Chapter 5 Analytic Trigonometry Section 5.5 Multiple-Angle and Product-to-Sum Formulas Course/Section Lesson Number Date Section Objectives: Students will know how to use multiple-angle formulas, power-reducing formulas, half-angle formulas, and product-to-sum formulas to rewrite and evaluate trigonometric functions. I. Multiple-Angle Formulas (pp. 407−409) State the following double-angle formulas. sin 2u = 2sin u cos u cos 2u = cos2 u – sin2 u = 2cos2 u – 1 = 1 – 2sin2 u 2tan u tan 2u 1 tan 2 u Pace: 15 minutes Example 1. Solve sin 2x – cos x = 0. sin 2x – cos x = 0 2sin x cos x – cos x = 0 cos x (2sin x – 1) = 0 cos x = 0 or sin x = 1/2 x = /2, 3 /2 or x = /6, 5 /6 Example 2. Sketch the graph of y = cos4 x – sin4 x on [0, 2 ]. y = cos4 x – sin4 x = (cos2 x – sin2 x) (cos2 x + sin2 x) = cos 2x 1 = cos 2x Example 3. Given sin x = 12/13 and /2 < x < , find sin 2x, cos 2x, and tan 2x. cos x = −5/13 sin 2x = 2sin x cos x = 2(12/13)( −5/13) = −120/169 cos 2x = 1 – 2sin2 x = 1 – 2(12/13)2 = −119/169 sin 2 x 120 tan 2x cos 2x 119 Larson/Hostetler Precalculus with Limits Instructor Success Organizer Copyright © Houghton Mifflin Company. All rights reserved. 5.5-1 II. Power-Reducing Formulas (p. 409) State the following power-reducing formulas. 1 cos 2u 1 cos2u sin 2 u cos 2 u tan 2 u 2 2 Pace: 5 minutes 1 cos2u 1 cos2u Example 4. Rewrite cos4 x as a sum of first powers of the cosine function. cos 4 x cos 2 x 2 2 1 cos 2x 2 1 1 2 cos2x cos2 2x 4 1 1 cos 4 x 1 2cos 2x 4 2 1 3 4cos 2x cos 4x 8 III. Half-Angle Formulas (pp. 410−411) State the following half-angle formulas. u 1 cosu sin 2 2 u 2 u tan 2 cos Pace: 10 minutes 1 cosu 2 1 cos u sin u sin u 1 cos u Example 5. Find the exact value of cos 165 . 1 cos 330o 2 cos165o 1 3 2 2 2 3 2 Example 6. Solve 2sin2 (x/2) = cos x on [0, 2 ). x 2sin 2 cos x 2 2 2 1 cos x 2 2 cos x 1 cos x 2 cos x 1 cos x 1 cos x x 5.5-2 cos x 2cos x 1 2 5 , 3 3 Larson/Hostetler Precalculus with Limits Instructor Success Organizer Copyright © Houghton Mifflin Company. All rights reserved. IV. Product-to-Sum Formulas (pp. 411−413) State the following product-to-sum formulas. 1 sin u sin v cos u v cos u v 2 1 cos u cos v cos u v cos u v 2 1 sin u cos v sin u v sin u v 2 1 cosu sin v sin u v sin u v 2 Pace: 15 minutes Example 7. Rewrite sin 2x sin x as a difference. 1 cos x sin 2 x sin x cos 2 x x cos 2x x 2 2 cos3 x 2 State the following sum-to-product formulas. x y x y cos sin x sin y 2 sin 2 2 sin x sin y 2 cos cos x 2 cos cos x cos y cos y x y 2 x 2sin y 2 x y 2 x sin y 2 x cos y 2 sin x y 2 Example 8. Find the exact value of sin 195 − sin 105 . 195o 105o 195o 105o sin sin195o sin105o 2 cos 2 2 2 cos150o sin 45o 2 2 3 2 2 6 2 Example 9. Solve cos 3x + cos x = 0 on [0, 2 ). cos3x cos x 0 2 cos 3x x 2 x 2 2 cos 2x cos x cos 3x cos2x 2x x cos x 0 0 0 3 5 7 , , 2 2 2 3 5 7 , , , 4 4 4 4 3 0 x , 2 2 2 , Larson/Hostetler Precalculus with Limits Instructor Success Organizer Copyright © Houghton Mifflin Company. All rights reserved. 5.5-3 Example 10. Verify the identity. sin 7x sin 5x cos 7x cos 5x cot 6x 7x 5x 7 x 5x sin 2 2 7x 5x 7x 5 x sin 2 sin 2 2 cos6 x sin 6x cot 6x 2 cos sin 7x sin 5x cos 7x cos 5x V. Application (p. 414) Pace: 10 minutes • Assign the Writing About Mathematics on page 414 of the text. 5.5-4 Larson/Hostetler Precalculus with Limits Instructor Success Organizer Copyright © Houghton Mifflin Company. All rights reserved.
© Copyright 2026 Paperzz