Factoring Arithmetic Series 2 • ak = a + (k − 1)d 2 • a − b = (a − b)(a + b) • a2 + b2 is prime 2 • Sn = 2 • a + 2ab + b = (a + b) 2 n X [a + (k − 1)d] = k=1 • a2 − 2ab + b2 = (a − b)2 • Sn = • a3 + b3 = (a + b) a2 − ab + b2 • a3 − b3 = (a − b) a2 + ab + b2 n X n [2a + (n − 1)d] 2 [a + (k − 1)d] = n k=1 a + an 2 Geometric Series Analytic Geometry y2 − y1 • slope: m = x2 − x1 • an = arn−1 • Sn = n−1 X k=0 • equation of a line: y − y1 = m (x − x1 ) q 2 2 • distance: d = (x2 − x1 ) + (y2 − y1 ) • S= ∞ X • ax+y = ax ay k=0 y • (ax ) = axy adjacent hypotenuse • tan A = opposite adjacent • a0 = 1 if a 6= 0 1 if a 6= 0 ax ax if a 6= 0 ay Logarithm Rules • logb x = y ⇐⇒ x = b if r 6= 1 a if |r| < 1 1−r • cos A = • (ab)x = ax bx • ax−y = ark = Trigonometry Exponent Rules • a−x = 1 − rn ar = a 1−r k opposite hypotenuse 0◦ 30◦ 45◦ 60◦ 90◦ 0 π 6 π 4 √ 2 2 √ 2 2 π 3 √ 3 2 π 2 sin 0 cos 1 tan 0 y • blogb x = x • sin A = 1 2 √ 3 2 √ 3 3 1 1 1 2 √ 0 3 undefined • logb bx = x • logb 1 = 0 Pythagorean Identities • logb b = 1 • cos2 A + sin2 A = 1 • logb xy = logb x + logb y • 1 + tan2 A = sec2 A x = logb x − logb y y • 1 + cot2 A = csc2 A • logb • logb xy = y logb x loga x • logb x = loga b Ratio Identities • tan A = sin A cos A • cot A = cos A sin A Reciprocal Identities • sec A = 1 cos A • csc A = Sum-to-Product Identities 1 sin A • cot A = 1 tan A • sin A + sin B = 2 sin A+B 2 cos A−B 2 Sum and Difference Identities • cos(A ± B) = cos A cos B ∓ sin A sin B • sin(A ± B) = sin A cos B ± cos A sin B • tan(A ± B) = tan A ± tan B 1 ∓ tan A tan B Double Angle Identities A+B A−B sin 2 2 A−B A+B cos • cos A + cos B = 2 cos 2 2 A+B A−B • cos A − cos B = −2 sin sin 2 2 • sin A − sin B = 2 cos Product-to-Sum Identities • sin A cos B = 1 2 [sin(A + B) + sin(A − B)] • cos 2A = 2 cos2 A − 1 • cos A cos B = 1 2 [cos(A + B) + cos(A − B)] • cos 2A = 1 − 2 sin2 A • sin A sin B = 1 2 [cos(A − B) − cos(A + B)] • cos 2A = cos2 A − sin2 A • sin 2A = 2 cos A sin A • tan 2A = 2 tan A 1 − tan2 A Half Angle Identities r A 1 + cos A • cos = ± 2 2 r A 1 − cos A • sin = ± 2 2 • tan A 1 − cos A sin A = = 2 sin A 1 + cos A Sums of Sines and Cosines √ • A cos x + B sin x = A2 + B 2 sin(x + φ) where B A and sin φ = √ cos φ = √ 2 2 2 A +B A + B2 √ • A cos x + B sin x = A2 + B 2 cos(x − φ) where A B cos φ = √ and sin φ = √ 2 2 2 A +B A + B2 Laws of Sines and Cosines • c2 = a2 + b2 − 2ab cos C • b c a = = sin A sin B sin C Triple Angle Identities • cos 3A = 4 cos3 A − 3 cos A Area of a Triangle • sin 3A = 3 sin A − 4 sin3 A For a triangle with sides a, b, c and angles 6 A, 6 B, and 6 C, p • Area = s(s − a)(s − b)(s − c) where a+b+c s= 2 Power Reduction Identities • cos2 A = 1 + cos 2A 2 1 − cos 2A • sin A = 2 • Area = 1 ab sin C 2 1 − cos 2A • tan2 A = 1 + cos 2A • Area = c2 sin A sin B 2 sin C 2 • cos3 A = 3 cos A + cos 3A 4 3 sin A − sin 3A • sin A = 4 Circular Section • Arc length: s = rθ 3 • Area: A = 1 2 r θ 2
© Copyright 2025 Paperzz