisnextto answerchoice(C).Here'showouranswerchoiceslooknow: (A)7 (B)9$108 (C)11 $97 (D)13 Ifwe'relookingfor$119,itcanonlybeatthethetopofthislist,sotheansweris(A). Algebra: Moreannoyingtosetupthanisworthit.Where𝑥isthenumberoffive-dollarbills,the correctequationwouldbe: 15 − 𝑥 15 − 𝑥 5𝑥 + 1 + 20 = 119 2 2 Ifyourquestion#4isaboutdollarbills,seethepreviouspage. 4.Inacertain18-holeroundofgolftotaling75shots,agolferonlymakesscoresof3,4,and 5onthevariousholes.Ifthegolferhadequalnumbersof4'sand5's,onhowmanyholes didthegolferscorea3? (A)4 (B)6 (C)8 (D)10 Guess-and-Check: Westartwith(B)byassumingthatthegolferscoreda3onsixoftheholes.Thisleaves12 otherholes.Wearetoldthatthegolfermakesequalnumbersof4'sand5's,soshemust havemadesix4'sandsix5's.Doesthisequal75?No—six3's,six4's,andsix5'saddsupto 72,so(B)isincorrect. Ifwewanttobeclever,wecanseethatthegolfer'sscoreistoolow,soshemustneedmore highscores(4'sand5's)andfewerlowscores(3's).Theonlyanswerchoicewherethe golferscoresfewer3'sisanswerchoice(A). Ifwewanttobesafeandthorough,wecantryanswerchoice(C)andassumethatthe golfermakeseight3's.Thereforetheothereightholesaresplitwithequalnumbersof4's and5's—fiveofeach.Eight3's,five4's,andfive5'saddsupto69. Whetherwestartedwith(B)or(D),ouranswerchoiceswouldlooklikethis: (A)4 (B)672 (C)8 69 (D)10 Followingthepattern,avalueof75wouldhavetobeatthetopofthislist,sotheanswer mustbe(A). Algebra: Moreannoyingtosetupthanisworthit.Where𝑥isthenumberof3'sthegolferscores,the correctequationwouldbe: 18 − 𝑥 18 − 𝑥 3𝑥 + 4 +5 = 75 2 2 5.Whatis𝑥iftheaverage(arithmeticmean)of3,17,and𝑥is19? (A)34 (B)35 (C)36 (D)37 Guess-and-Check: Westartbyassuming𝑥 =either35or36(BorC).Ifwestartwith(B)35,theaverageof3, ! 17,and35is18 !.Thisistoolow,sowecrossout(B)and(A).Ifwestartwithorthen ! attempt(D)36,theaverageof3,17,and37is18 !.Thisisstilltoolow,butgettingcloser,so theansweris(D)37. Algebra: !"# Usetheaverageformula,𝐴 = !"#$%& !" !"#$%: 19 = Usealgebratosolvefor𝑥 = 37. 3 + 17 + 𝑥 3 6.If𝑓(𝑥) = 𝑥 ! + 3𝑥 − 8,and𝑓(𝑟) = 62,whatisr? (A)4 (B)5 (C)6 (D)7 Guess-and-Check: Startwitheither(B)or(C);let’stry(C)thistimejustforvariety.6! + 3(6) − 8is46.It's toolow,andthere'sonlyonehighervalue,sothatisthatonlypossibleanswer.That'sallwe havetodo;theansweris(D). Algebra: Thisquestionwillbeverydifficulttosolveifyoudon’thaveabasicideaofwhatafunction is,nomatterwhattechniqueyouuse.Hopefullyyouunderstandthatinthiscase,the questionissayingthat𝑟 ! + 3𝑟 − 8 = 62.Sinceit’saquadratic(𝑥 ! )equation,wemust makeonesideequalzero,factor,andsolveasfollows: 𝑟 ! + 3𝑟 − 8 = 62 𝑟 ! + 3𝑟 − 70 = 0 𝑟 – 7 𝑟 + 10 = 0 𝑟 − 7 = 0 𝑎𝑛𝑑 𝑟 + 10 = 0 𝑟 = 7 𝑎𝑛𝑑 𝑟 = −10 Only7isoneoftheanswerchoices,sotheansweris(D). ! ! 7.Giventhat𝑎 = ! + 1,𝑏 = ! + 2,and𝑎 = 5,whatis𝑐? (A)16 (B)18 (C)20 (D)22 Guess-and-Check: ! !" Ifwestartwith(B)byassumingthat𝑐 = 18,then𝑏 = ! + 2.Therefore𝑏 = ! + 2,so ! !! ! 𝑏 = 11.We'realsotoldthat𝑎 = ! + 1,so𝑎 = ! + 1,andwesolvefor𝑎 = 4 !.Butthe questionsays𝑎 = 5;thismeansthatanswerchoice(B)isnotcorrect.Sinceourresultwas toolow,we'llcrossoff(B)and(A)andnowtry(C). !" ! !" Using(C),𝑐 = 20,then𝑏 = ! + 2,so𝑏 = 12.We'realsotoldthat𝑎 = ! + 1,so𝑎 = ! + 1, andwesolvefor𝑎 = 5,aswehoped.Theansweris(C). Algebra: ! ! ! ! 𝑎 = 5and𝑎 = ! + 1,so5 = ! + 1.Solvethisfor𝑏 = 12.Also,𝑏 = ! + 2,so12 = ! + 2. Solvethisfor𝑐 = 20. 8.Charliepurchased7videogamesforatotalcostof$270.Ifallofthegamescosteither $35or$40,howmany$40videogamesdidCharliepurchase? (A)4 (B)5 (C)6 (D)7 Guess-and-Check: Wecanstartwith(B)byassumingthatCharliepurchasedfive$40videogames.Sincehe purchasedsevengamestotal,hewouldalsohavepurchasedtwo$35games.Five$40 gamesandtwo$35gameswouldaddupto$270,so(B)isthecorrectanswer. Ifwehadstartedwithwithanswerchoice(C),six$40gamesandone$35gamewouldyield atotalcostof$275.Thisistoohigh,sothecorrectanswerwouldincludefewerofthemore expensivegames.Wewouldthentryanswerchoice(B). Algebra: Let𝑥 =thenumberof$40gamesand𝑦 =thenumberof$35games.Wehaveoneequation forthenumberofgames,𝑥 + 𝑦 = 7.Wehaveasecondequationforthetotalcost, 40𝑥 + 35𝑦 = 270. Usesubstitution:solvefor𝑦intermsof𝑥toget𝑦 = 7 − 𝑥.Substitutethisvalueintothe secondequationtoget40𝑥 + 35 7 − 𝑥 = 270,andsolvefor𝑥 = 5. 9.Sarahis3inchestallerthanCamille.Marlynis6inchesshorterthanLouiseand5inches shorterthanCamille.IfLouiseis68inchestall,howtallisSarah? (A)69inches (B)70inches (C)71inches (D)72inches Guess-and-Check: Westartwith(B)byassumingthatSarahis70inchestall.Sarahis3inchestallerthan Camille,soCamillemustbe67inches.Wedonothaveenoughinformationtousethe informationaboutMarlynandLouiseyet,butwearetoldthatMarlynis5inchesshorter thanCamille.Camilleis67inches,soMarlynis62inches.Nowwecanusetheinformation thatMarlynis6inchesshorterthanLouise.Marlynis62inches,soLouiseis68inches.The questionsaysthatLouiseactuallyis68inchestall,soanswerchoice(B)iscorrect. Ifwestartedwith(C),wewouldhavefoundthatLouiseis69inchestall.Thiswouldbetoo highanumber,sowewouldhaveeliminated(D)andtriedanswerchoice(B)next. Algebra: Asystemoffoursimpleequations—easytosolvewithsubstitution,butnotaveryefficient waytosolvethisproblem. 10.Theaverageageofagroupoffourpeopleis49years.Ifoneofthepeopleis40years old,whatistheaverageageoftheotherthreepeople? (A)52 (B)54 (C)56 (D)58 Guess-and-Check: Westartbyassumingthattheaverageageoftheotherthreepeopleis(B)54years.That meanstheaverageageofallfourpeopleis 40 + 54 + 54 + 54 𝐴= 4 𝐴 = 50.5 Butweknowtheactualaverageshouldbe49years,not50.5years.Since(B)istoohigh, theanswercanonlybe(A)52. Ifwehadstartedwith(C),wewouldhaveobtainedanaverageof52—toohigh—and thentried(B)asdescribedabove. Algebra: Theaverageageofone40yearoldpersonand3peoplewithanunknownaverageageis !"# 49.Wecanusetheaverageformula,𝐴 = !"#$%& !" !"#$%,andsetupanequation representingatotaloffourpeople: 49 = Solvingthisequationfor𝑥yields𝑥 = 52. 40 + 3𝑥 4
© Copyright 2025 Paperzz