Biological N and P removal in activated sludge processes Sara Hallin Department of Microbiology, SLU ©Sara Hallin Metabolism Oxidation: KOLFÖRENING KOLDIOXID + ELEKTRONER + VÄTEJONER Reduktion: SYRE + ELEKTRONER + VÄTEJONER VATTEN Fullständig reaktion: KOLFÖRENING + SYRE KOLDIOXID + VATTEN BIOKEMISKT BUNDEN ENERGI Fermentation: GLUKOS ETANOL + KOLDIOXID BIOKEMISKT BUNDEN ENERGI Fermentation av socker till etanol och koldioxid. En del av kolet i sockret har oxiderats till koldioxid medan en del har reducerats till etanol (vanlig sprit). Traditionell ASP Organiskt material bryts ner av mikroorganismer i luftningsbassängen. Slammet (biomassa och organiskt material)avskiljs från det renade vattnet i sedimenteringsbassängen. . Microbiological reactions in the N cycle Denitrification N2 ATMOSPHERE Nitrogen fixation SOIL/WATER N2O Organically bound nitrogen org-NH2 NO Assimilation Mineralization/ Ammonification NH4+ Assimilation NO2- NO2- NO3- Nitrification Dissimilatory nitrate reduction to ammonium Kväverening NH 4+ NH 2 OH NO 2- NO 3 - NO 2- NO N 2O N2 Nitrification - a two step oxidation process Ammonia oxidation NH3 NH2OH Nitrite oxidation NO2- NO3- Regulation of nitrous oxide emissions NO3- N removal NO2- NO N2O N2 Nitrification Denitrification Redox - Glucose Glykolysis 2 Pyruvate 8 NADH NADH NO2 O22 O 2 GTP TCA cycle 2 FADH NH4+ 2 ATP 2 NADH 6 CO2 ATP FADH ATP - ATP NO3- H20 + NO2 N2 NO N2O Ammonia oxidation: NH3 + 1,5O2 NO2- + H+ + H2O Nitrite oxidation: NO2- + ½ O2 NO3- Periplams OH- Metabolism Carbon fixation Cell constituents Growth • Lots of ATP needed! • NADPH required! Energetic constraints 1. ATP and NADH (reducing power) requirements in for C-fixation in Calvin cycle 2. NADH formed by reverse e- flow: O2 e2e- Cyt c e- Cyt c NAD+ Ammonia diversity in soil Denitrifieroxidizer Diversity Bacteria Eukarya Archaea Ammonia oxidizers Ammonia oxidizing archaea and bacteria (AOA and AOB), nitrite oxidizing bacteria (NOB) The organisms NH3 oxidizers Proteobacteria: Nitrosomonas Nitrosococcus Nitrosospira Thaumarchaeota: Nitrosopumilis… NO2- oxidizers Bacteria: Nitrobacter Nitrospira Screening of a 1215 Mb soil metagenomic library amoAamoA NH3 NH2OH Treusch et al. 2005 Env Microbiol 7, 1985-1995 16S NO2- High-affinity ammonia oxidation by AOA AOA: Nitrosopumilis maritimus (●) AOB: Nitrosomonas spp; Nitrosospira spp.(●) nitrification in ocean water () nitrification in soils () lowest Km for ammonium assimilation ( ). (Martens-Habbena et al. Nature, 2009) Kväverening NH 4+ NH 2 OH NO 2- NO 3 - NO 2- NO N 2O N2 Microbiological reactions in the N cycle Denitrification N2 ATMOSPHERE Nitrogen fixation SOIL/WATER N2O Organically bound nitrogen org-NH2 NO Assimilation Mineralization/ Ammonification NH4+ Assimilation NO2- NO2- NO3- Nitrification Dissimilatory nitrate reduction to ammonium Denitrification Denitrification pathway Pathway -/ NO3 + O2 - = NO2 Denitrification: anaerobic respiration Organic compound ATP CO2 Carbon flow Electron flow Biosynthesis NO3-, (NO2-, N2O) Denitrification Cytoplasma NO2- NO3- nar NADH2 NAD+ 2e- 2ee- nor 2e- nir NO3- Periplasma H+ Proton motive force nos NO N2O NO2- NO N2O N2 Denitrifier Denitrifierdiversity Diversity Bacteria Eukarya Archaea Denitrifiers Nitrifikation Denitrifikation Redox - Glucose Glykolysis 2 Pyruvate 8 NADH NADH NO2 O O22 2 GTP TCA cycle 2 FADH NH4+ 2 ATP 2 NADH 6 CO2 ATP FADH ATP - ATP NO3- H20 + NO2 N2 NO N2O Nitrifierande bakterier Denitrifierande bakterier •Nitrifierare finns i mark och vatten •Denitrifierare finns nästan överallt •Bara några få arter •Många bakteriesläkten •Nitrifikation är två energigivande processer som utförs av två olika grupper av bakterier •Denitrifikation är en alternativ andningsprocess i frånvaro av syre •Nitrifierare växer långsamt •Denitrifierare är växer oftast snabbt Effekt av extern kolkälla på kvävereningen 2. Denitrifikastionskapacitet: 1. Kvävereningsgrad (%): a b Denitrification rate (mg N O-N g -1 VSS h -1 ) 80 E 60 40 2 Nitrogen reduction (%) 100 20 R 0 0 10 20 30 Time (days) Tid (dagar) 40 50 60 15 E 10 5 R 0 0 10 20 30 40 50 Time(dagar) (days) Tid R = Fördenitrifikation utan extern kolkälla E = Fördenitrifikation med etanoltillsats 60 Intermittent dosering av etanol i en fördenitrifikationsprocess Hasselblad & Hallin. 1998. Wat. Sci.Technol. Kväverening NH 4+ NH 2 OH NO 2- NO 3 - NO 2- NO N 2O N2 N2O producing processes and NO3 leaching N2 O N2O NO NH 4+ NH 2 OH NO 2- NO 3 - NO3- NO 2- NO N 2O N2 DIET AGRICULTURE ENVIRONMENT World greenhouse gas emissions by sector Regulation of N2O emissions NO3- NO2- NO N2O N2 Microbes without nosZ (N2O reductase gene) 1/3 of denitrifier genomes lack nosZ (Jones et al. 2008 Molec Biol Evol) Manipulation of soil denitrifier community showed direct causality link between the community composition and potential N2O emissions. N2O/(N2O+ N2) 0,8 0,6 0,4 0,2 (Philippot et al. 2011 Global Change Biol.) 0 Ratio of N2O-producers 500 500 1500 1500 2500 2500 N2O/(N2O+N2) g-1 Potental denitrification ng N dry soil h-1 Importance of on rootthe derived carbon commmunity Cattle impact denitrifying 10 30 Proportion of denitrifiers genetically capable to reduce N2O (% nosZ/16S rDNA) Denitrifier genetically capable to reduce N2O (nosZ) N W E 3.102 1.1 2 1.10 1.4 2.102 nosZ NO3- NO2- NO NO NNO 2O N NO 2 Environmental Microbiology (2009) 11(6), 1518-1526 Mapping field-scale spatial patterns of size and activity of the denitrifier community S Low cattle impact 1. 104 2.104 4 3.10 0.5 4.10 0.8 4 Gene copy ng-1 DNA Total bacteria (16S rRNA) Gene copy ng-1 DNA 50 70 40 m High cattle impact Laurent Philippot,1,2,* Jiri Ćuhel,3 Nicolas P A Saby,4 Dominique Chèneby,1,2 Alicia Chroňáková, 3 David Bru, 1,2 Dominique Arrouays4, Fabrice Martin Laurent1,2 and Miloslav Śimek3 Medium cattle impact (From L. Philippot, INRA) Regulation of N2O emissions NO3- NO2- NO N2O N2 Microbes that only have nosZ (N2O reductase gene) Some organisms only have nosZ and are potential N2O sinks. (Graf et al. in prep.) Biological phosphorus removal ANAEROBIC Short chain fatty acids Energy Phosphate Energy consumption for uptake of soluble organics. ATP and PO43- is released. AEROBIC CO2+H2O O2 Energy Phosphate Energy is conserved as polyphosphate granules. Uptake of PO43-. Consumption of stored products (PHB). PHB synthesis & degradation Acetic acid Acetyl-CoA Acetoacetyl-CoA Acetoacetate ß-hydroxybutyrate ß-hyroxybutyryl-CoA Poly-ß-hyroxybutyrate (PHB) Biological phosphorus removal Recirculation of NO3- Organics Energy PO43- AEROBIC REACTOR Denitrification ANAEROBIC REACTOR CO2+H2O Energy PO43O2 SEDIMENTATION N-removal in wetlands Constructed wetlands Diffusion through aerenchyma CH4 O2 O2 CO2 CH4 N2O N2 Water O2 CO2 O2 O2 +NH3 NO3NO3- NO3- SO42Reduction zone CO2 Reduction zone N2 Acetate Root exudates CH4 H2+CO2 Aerobic zone O2 + NH3 Anaerobic zone NO3Reduction zone N2O µg N/g DW/h Plants affect denitrification Ruiz et al., 2009, FEMS Microbiol. Ecol. Sediment Low rates Rhizospehere Wetland plants effects DGGE of nosZ High rates • Typha and Fragmites select nosZ communities • Seasonal differences Ruiz et al., 2009, FEMS Microbiol. Ecol. Conclusions and outlook • Typha and Phragmites select nosZ communities • Typha and Phragmites increase denitrification activity • Seasonal differences Is increase in rhizosphere enough for increased capacity of wetland? • What about the abundance of denitrifiers? Ekeby wetland in Eskilstuna Ekeby Constructed Wetland Total area: 36 ha Flow: ~45000m3/day Water-flow paths Kjellin et al., 2007, Wat. Res. N-removal in mining impacted waters
© Copyright 2025 Paperzz