Reteach Polynomials

Name
Date
Class
Reteach
LESSON
6-1
Polynomials
The degree of a polynomial is the value of the exponent of the term of the greatest degree.
A polynomial is in standard form when the terms are arranged in order with exponents from
greatest to least.
Degree Polynomial in Standard Form
0
Constants have degree 0.
8
1
2x 3
2
x 4x 5
3
4x 3 x
4
6x 4 x 3 5x 2 3x 1
5
9x 5 x 3 1
This third degree polynomial
has 2 terms.
2
This fifth degree polynomial
has 3 terms.
To arrange the polynomial 3x 2 x 4 2x 6x 5 7 in standard form, order the terms from
greatest to least exponent.
6x 5 x 4 3x 2 2x 7
6 is the leading
coefficient of this
polynomial.
Rewrite each polynomial in standard form. Then identify the leading
coefficient, degree, and number of terms of each polynomial.
1. 2x x 3 x 2 5
2. 5x 2 3x 4 x
Standard form: x 3 x 2 2x 5
Standard form: 3x 4 Leading coefficient: 1
Leading coefficient:
Degree:
3
Degree:
4
Number of terms:
3
4. 3x 2 x 4 x 2x 3 8
7x 5 6x 3
Standard form:
Standard form:
7
Leading coefficient:
Degree:
3
4
Number of terms:
3. 6x 3 7x 5
5x 2 x
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c06-1_rt.indd 6
1
Leading coefficient:
5
Number of terms:
x 4 2x 3 3x 2
x8
Degree:
2
4
Number of terms:
6
5
Holt Algebra 2
12/29/05 8:31:24 PM
Process Black
Name
Date
Class
Reteach
LESSON
6-1
Polynomials (continued)
To add polynomials:
− Write each polynomial in standard form.
− Align like terms vertically.
− Add like terms.
Standard form: x 3 4x 2 2x
Add: 6x 2x 3 5x 2 1 4x 2 2x x 3 .
Standard form: 2x 3 5x 2 6x 1
2x 3 5x 2 6x 1
Align like terms.
x 4x 2x
3
2
Add like terms vertically.
3x 3 x 2 8x 1
To subtract polynomials, add the opposite vertically.
3
2
2
3
Subtract: 6x 2x 5x 1 4x 2x x .
3
2
2
3
Add the opposite: 6x 2x 5x 1 4x 2x x .
3
2
2x 5x 6x 1
3
2
x 4x 2x Add like terms vertically.
x 3 9x 2 4x 1
Write each polynomial in standard form. Add or subtract.
2
3
2
5. 3x 2x x 6x 2x 1 6. x 4x 3 5 4x 2 x 2x 3 4x 3
x5
3
2
2x 4x x
2x 3 3x 2 x
2x 2 6x 1
2x 3 5x 2 5x 1
6x 3 4x 2 5
7. 6x 2 4x 1 2x x 3 1 8. 4x 3 6 3x 2 x 3 Add the opposite:
Add the opposite:
6x 2 4x 1 2x x 3 1 6x 2 4x 1
x3
2x 1
x 3 6x 2 2x 2
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c06-1_rt.indd 7
(4x 3 6) (3x 2 x 3)
4x 3
6
3
2
x 3x
5x 3 3x 2 6
7
Holt Algebra 2
5/15/06 1:56:19 PM
Process Black
--"
ȇ£
*À>V̈ViÊ
0OLYNOMIALS
ȇ£
)DENTIFYTHEDEGREEOFEACHMONOMIAL
X
ä
£
X
{
XY
X
)DENTIFYTHEDEGREEOFEACHMONOMIAL
A B Ó
Î
Ó
B 7HATISTHELEADINGCOEFFICIENT
C 7HATISTHEDEGREE
D (OWMANYTERMSAREINTHISPOLYNOMIAL
££
Î
Ó
{ÊXÊ ÊÊÊXÊ ÊÊÇXÊÊÈÆÊ{ÆÊÎÆÊ{ÆÊVÕLˆVÊ«œÞ˜œ“ˆ>Ê܈̅Ê{ÊÌiÀ“Ã
X X X X
XÊÎÊÊÓÊXÊÓÊÊÇXÊÊ£
£
Î
{
x
{
Ó
ÓÊXÊ ÊÊÇÊXÊ ÊÊÊXÊ ÊÊ£ÓXÊÊÎÆÊÓÆÊxÆÊxÆÊµÕˆ˜ÌˆVÊ«œÞ˜œ“ˆ>Ê܈̅ÊxÊÌiÀ“Ã
!DDORSUBTRACT7RITEYOURANSWERINSTANDARDFORM
S
SX XDSXXXD
ÕLˆVÊ«œÞ˜œ“ˆ>Ê܈̅Ê{ÊÌiÀ“Ã
E .AMETHEPOLYNOMIAL
Ç
XXX
A 2EWRITETHEPOLYNOMIALXXX
INSTANDARDFORM
XY
2EWRITEEACHPOLYNOMIALINSTANDARDFORM4HENIDENTIFYTHELEADING
COEFFICIENTDEGREEANDNUMBEROFTERMS.AMETHEPOLYNOMIAL
x
PM
X
3OLVE
*À>V̈ViÊ
0OLYNOMIALS
--"
Î
Ó
££ÊXÊ ÊÊÊXÊ ÊÊÎXÊÊ{
D
X SX XXD
ÎÊXÊÎÊÊnÊXÊÓÊÊÈXÊÊ{
A 2EWRITETHEPOLYNOMIALXX IN
STANDARDFORM
B 7HATISTHELEADINGCOEFFICIENT
C 7HATISTHEDEGREE
D (OWMANYTERMSAREINTHISPOLYNOMIAL
E .AMETHEPOLYNOMIAL
Ó
{ÊXÊ ÊÊÎXÊÊx
{
Ó
Î
+Õ>`À>̈VÊÌÀˆ˜œ“ˆ>
Ó
XÊ ÊÊÓXÊÊÓ
--"
ȇ£
A %VALUATEHSTDFORTANDT
B $ESCRIBEWHATTHEVALUESOFTHEFUNCTIONFROMPARTAREPRESENT
œÌʏ}iLÀ>ÊÓ
/…iʅiˆ}…ÌʜvÊ̅iÊL>ÃiL>ÊÎÊÃÊ>vÌiÀÊLiˆ˜}ʅˆÌÊLÞÊ̅iÊL>ÌÊ>˜`Ê̅iʅiˆ}…ÌʜvÊ
̅iÊL>ÃiL>ÊxÊÃÊ>vÌiÀÊLiˆ˜}ʅˆÌÊLÞÊ̅iÊL>Ì
ȇ£
4HEDEGREEOFAPOLYNOMIALISTHEVALUEOFTHEEXPONENTOFTHETERMOFTHEGREATESTDEGREE
!POLYNOMIALISINSTANDARDFORMWHENTHETERMSAREARRANGEDINORDERWITHEXPONENTSFROM
GREATESTTOLEAST
XXXXX
™ÊXÊxÊÊÎÊXÊ{ÊÊÊxÊXÊÎÊÊ£äÊXÊÓÊÊÓXÊÊ£ÆÊ™ÆÊxÆÊÈÊÌiÀ“ÃÆÊÊ
µÕˆ˜ÌˆVÊ«œÞ˜œ“ˆ>Ê܈̅ÊÈÊÌiÀ“Ã
$EGREE 0OLYNOMIALIN3TANDARD&ORM
!DDORSUBTRACT7RITEYOURANSWERINSTANDARDFORM
SX XDSX XXD
Ó
ÈÊXÊ ÊÊnÊXÊ ÊÊ{XÊÊÇ
SXXDSX XXXD
{
Î
X
È
x
{
Ó
XÊ ÊÊÇÊXÊ ÊÊÓÊXÊ ÊÊÈÊXÊ ÊÊXÊÊ£™
3OLVE
7HATPOLYNOMIALCOULDYOUADDTOXXXXTOGETASUMOF
XXXX
XÊ{ÊÊnÊXÊÎÊÊÓÊXÊÓÊÊ{XÊÊ{
XX
XX
X X X X
XX
4HISFIFTHDEGREEPOLYNOMIAL
HASTERMS
2EWRITEEACHPOLYNOMIALINSTANDARDFORM4HENIDENTIFYTHELEADING
COEFFICIENTDEGREEANDNUMBEROFTERMSOFEACHPOLYNOMIAL
7HATPOLYNOMIALCOULDYOUSUBTRACTFROMX XX X X TOGIVE
ADIFFERENCEOFXXXXX
XXX
ÇÊXÊxÊÊÓÊXÊ{ÊÊÎÊXÊÎÊÊÊXÊÓÊÊÈXÊÊ£ä
'RAPHEACHPOLYNOMIALFUNCTIONONACALCULATOR$ESCRIBETHEGRAPH
ANDIDENTIFYTHENUMBEROFREALZEROS
3TANDARDFORMX
,EADINGCOEFFICIENT
,EADINGCOEFFICIENT
3TANDARDFORM
3OLVE
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
$EGREE
œÌʏ}iLÀ>ÊÓ
X X #OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
75
.UMBEROFTERMS
.UMBEROFTERMS
X X XX 3TANDARDFORM
,EADINGCOEFFICIENT
4HEPROFIT0EARNEDBYASMALLBUSINESSEACHYEARCANBEMODELEDTOFIT
THEPOLYNOMIALFUNCTION0SYDYYYWHEREYISTHE
NUMBEROFYEARSSINCE$IDTHECOMPANYSPROFITSINCREASEOR
DECREASEINCOMPAREDTO
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
X X
$EGREE
X X Àœ“ʏivÌÊ̜ÊÀˆ}…Ì]Ê̅iÊ}À>«…Ê`iVÀi>ÃiÃÊ>˜`Ê̅i˜Êˆ˜VÀi>ÃiðÊÌÊVÀœÃÃiÃÊ̅i
X‡>݈ÃÊÌ܈Vi]ÊÜÊ̅iÀiÊ>ÀiÊÓÊÀi>ÊâiÀœÃ°
*ÀœvˆÌÃʈ˜VÀi>Ãi`ÊvÀœ“Ê£™™{Ê̜ʣ™™x
.UMBEROFTERMS
FSXDXXX
$EGREE
Àœ“ʏivÌÊ̜ÊÀˆ}…Ì]Ê̅iÊ}À>«…ʈ˜VÀi>ÃiÃ]Ê`iVÀi>ÃiÃÊÃÕLÃÌ>˜Ìˆ>Þ]Ê>˜`Ê̅i˜
ˆ˜VÀi>ÃiÃÊ>}>ˆ˜°ÊÌÊVÀœÃÃiÃÊ̅iÊX‡>݈ÃÊÎÊ̈“iÃ]ÊÜÊ̅iÀiÊ>ÀiÊÎÊÀi>ÊâiÀœÃ°
XXX
3TANDARDFORMXXX
FSXDXX
AK4up.indd 75
4HISTHIRDDEGREEPOLYNOMIAL
HASTERMS
4OARRANGETHEPOLYNOMIALX XXXINSTANDARDFORMORDERTHETERMSFROM
GREATESTTOLEASTEXPONENT
XXXX
ISTHELEADING
COEFFICIENTOFTHIS
POLYNOMIAL
SXXXXDSXXXXD
#ONSTANTSHAVEDEGREE
XÊ ÊÊ{ÊXÊ ÊÊÓÊXÊ ÊÊ£™XÊÊ£Î
œÌʏ}iLÀ>ÊÓ
,iÌi>V…
0OLYNOMIALS
,%33/.
x
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
*À>V̈ViÊ
0OLYNOMIALS
£È£ÊvÌÊ>˜`Ê£äxÊvÌ
ÇCÊÊ£Ç
Î
XÊ ÊÊÓ£ÊXÊ ÊʙXÊÊÈ
4HEHEIGHTHINFEETOFABASEBALLAFTERBEINGSTRUCKBYABATCANBEAPPROXIMATED
BYHS TDTTWHERETISMEASUREDINSECONDS
2EWRITEEACHPOLYNOMIALINSTANDARDFORM4HENIDENTIFYTHELEADING
COEFFICIENTDEGREEANDNUMBEROFTERMS.AMETHEPOLYNOMIAL
Ó
3OLVE
3OLVE
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
Ç
Àœ“ʏivÌÊ̜ÊÀˆ}…Ì]Ê̅iÊ}À>«…Ê>ÌiÀ˜>ÌiÞÊ`iVÀi>ÃiÃÊ>˜`ʈ˜VÀi>ÃiÃ]ÊV…>˜}ˆ˜}
`ˆÀiV̈œ˜ÊÎÊ̈“iðÊÌÊVÀœÃÃiÃÊ̅iÊX‡>݈ÃÊ{Ê̈“iÃ]ÊÜÊ̅iÀiÊ>ÀiÊ{ÊÀi>ÊâiÀœÃ°
XÊÓÊÊÎXÊÊx
"RITTHASFULLBOXESPLUSEXTRA#$SAND*IMHAS
FULLBOXESANDEXTRA#$S)FTHENUMBEROF#$SIN
EACHBOXISREPRESENTEDBYCWRITEANEXPRESSIONTHAT
SHOWSTHETOTALNUMBEROF#$STHAT"RITTAND*IMHAVE
FSXDXX
Ó
Àœ“ʏivÌÊ̜ÊÀˆ}…Ì]Ê̅iÊ}À>«…ʈ˜VÀi>ÃiÃ]Ê`iVÀi>ÃiÃÊψ}…̏Þ]Ê>˜`Ê̅i˜
ˆ˜VÀi>ÃiÃÊ>}>ˆ˜°ÊÌÊVÀœÃÃiÃÊ̅iÊX‡>݈Ãʜ˜Vi]ÊÜÊ̅iÀiʈÃÊ£ÊÀi>ÊâiÀœ°
SX XDSX XD
SX XDSX XD
Î
ÎÊXÊ ÊÊÊXÊ ÊÊ£äÊXÊ ÊÊÇ
ÓXÊÊ£Ó
{
FSXDXX
SXDSXD
™XÊÊ£x
'RAPHEACHPOLYNOMIALFUNCTIONONACALCULATOR$ESCRIBETHEGRAPH
ANDIDENTIFYTHENUMBEROFREALZEROS
!DDORSUBTRACTTHEFOLLOWINGPOLYNOMIALS7RITEYOURANSWERIN
STANDARDFORM
SXDSXD
SX XDSX X XD
SX X DSX X X D
,EADINGCOEFFICIENT
XXX
X
$EGREE
.UMBEROFTERMS
(OLT!LGEBRA
Holt Algebra 2
12/29/05 7:02:35 PM
,iÌi>V…
0OLYNOMIALSCONTINUED
,%33/.
ȇ£
--"
ȇ£
!POLYNOMIALFUNCTIONINXISOFTHEFORMANXNANXNxAXA
WHEREANISANONZEROREALNUMBERANDNISANONNEGATIVEINTEGER
4OADDPOLYNOMIALS
¥ 7RITEEACHPOLYNOMIALINSTANDARDFORM
%XPLOREPOLYNOMIALFUNCTIONSWHOSECOEFFICIENTSAREALL
¥ !LIGNLIKETERMSVERTICALLY
N
3TANDARDFORMXXX
!DDSXX X DSX XX D
XXX
X X X
XXX
!LIGNLIKETERMS
X X X
SX X XD
!DDLIKETERMSVERTICALLY
X X X
!DDTHEOPPOSITE
SX XDSXX D
1ÊTXEÊÊÊXÎÊÊÊÊXÓÊÊXÊÊ£
XÊÊ£
Y
N
N
1NSDSD SD
X
C 6ERIFYTHATTHEFUNCTION1NSXDCHANGESITSVALUEFROM
NEGATIVETOPOSITIVEATXWHENNISODD3HOW
THAT1NSDFORALLODDVALUESOFNBY
EVALUATINGTHEEXPRESSIONBELOW
X X 7…i˜ÊÝÊÊ£Ê̅iÊ}À>«…ÃÊ>ÀiÊLiœÜÊ̅i
X‡>ÝˆÃÆÊ܅i˜ÊXÊÊ£Ê̅iÊ}À>«…ÃÊVÀœÃÃ
X‡>ÝˆÃÆÊ܅i˜ÊXÊÊ£Ê̅iÊ}À>«…ÃÊ>Ài
>LœÛiÊ̅iÊX‡>݈ð
X
C IS
XÊÊ£ä
B $ESCRIBEWHATTHESEGRAPHSHAVEINCOMMONWHEN
XWHENXANDWHENX
XXX
X X
X XXX
SX DSX X D
XX
X /…iÊ}À>«…ʈÃÊ>Ü>ÞÃÊ>LœÛiÊÊ
̅iÊX‡>݈ð
B ISPOSITIVE
XÊÊ£ä
!DDTHEOPPOSITE
A 5SEAGRAPHINGCALCULATORTOGRAPHTHE
FUNCTIONWHENNAND3KETCHTHESE
GRAPHSONTHEGRIDATRIGHT
X X X X
X X X
SX XDSXX D
XX
>Ü>ÞÃÊ«œÃˆÌˆÛi
A ISNEGATIVE
SXX DSX XX D
XXX
«œÃˆÌˆÛi
3TATEAVALUEOFXFORWHICH1SXD
SX X XDSXX D
B ABOUTTHEGRAPHOFTHEFUNCTION1NSXD
7RITETHEFUNCTIONWHENN
X X X
C WHENX
«œÃˆÌˆÛi
7RITEEACHPOLYNOMIALINSTANDARDFORM!DDORSUBTRACT
A ABOUTTHEVALUESOFTHEFUNCTION1NSXD
3UBTRACTSXX X DSX XX D
!DDTHEOPPOSITESXX X DSX XX D
B WHENX
«œÃˆÌˆÛi
#ONSIDER1NSXDFOROTHEREVENVALUESOFNINCLUDING7HENNISEVEN
WHATCANYOUSAY
!DDLIKETERMSVERTICALLY
4OSUBTRACTPOLYNOMIALSADDTHEOPPOSITEVERTICALLY
1ÈTÊ XEÊÊÊXÈÊÊÊXxÊÊÊX{ÊÊÊXÎÊÊÊXÓÊÊXÊÊ£
)S1SXDPOSITIVEORNEGATIVE
A WHENX
xX X X
7RITETHEFUNCTIONWHENN
3TANDARDFORMXXX
N
#ONSIDER1NT XEX X
¥ !DDLIKETERMS
…>i˜}i
0OLYNOMIAL&UNCTIONS7HOSE#OEFFICIENTS!RE
SD SD SD /…iÊÃՓÊVœ˜ÃˆÃÌÃʜvʜ˜ÞÊ£Ê>˜`Ê£°Ê7…i˜ÊNʈÃʜ``]Ê̅iÊÃՓʅ>ÃÊ̅iÊÃ>“iÊ
˜Õ“LiÀʜvÊ­£®ÃÊ>ÃʈÌʅ>ÃÊ­£®Ã]ÊÜÊ̅iÊÃՓʈÃÊä°
£
7HENXANDNISEVENWHATISTHEVALUEOF1NSD
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
(OLT!LGEBRA
*ÀœLi“Ê-œÛˆ˜}
0OLYNOMIALS
,%33/.
ȇ£
--"
ȇ£
!SPARTOFAPROJECTTOBUILDAMODELCASTLE*ULIANWANTSTOFIND
THESURFACEAREAOFSOLIDTOWERSOFVARIOUSSIZESSHAPEDLIKETHE
ONESHOWNINTHEFIGUREBELOW4HEDIAMETEROFTHECIRCULARBASEIS
DINCHESTHEHEIGHTOFTHECYLINDERISDINCHESANDTHESLANT
HEIGHTOFTHERIGHTCIRCULARCONEISDINCH
T E
,i>`ˆ˜}Ê-ÌÀ>Ìi}Þ
5NDERSTAND6OCABULARY
s ROOTSOFVARIABLES
OR??
X q^
X
s ABSOLUTEVALUESIGNS
X
s EXPONENTSTHATARENOTWHOLENUMBERS
X
T E
3!Q ??
D Q ??
D S
D
0OSSIBLEANSWERQRSBECAUSEITGIVESTHESURFACEAREAOFTHECURVEDPART
OFTHECONENOTTHECIRCULARBASETHEBASEISAGAINSTTHECYLINDERSOIT
ISNTPARTOFTHESURFACEAREAOFTHECASTLE
3TANDARD&ORM
$EGREE
$EFINITION
4ERMSARRANGEDIN
DESCENDINGORDER
BYDEGREE
4HEGREATEST
EXPONENTINA
POLYNOMIAL
%XAMPLE
X X X
4HEGENERALFORMULAFORTHESURFACEAREAOFACYLINDERWITHRADIUSRAND
HEIGHTHIS3!PR PRH
QD
????
3! DHQ
A 7RITETHEFORMULAINTERMSOFD
T E
T E
3!Q ??
D TDEQDTDEQ ??
D " 7HATISTHEAPPROXIMATESURFACEAREAIN
SQUAREINCHESOFATOWERWITHADIAMETER
OFINCHES
! # " $ $ Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 76
X ÊÊXÊÊ£Ê
XÎÊÊÊXÓÊÊÓXÊÊÈ
$EGREE
$EGREE
µÕˆ˜ÌˆV
VÕLˆV
#OMPLETETHETABLE
0OLYNOMIAL
7HATISTHEAPPROXIMATESURFACEAREAIN
7HATISTHEAPPROXIMATESURFACEAREAIN
SQUAREINCHESOFATOWERWHERETHEHEIGHT
SQUAREINCHESOFATOWERWHERETHESLANT
OFTHECYLINDERISINCHES
HEIGHTOFTHECONEISINCHES
! # ! # " $ " $ #OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
x
A XX B X X X
# ʓœ˜œ“ˆ>Ê…>Ãʜ˜Þʜ˜iÊÌiÀ“]Ê܅iÀi>ÃÊ>Ê«œÞ˜œ“ˆ>Ê…>Ãʜ˜iʜÀʓœÀiÊÌiÀ“ð
#HOOSETHELETTERFORTHEBESTANSWER
! ,EADING
#OEFFICIENT
#IRCLETHEPOLYNOMIALSBELOW#ROSSOUTTHEEXPRESSIONSTHATARENOTPOLYNOMIALS
^^
??
N
Xq
Z
X X
Z 7RITETHEPOLYNOMIALSINSTANDARDFORM#LASSIFYTHEPOLYNOMIALBASEDONITSDEGREE
7HATISTHEAPPROXIMATESURFACEAREAIN
SQUAREINCHESOFATOWERWITHA
DIAMETEROFINCHES
.UMBEROF
4ERMS
4HENUMBEROF 4HECOEFFICIENTOF
MONOMIALS
THEFIRSTTERMIN
STANDARDFORM
7HATISTHEDIFFERENCEBETWEENAMONOMIALANDAPOLYNOMIAL
0OSSIBLEANSWERJUSTTHECURVEDPARTANDONEBASETHETOPOFTHECYLINDER
ISHIDDENBECAUSETHECONESITSONIT
7RITEAGENERALPOLYNOMIALEXPRESSIONFORTHESURFACEAREAOFTHEMODELTOWER
4HESEARE./4
MONOMIALS
!NSWEREACHQUESTION
B 7HATPARTOFTHEFORMULAWILLYOUUSETOFINDTHESURFACEAREAOFTHE
CYLINDERPARTOFTHEMODEL7HY
3
!POLYNOMIALISAMONOMIALORTHESUMORDIFFERENCEOFMONOMIALS
%ACHMONOMIALINAPOLYNOMIALISCALLEDATERM(EREARESOMEWAYSTO
DESCRIBEPOLYNOMIALS
B 7HATPARTOFTHEFORMULAWILLYOUUSETOFINDTHE
SURFACEAREAOFTHECONEPARTOFTHEMODEL7HY
X
s VARIABLESINDENOMINATORSOREXPONENTS
A 7RITETHEFORMULAINTERMSOFD
œÌʏ}iLÀ>ÊÓ
!MONOMIALISANUMBERORAPRODUCTOFANUMBERANDAVARIABLESUCHAS
XORX !MONOMIALCANNOTHAVE
4HEGENERALFORMULAFORTHESURFACEAREAOFA
CONEIS3!PRPRSWHERERISTHERADIUSOFTHE
BASEANDSISTHESLANTHEIGHTOFTHECONE
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
(OLT!LGEBRA
Y Y Y X X #OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
76
$EGREE
.UMBEROF4ERMS
,EADING
#OEFFICIENT
{
x
{
Î
Ó
È
œÌʏ}iLÀ>ÊÓ
Holt Algebra 2
5/15/06 1:50:54 PM