The total surface area of a right circular cylinder is related to the

The total surface area 𝑆 of a right circular cylinder is related to the base radius r and height h by
the equation 𝑆 = 2πœ‹π‘Ÿ 2 + 2πœ‹π‘Ÿβ„Ž
a) How is dS/dt related to dr/dt and dh/dt if neither r nor h is a constant?
b) How is dS/dt related to dr/dt if h is constant?
c) How is dS/dt related to dr/dt if r is constant?
Solution:
a)
𝑑𝑆 𝑑 2πœ‹π‘Ÿ 2 π‘‘π‘Ÿ 𝑑 2πœ‹π‘Ÿ π‘‘π‘Ÿ
𝑑 2πœ‹π‘Ÿ π‘‘β„Ž
=
βˆ™
+
βˆ™
βˆ™β„Ž+
βˆ™
βˆ™π‘Ÿ =
𝑑𝑑
π‘‘π‘Ÿ
𝑑𝑑
π‘‘π‘Ÿ
𝑑𝑑
π‘‘β„Ž
𝑑𝑑
= 4πœ‹π‘Ÿ βˆ™
π‘‘π‘Ÿ
π‘‘π‘Ÿ
π‘‘β„Ž
π‘‘π‘Ÿ
π‘‘β„Ž
+ 2πœ‹β„Ž βˆ™
+ 2πœ‹π‘Ÿ βˆ™
= 2πœ‹(2π‘Ÿ + β„Ž) βˆ™
+ 2πœ‹π‘Ÿ βˆ™
𝑑𝑑
𝑑𝑑
𝑑𝑑
𝑑𝑑
𝑑𝑑
So
𝑑𝑆
π‘‘π‘Ÿ
π‘‘β„Ž
= 2πœ‹(2π‘Ÿ + β„Ž) βˆ™
+ 2πœ‹π‘Ÿ βˆ™
𝑑𝑑
𝑑𝑑
𝑑𝑑
b) If h is constant then
π‘‘β„Ž
= 0.
𝑑𝑑
Thus
𝑑𝑆
π‘‘π‘Ÿ
= 2πœ‹(2π‘Ÿ + β„Ž) βˆ™
𝑑𝑑
𝑑𝑑
c) If r is constant then
π‘‘π‘Ÿ
= 0.
𝑑𝑑
Thus
𝑑𝑆
π‘‘β„Ž
= 2πœ‹π‘Ÿ βˆ™
𝑑𝑑
𝑑𝑑