Computational Studies on Proteins and Complex Inorganic Molecules: From Binding Sites to Bonding Patterns Computerbasierte Studien an Proteinen und komplexen anorganischen Molekulen: Von Bindungsstellen zu Bindungsmodellen Der Naturwissenschaftlichen Fakultat der Friedrich-Alexander-Universitat Erlangen-Nurnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Christian Rainer Wick aus Nurnberg http://d-nb.info/1077931824 Contents ABSTRACT VII ZUSAMMENFASSUNG XIII 1 INTRODUCTION 1 2 THEORY AND METHODS 3 2.1 BORN-OPPENHEIMER QUANTUM MECHANICS 3 2.2 THE HARTREE-FOCK METHOD 5 2.2.1 FOUNDATIONS 5 2.2.2 LINEAR COMBINATION OF ATOMIC ORBITALS 8 2.2.3 RESTRICTED AND UNRESTRICTED HARTREE-FOCK 8 2.3 ELECTRON CORRELATION 10 2.3.1 CONFIGURATION INTERACTION (CI) 10 2.3.2 COMPLETE ACTIVE SPACE SCF (CASSCF) 12 2.4 SEMIEMPIRICAL MO THEORY 14 2.4.1 MODERN MNDO-UKE SEMIEMPIRICAL METHODS 14 2.4.2 PSEUDODIAGONALIZATION-BASED SCF 15 2.4.3 MOZYME: LOCALIZED MOLECULAR ORBITAL SCF 15 2.5 DENSITY FUNCTIONAL THEORY 16 2.6 MOLECULAR MECHANICS 17 2.7 MOLECULAR-DYNAMICS SIMULATIONS 19 Contents 2.7.1 SOLVING THE EQUATIONS OF MOTION 19 2.7.2 PRESSURE AND TEMPERATURE CONTROL 21 2.7.3 PARTICLE-MESH EWALD MOLECULAR DYNAMICS 23 3 SMALL MOLECULES THAT STABILIZE HIFa 3.1 INTRODUCTION 25 25 3.1.1 THE CELLULAR OXYGEN-SENSING MACHINERY 25 3.1.2 HOW TO STABILIZE HIFA 27 3.2 OBJECTIVES 30 3.3 STRUCTURAL INSIGHT INTO THE PROLYL HYDROXYLASE PHD2: A MOLECULAR DYNAMICS AND DFT STUDY 3.3.1 ABSTRACT 31 3.3.2 INTRODUCTION 31 3.3.3 RESULTS AND DISCUSSION 33 3.3.4 CONCLUSION 51 3.3.5 EXPERIMENTAL SECTION 52 3.4 PHD2 INHIBITORS FOR THE TREATMENT OF RENAL ISCHEMIA-REPERFUSION INJURY 53 3.4.1 PRESCREENING MODEL 53 3.4.2 SYNTHESIS AND EXPERIMENTAL VALIDATION 55 3.4.3 CONCLUSIONS 57 3.4.4 COMPUTATIONAL DETAILS 58 3.5 THE IMPACT OF O-HOLES ON INHIBITOR BINDING TO PHD2 ii 31 58 3.5.1 INTRODUCTION 58 3.5.2 RESULTS AND DISCUSSION 60 Contents 3.5.3 CONCLUSIONS 64 3.5.4 COMPUTATIONAL DETAILS 64 4 A COMPARISON OF FULL AND LOCALIZED-MOLECULAR-ORBITAL-SCF CALCULATIONS FOR PROTEINS 4.1 INTRODUCTION 69 69 4.1.1 LARGE SYSTEMS AND SEMIEMPIRICAL MO THEORY 69 4.1.2 IS THERE A NEED FOR LINEAR-SCAUNG TECHNIQUES? 70 4.2 OBJECTIVES 71 4.3 SELF-CONSISTENT FIELD CONVERGENCE FOR PROTEINS: A COMPARISON OF FULL AND LOCAUZED-MOLECULAR-ORBITAL SCHEMES 72 4.3.1 ABSTRACT 72 4.3.2 INTRODUCTION 72 4.3.3 THEORETICAL BACKGROUND AND COMPUTATIONAL DETAILS 73 4.3.4 HNUR77: A TEST PROTEIN 74 4.3.5 TEST MOLECULES 77 4.3.6 THE EFFECT OF SOLVENT 79 4.3.7 CONCLUSIONS 79 4.4 SCF-CONVERGENCE FOR PROTEINS: SECONDARY STRUCTURE 80 4.4.1 HOMOMERIC PEPTIDES 80 4.4.2 HETEROMERIC PEPTIDES 83 4.4.3 CONCLUSIONS 85 4.4.4 COMPUTATIONAL DETAILS 85 4.5 LOCAL PROPERTIES 86 iii Contents 4.5.1 MOLECULAR ELECTROSTATIC POTENTIAL 86 4.5.2 IEL AND EAL 88 4.5.3 CONCLUSIONS 89 4.5.4 SYSTEM AND SYSTEM SETUP 89 5 DINUCLEAR TRANSITION-METAL COMPLEXES AND POLYMERS 5.1 INTRODUCTION 5.1.1 FROM LEWIS STRUCTURES TO METAL-METAL MULTIPLE BONDS 91 91 91 5.1.2 PADDLEWHEEL AND SAWHORSE-TYPE DINUCLEAR COMPLEXES AND 1DPOLYMERS 5.2 OBJECTIVES 94 97 5.3 MULTIPLY BONDED METAL(II) ACETATE (RH, RU, MO) COMPLEXES WITH THE TRANS1,2-BIS(A/-METHYUMIDAZOL-2-YL)ETHYLENE LIGAND 98 5.3.1 INTRODUCTION 98 5.3.2 TFMWS-1,2-B1S(W-METHYUMIDAZ0L-2-YL)ETHYLENE (TTMNS-BIE) 98 5.3.3 SYNTHESIS AND EXPERIMENTAL CHARACTERIZATION OF THE DINUCLEAR PADDLEWHEEL POLYMERS 104 5.3.4 ELECTRONIC STRUCTURE AND BOND ORDERS OF DINUCLEAR UNITS WITHIN THE PADDLEWHEEL POLYMERS 5.3.5 CONCLUSIONS 112 5.3.6 COMPUTATIONAL DETAILS 113 5.4 SAWHORSE-TYPE DIRUTHENIUM TETRACARBONYL POLYMERS iv 106 115 5.4.1 INTRODUCTION 115 5.4.2 SYNTHESIS AND GEOMETRY 116 5.4.3 ELECTRONIC STRUCTURE AND BOND ORDERS 119 Contents 5.4.4 CONCLUSIONS 122 5.4.5 COMPUTATIONAL DETAILS 122 APPENDIX 124 BIBLIOGRAPHY 165 v
© Copyright 2026 Paperzz