Some facts about quadratic residues of prime number Theorem: Let p be a prime number such that p mod 4 = 3. If a is a quadratic residue of p then one of the solutions that solves the equation x^2 mod p = a is also a quadratic residue. Example: p=19, p mod 4=3 1^2 mod 19 =1 2^2 mod 19 =4 3^2 mod 19 =9 4^2 mod 19 =16 5^2 mod 19 =6 6^2 mod 19 =17 7^2 mod 19 =11 8^2 mod 19 =7 9^2 mod 19 =5 10^2 mod 19 =5 11^2 mod 19 =7 12^2 mod 19 =11 13^2 mod 19 =17 14^2 mod 19 =6 15^2 mod 19 =16 16^2 mod 19 =9 17^2 mod 19 =4 18^2 mod 19 =1 The quadratic residues of p=19 are: 1, 4, 9, 16, 6, 17, 11, 7 and 5. Theorem: Let p be a prime number such that p mod 4 = 1. If a is a quadratic residue of p then either both solutions that solve the equation x^2 mod p = a are also are quadratic residues or none of them is a quadratic residue. Example: p=17, p mod 4=1 1^2 mod 17 =1 2^2 mod 17 =4 3^2 mod 17 =9 4^2 mod 17 =16 5^2 mod 17 =8 6^2 mod 17 =2 7^2 mod 17 =15 8^2 mod 17 =13 9^2 mod 17 =13 10^2 mod 17 =15 11^2 mod 17 =2 12^2 mod 17 =8 13^2 mod 17 =16 14^2 mod 17 =9 15^2 mod 17 =4 16^2 mod 17 =1 The quadratic residues of p=17 are: 1, 2, 4, 8, 9, 13, 15 and 16.
© Copyright 2026 Paperzz