Given: HI = 9, IJ = 9, and IJ ≅ JH Prove: HI ≅ JH H I J Statements 1. HI = 9 Reasons 1. #1 2. IJ = 9 2. #44 3. HI = IJ 3. #30 4. 4. Definition of Congruent Segments #39 5. IJ ≅ JH 5. #68 6. HI ≅ JH 6. #70 Given Given Substitution Property W W A Given Transitive Property HI ≅ IJ W E A Given: 3 and 2 are complementary, m 1+m 2 = 90o Prove: 1 ≅ 3 2 3 1 Statements 1. 3 and 2 are Complementary Reasons 1. #2 2. m 1+m 2 = 90o 2. #21 3. m 3+m 2 = 90o 3. #56 4. m 1+m 2 = m 3+m 2 4. #43 5. m 1 = m 3 5. #66 6. 1 ≅ 3 6. #29 Given Given H Definition of complementary Definition of congruent angles T angles Substitution Property Subtraction Property E H R A Given: AL = SK Prove AS = LK A L S Statements 1. AL = SK Reasons 1. #32 2. LS = LS 2. #61 3. AL + LS = SK + LS 3. #76 4. AL + LS = AS 4. #7 5. SK + LS = LK 5. #67 6. AS = LK 6. #40 Given Addition Property Segment Addition Postulate L E Y K Reflexive Property Substitution Property Segment Addition Postulate C N Y Given: m 4 = 120o, 2 ≅ 5, 5 ≅ 4 Prove: m 2 = 120o 6 5 1 4 2 3 Statements 1. m 4 = 120o, 2 ≅ 5, 5≅ 4 Reasons 1. #23 2. 2 ≅ 4 2. #50 3. 3. Definition of Congruent Angles #72 4. m 2 =120o Given Transitive Property 4. T D #15 m 2 = m 4 Substitution Property H A Given: 1 and 2 are complementary, 1 ≅ 3, 2 ≅ 4 Prove: 3 and 4 are complementary 1 Statements 1. #59 Reasons 1. Given 2. m 1 + m 2 = 90o 2. 3. 3. Given #24 2 34 #31 4. m 1 = m 3, m 2 = m 4 4. #16 5. m 3 + m 4 = 90o 5. #28 6. 6. Definition of complementary angles #75 1 and 2 are complementary Substitution Property Definition of Congruent Angles 3 and 4 are E complementary R Definition of Complementary O Angles B 1 ≅ 3, 2 ≅ 4 N I 4 Given: 1 ≅ 2 Prove: 3 ≅ 4 Statements 1. 1 3 2 #55 Reasons 1. #53 2. #10 2. #69 3. #34 3. #25 1≅ 2 1 ≅ 3, 2 ≅ 4 Substitution Property I C S 3≅ 4 Given Vertical Angles Theorem A E H E Given: m CBE = m ABD Prove: m CBD = m ABE D C A B Statements 1. m CBE = m ABD Reasons 1. #5 2. m ABE = m ABD + m DBE 2. #6 3. m ABE = m CBE + m DBE 3. #58 4. m CBE + m DBE = m CBD 4. #8 5. m ABE = m CBD 5. #73 Angle Addition Postulate Substitution Property Given O L D Angle Addition Postulate Transitive Property O E Given: RT = SU Prove: RS = TU R S T U Statements 1. RT = SU 1. Reasons #49 2. ST = ST 2. #36 3. RT – ST = SU – ST 3. #18 4. RT – ST = RS 4. #79 5. 5. Segment Addition Postulate #26 6. RS = TU Given Segment Addition Postulate Subtraction Property 6. I P L #63 Reflexive Property Substitution Property SU – ST = TU U R A A Given: m ABD = m CBE Prove: m 1 = m 3 B 1 2 3 C D E Statements 1. #51 Reasons 1. Given 2. #48 2. Reflexive Property 3. #77 3. Subtraction Property 4. #17 4. Angle Addition Postulate 5. m CBE - m 2 = m 3 5. #41 6. #62 6. m 1 = m 3 m ABD - m 2 = m CBE - m ABD - m 2 = m 1 m 2 W Angle Addition Postulate Substitution Property G m ABD = m CBE m 2 = m 2 T G O D Given: M is the midpoint of AB N is the midpoint of CD AB = CD ����� ≅ ���� Prove: 𝐴𝑀 𝐶𝑁 Statements 1. M is the midpoint of AB 1. N is the midpoint of CD A M B C N D Reasons #3 2. AM = MB, CN = ND 2. #42 3. AB = CD 3. #14 4. AM + MB = AB, CN + ND = CD 4. #47 5. AM + AM = AB, CN + CN = CD 5. #4 6. 2AM = AB, 2CN = CD 6. #74 7. 2AM = 2CN 7. #20 8. AM = CN 8. #33 9. ����� 𝐴𝑀 ≅ ���� 𝐶𝑁 9. #60 Given Substitution Property A Given Substitution Property T Simplify/Combine Like Terms Division Property G Definition of a Midpoint Definition of Congruent L Segments Segment Addition Postulate T A T E A 1 Given: l ⊥ m, l ⊥ n Prove: 1 ≅ 2 l m n 2 Statements 1. #19 Reasons 1. #38 2. #57 2. #71 3. #46 3. #11 1 and 2 are right angles 1≅ 2 l ⊥ m, l ⊥ n All right angles are congruent A T Given E A Definition of Perpendicular E Lines N Given: 2 ≅ 3 Prove: 3 ≅ 6 1 23 4 7 6 5 Statements 1. #9 Reasons 1. #22 2. #54 2. #35 3. #45 3. #65 2≅ 3 3≅ 6 2≅ 6 Vertical Angles Theorem U H L Given Substitution Property C A S 1 Given 1 ≅ 5 Prove: 1 is supplementary to 4 2 3 4 5 Statements 1. #64 Reasons 1. Given 2. 2. Definition of Congruent Angles #37 3. 4 and 5 are a linear pair 3. #52 4. m 4 and m 5 are supplementary 4. #78 5. m 4 + m 5 = 180o 5. #12 6. 6. Substitution Property #27 7. 1 is supplementary to 4 7. #13 m 1 = m 5 1≅ 5 T m 4 + m 1 = 180o Supplement Theorem D U N Definition of Supplementary Definition of Supplementary L L Assume from diagram H Names: ______________________________________________ 1. ___ ___ ___ ___ 1 2 3 4 ___ ___ ___ ___ 10 11 12 13 ___ ___ ___ ___ 20 21 22 23 ___ ___ ___ ___ ___ 26 27 28 29 30 ___ ___ ___ ___ ___ 5 6 7 8 9 ___ n ___ ___ ___ ___ ___ 14 15 16 17 18 19 ___ ___ 24 25 ___ ___ ___? 31 32 33 Answer: ___ ___ ___ ___ ___ 34 35 36 37 38 2. ___ ___ ___ ___ 44 45 46 47 ___ ___ ___ ___ ___ 54 55 56 57 58 ___ ___ ___ ___ 65 66 67 68 ___ ___ ___ ___ 74 75 76 77 ___ ___ ___ ___ ___ 39 40 41 42 43 ___ ___ ___ ___ ___ ___ 48 49 50 51 52 53 ___ ___ ___ ___ ___ ___ 59 60 61 62 63 64 ___ ___ ___ ___ ___ 69 70 71 72 73 ___ ___ ? 78 79 Your answer: _________________________________________
© Copyright 2025 Paperzz