Section 7.5 Sums and Differences of Rational Functions 691 7.5 Exercises In Exercises 1-16, add or subtract the rational expressions, as indicated, and simplify your answer. State all restrictions. 1. 2. 1 7x2 − 49x 42 + x−6 x−6 2x2 − 110 12 − x−7 7−x 14. 9x2 144x − 576 + x−8 8−x 15. 3x2 − 12 15 + x−3 3−x 16. 112x − 441 7x2 − x−9 x−9 3. 27x − 9x2 162 + x+3 x+3 In Exercises 17-34, add or subtract the rational expressions, as indicated, and simplify your answer. State all restrictions. 4. 2x2 − 28 10x − x+2 x+2 17. 5. 4x2 − 8 56 + x−4 4−x 18. 6. 4x2 36x − 56 − x−2 x−2 19. 7. 9x2 72x − 63 + x−1 1−x 20. 9x 45 − x2 − 25 x2 + 20x + 75 8. 5x2 + 30 35x − x−6 x−6 21. 5x 35 − x2 − 21x + 98 7x − x2 9. 4x2 − 60x 224 + x−7 x−7 22. 7x 147 + 7x − x2 x2 + 7x − 98 10. 63 − 30x 3x2 − x−7 7−x 23. 11. 3x2 48 − 30x − x−2 2−x 24. 12. 4x2 − 164 20 − x−6 6−x 25. 13. 81x − 126 9x2 − x−2 x−2 26. x2 3x 15 + 2 − 6x + 5 x − 14x + 45 x2 7x 28 + 2 − 4x x − 12x + 32 x2 9x 54 − 2 + 4x − 12 x + 20x + 84 x2 −7x 35 − 2 − 8x + 15 x − 12x + 35 −6x 12 + 2 + 2x x + 6x + 8 x2 x2 −9x 36 − 2 − 12x + 32 x − 4x x2 5x 20 − − 12x + 32 4x − x2 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/ Version: Fall 2007 692 27. 28. 29. Chapter 7 x2 Rational Functions 6x 42 − − 21x + 98 7x − x2 x2 −2x 4 + 2 − 3x − 10 x + 11x + 18 x2 −9x 18 − 2 − 6x + 8 x − 2x 37. Let f (x) = x2 11x + 12x + 32 and g(x) = 44 −4x − x2 30. 6x 90 + 2 2 5x − x x + 5x − 50 Compute f (x) + g(x) and simplify your answer. 31. 8x 120 + 2 2 5x − x x + 5x − 50 38. 32. 33. 34. −5x 25 + 2 + 5x x + 15x + 50 x2 x2 −5x 30 + 2 + x − 30 x + 23x + 102 x2 9x 36 − 2 + 12x + 32 x + 4x f (x) = g(x) = x2 48 − 18x + 72 Let f (x) = 4x −x − x2 and and 16 g(x) = 2 x + 2x Compute f (x) − g(x) and simplify your answer. g(x) = x2 Let Let −7x f (x) = 2 x + 8x + 12 f (x) = x2 Compute f (x) + g(x) and simplify your answer. Version: Fall 2007 5x − x − 12 and and 42 g(x) = 2 x + 16x + 60 4 + 3x + 2 Compute f (x) + g(x) and simplify your answer. 40. 36. 8x − 6x Compute f (x) + g(x) and simplify your answer. Let 8x f (x) = 2 x + 6x + 8 x2 and 39. 35. Let g(x) = x2 15 + 13x + 30 Compute f (x) − g(x) and simplify your answer. Section 7.5 Sums and Differences of Rational Functions 7.5 Solutions 1. Provided x 6= 6, 42 7x2 − 49x + 42 7x2 − 49x + = x−6 x−6 x−6 7(x2 − 7x + 6) x−6 7(x − 6)(x − 1) = x−6 = = 7(x − 1) 3. Provided x 6= −3, 27x − 9x2 162 −9x2 + 27x + 162 + = x+3 x+3 x+3 −9(x2 − 3x − 18) x+3 −9(x + 3)(x − 6) = x+3 = = −9(x − 6) 5. Provided x 6= 4, 4x2 − 8 56 4x2 − 8 56 + = − x−4 4−x x−4 x−4 = 4x2 − 8 − 56 x−4 = 4x2 − 64 x−4 4(x2 − 16) x−4 4(x − 4)(x + 4) = x−4 = = 4(x + 4) Version: Fall 2007 Chapter 7 7. Rational Functions Provided x 6= 1, 72x − 63 9x2 72x − 63 9x2 + = − x−1 1−x x−1 x−1 = 9x2 − 72x + 63 x−1 9(x2 − 8x + 7) x−1 9(x − 1)(x − 7) = x−1 = = 9(x − 7) 9. Provided x 6= 7, 4x2 − 60x 224 4x2 − 60x + 224 + = x−7 x−7 x−7 4(x2 − 15x + 56) x−7 4(x − 7)(x − 8) = x−7 = = 4(x − 8) 11. Provided x 6= 2, 3x2 48 − 30x 3x2 48 − 30x − = + x−2 2−x x−2 x−2 = 3x2 − 30x + 48 x−2 3(x2 − 10x + 16) x−2 3(x − 2)(x − 8) = x−2 = = 3(x − 8) 13. Provided x 6= 2, 9x2 81x − 126 9x2 − 81x + 126 − = x−2 x−2 x−2 9(x2 − 9x + 14) x−2 9(x − 2)(x − 7) = x−2 = = 9(x − 7) Version: Fall 2007 Section 7.5 15. Sums and Differences of Rational Functions Provided x 6= 3, 15 3x2 − 12 15 3x2 − 12 + = − x−3 3−x x−3 x−3 = 3x2 − 12 − 15 x−3 = 3x2 − 27 x−3 3(x2 − 9) x−3 3(x − 3)(x + 3) = x−3 = = 3(x + 3) 17. 3x 15 + 2 − 6x + 5 x − 14x + 45 3x 15 = + (x − 5)(x − 1) (x − 5)(x − 9) x2 = 3x(x − 9) 15(x − 1) + (x − 5)(x − 1)(x − 9) (x − 5)(x − 1)(x − 9) = 3x(x − 9) + 15(x − 1) (x − 5)(x − 1)(x − 9) = 3x2 − 12x − 15 (x − 5)(x − 1)(x − 9) = 3(x − 5)(x + 1) (x − 5)(x − 1)(x − 9) = 3(x + 1) (x − 1)(x − 9) Restricted values are 5, 1, and 9. Version: Fall 2007 Chapter 7 Rational Functions 19. 9x 54 − 2 + 4x − 12 x + 20x + 84 9x 54 − = (x + 6)(x − 2) (x + 6)(x + 14) x2 = 9x(x + 14) 54(x − 2) − (x + 6)(x − 2)(x + 14) (x + 6)(x − 2)(x + 14) = 9x(x + 14) − 54(x − 2) (x + 6)(x − 2)(x + 14) = 9x2 + 72x + 108 (x + 6)(x − 2)(x + 14) = 9(x + 6)(x + 2) (x + 6)(x − 2)(x + 14) = 9(x + 2) (x − 2)(x + 14) Restricted values are −6, 2, and −14. 21. 5x 35 − − 21x + 98 7x − x2 35 5x + = 2 x − 21x + 98 x2 − 7x 5x 35 = + (x − 7)(x − 14) x(x − 7) x2 = 5x2 35(x − 14) + x(x − 7)(x − 14) x(x − 7)(x − 14) = 5x2 + 35(x − 14) x(x − 7)(x − 14) = 5x2 + 35x − 490 x(x − 7)(x − 14) = 5(x − 7)(x + 14) x(x − 7)(x − 14) = 5(x + 14) x(x − 14) Restricted values are 7, 14, and 0. Version: Fall 2007 Section 7.5 Sums and Differences of Rational Functions 23. −7x 35 − 2 − 8x + 15 x − 12x + 35 −7x 35 − = (x − 5)(x − 3) (x − 5)(x − 7) x2 = −7x(x − 7) 35(x − 3) − (x − 5)(x − 3)(x − 7) (x − 5)(x − 3)(x − 7) = −7x(x − 7) − 35(x − 3) (x − 5)(x − 3)(x − 7) = −7x2 + 14x + 105 (x − 5)(x − 3)(x − 7) = −7(x − 5)(x + 3) (x − 5)(x − 3)(x − 7) = −7(x + 3) (x − 3)(x − 7) Restricted values are 5, 3, and 7. 25. −9x 36 − 2 − 12x + 32 x − 4x 36 −9x = − (x − 4)(x − 8) x(x − 4) x2 = −9x2 36(x − 8) − x(x − 4)(x − 8) x(x − 4)(x − 8) = −9x2 − 36(x − 8) x(x − 4)(x − 8) = −9x2 − 36x + 288 x(x − 4)(x − 8) = −9(x − 4)(x + 8) x(x − 4)(x − 8) = −9(x + 8) x(x − 8) Restricted values are 4, 8, and 0. Version: Fall 2007 Chapter 7 Rational Functions 27. 6x 42 − − 21x + 98 7x − x2 6x 42 + = 2 x − 21x + 98 x2 − 7x 6x 42 = + (x − 7)(x − 14) x(x − 7) x2 = 6x2 42(x − 14) + x(x − 7)(x − 14) x(x − 7)(x − 14) = 6x2 + 42(x − 14) x(x − 7)(x − 14) = 6x2 + 42x − 588 x(x − 7)(x − 14) = 6(x − 7)(x + 14) x(x − 7)(x − 14) = 6(x + 14) x(x − 14) Restricted values are 7, 14, and 0. 29. 18 −9x − 2 − 6x + 8 x − 2x −9x 18 = − (x − 2)(x − 4) x(x − 2) x2 = −9x2 18(x − 4) − x(x − 2)(x − 4) x(x − 2)(x − 4) = −9x2 − 18(x − 4) x(x − 2)(x − 4) = −9x2 − 18x + 72 x(x − 2)(x − 4) = −9(x − 2)(x + 4) x(x − 2)(x − 4) = −9(x + 4) x(x − 4) Restricted values are 2, 4, and 0. Version: Fall 2007 Section 7.5 Sums and Differences of Rational Functions 31. 8x 120 + 2 2 5x − x x + 5x − 50 −8x 120 = 2 + 2 x − 5x x + 5x − 50 −8x 120 = + x(x − 5) (x − 5)(x + 10) = −8x(x + 10) 120x + x(x − 5)(x + 10) x(x − 5)(x + 10) = −8x(x + 10) + 120x x(x − 5)(x + 10) = −8x2 + 40x x(x − 5)(x + 10) −8x(x − 5) x(x − 5)(x + 10) −8 = x + 10 = Restricted values are 5, 0, and −10. 33. −5x 30 + 2 + x − 30 x + 23x + 102 −5x 30 = + (x + 6)(x − 5) (x + 6)(x + 17) x2 = −5x(x + 17) 30(x − 5) + (x + 6)(x − 5)(x + 17) (x + 6)(x − 5)(x + 17) = −5x(x + 17) + 30(x − 5) (x + 6)(x − 5)(x + 17) = −5x2 − 55x − 150 (x + 6)(x − 5)(x + 17) = −5(x + 6)(x + 5) (x + 6)(x − 5)(x + 17) = −5(x + 5) (x − 5)(x + 17) Restricted values are −6, 5, and −17. Version: Fall 2007 Chapter 7 Rational Functions 35. 8x 16 − 2 + 6x + 8 x + 2x 8x 16 − = (x + 2)(x + 4) x(x + 2) f (x) − g(x) = x2 = 8x2 16(x + 4) − x(x + 2)(x + 4) x(x + 2)(x + 4) = 8x2 − 16(x + 4) x(x + 2)(x + 4) = 8x2 − 16x − 64 x(x + 2)(x + 4) = 8(x + 2)(x − 4) x(x + 2)(x + 4) = 8(x − 4) x(x + 4) Restricted values are −2, −4, and 0. 37. 11x 44 + x2 + 12x + 32 −4x − x2 11x 44 = 2 − 2 x + 12x + 32 x + 4x 11x 44 = − (x + 4)(x + 8) x(x + 4) f (x) + g(x) = = 44(x + 8) 11x2 − x(x + 4)(x + 8) x(x + 4)(x + 8) = 11x2 − 44(x + 8) x(x + 4)(x + 8) = 11x2 − 44x − 352 x(x + 4)(x + 8) = 11(x + 4)(x − 8) x(x + 4)(x + 8) = 11(x − 8) x(x + 8) Restricted values are −4, −8, and 0. Version: Fall 2007 Section 7.5 Sums and Differences of Rational Functions 39. 4x 4 + 2 2 −x − x x + 3x + 2 −4x 4 + = 2 x + x x2 + 3x + 2 −4x 4 = + x(x + 1) (x + 1)(x + 2) f (x) + g(x) = = −4x(x + 2) 4x + x(x + 1)(x + 2) x(x + 1)(x + 2) = −4x(x + 2) + 4x x(x + 1)(x + 2) = −4x2 − 4x x(x + 1)(x + 2) = −4x(x + 1) x(x + 1)(x + 2) = −4x x(x + 2) = −4 x+2 Restricted values are −1, 0, and −2. Version: Fall 2007
© Copyright 2026 Paperzz