! " # # $ " " " # % & " ' ())) $ * " + + , + - - # . / 0 # $ # * ! ' 1 , , 23 * 24 ()5 - 1 * E B . 6, 7# . 8 6,2 9 + $ * ! D . %,2 H . %, / # + # ! . D = D(E, B), H = H(E, B). 2: * # * P M H = (1/µo)B − M + . . . 2( D = o E + P + . . . , 23 o = 8.85 · 10−12 %,6 µo = 4π · 10−7 6,% P M # E B * , # " ; % ' * α ' mag Mα = (1/µo) χαβ Bβ 24 Pα = o β χel αβ Eβ , β 2< χel/mag , * αβ M = (1/µo )χmag B 2= el P = o χ E. 25 ()2 + + #" #, / # D = o E 22 1 H = 2> B, µµ o = 1 + χel µ = 1 − χmag / χmag < 0 µ > 1 ! # / χmag > 0 µ < 1 # " # + " % V B " / " E mag = (1/2BH)V ⇒ 1/V dE mag = 1/2BdH + 1/2HdB. 2:) / ?+ 2> HdB = BdH 1/V dE mag = BdH = (µo H + µo M)dH = Bo dH + µo MdH. 2:: * µoH = Bo ; @ mag dEsolid = −µo MV dH. 2:( A m E = −mB # ?+ 2> M A ?+ 2:( # + 1 ∂E(H) M(H) = − µo V ∂H S,V mag χ 2:3 , ∂M(H) 1 ∂ 2 E(H) (H) = = − . ∂H S,V µo V ∂H 2 S,V ()> 2:4 % 1 ∂F (H, T ) M(H, T ) = − µo V ∂H S,V mag χ 1 ∂ 2 F (H, T ) (H, T ) = − . µo V ∂H 2 S,V 2:< + + % # # M χmag ? " + * " # $ 23: ! B 23( * 233 / 234 ; * + nlm n l ml / n + l " ) (n−1) / l = 0, 1, 2, 3 . . . s p d f nl ml (2l + 1) −l +l % + + ms " −1/2 +1/2 / # 1s 2s # 2p l + + nlm ,m l (:) s el. : ( 3 4 < = 5 2 > :) ml = ( ↓ ↓ ↓ ↓ ↓ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ : ↓ ↓ ↓ ↓ ↓ ↓↑ ↓↑ ↓↑ ↓↑ ) ↓ ↓ ↓ ↓ ↓ ↓↑ ↓↑ ↓↑ −: ↓ ↓ ↓ ↓ ↓ ↓↑ ↓↑ −2 ↓ ↓ ↓ ↓ ↓ ↓↑ S :,( : 3,( ( <,( ( 3,( : :,( ) L=| ( 3 3 ( ) ( 3 3 ( ) ml | J 3,( ( 3,( ) <,( 4 >,( 4 <,( ) $ 2 D3/2 3 F2 4 F3/2 5 D0 6 S5/2 5 D4 4 F9/2 3 F4 2 D5/2 1 S0 2:. & d l = 2 B1 * * L= ml and S= ms , 2:= + A $ * L S J = L + S B B1 . : C # S ( L # 3 J L S . • < 2l + 1 J = L − S D • > 2l+1 J = L + S D • # = 2l + 1 L = 0, J = S B1 + # @ LS L = 0, 1, 2, 3, . . . = (:: S, P, D, F, . . . % # (2S +1) J (2S+1) LJ 2: # d B " z# B H e = T e + V e−ion + V e−e 9 H e ! ; 9A # $ V e−ion V e−e ! " / " p (= ih̄∇) p → p + eA / z# 1 A = − (r × B) , 2 2:5 B = (∇ × A) ∇ · A = 0 " 1 1 e T (B) = [pk + eA]2 = pk − (rk × B) 2m k 2m k 2 e 2 2:2 . ?# + e T (B) = k e p2k e2 + pk · (B × rk ) + (rk × B)2 2m 2m 8m = Toe + k e2 2 2 e (rk × pk ) · B + B xk + yk2 2m 8m k 2:> . * # L # (r × pk ) - µB = (eh̄/2m) = 0.579 · 10−4 6, k k " e2 2 2 ∆T e (B) = µB L · B + xk + yk2 . 2() B 8m h̄L = k * ! H e + - 0 $ B (:( E + % where Sz = ∆H spin(B) = g0 µB BSz , sz,k 2(: . k B g0 g f actor α + O(α2) + . . . , 2π = 2.0023 . . . , g0 = 2 1 + where α = 1 e2 ≈ h̄c 137 2(( , " ; ( B ∆H e (B) = ∆T e (B) + ∆H spin (B) = µB (L + g0 S) · B + e2 2 2 B xk + yk2 . 8m k 2(3 ?+ 2(3 + # C B A $ n En → En + ∆En (B); ∆En = < n|∆H e (B)|n > + | < n|∆H e (B)|n > |2 En − En n =n . 2(4 $ ?+ 2(3 + + ∆En = µB B· < n|L + g0 S|n > + + e2 2 B < n| x2k + yk2 |n > 8m k | < n|µB B · (L + g0 S)|n > |2 En − En n =n . 2(< $ |0> ?+ 2(< |0> (:3 < 0| k (x2k +yk2)|0 > ≈ 2/3 < 0| k rk2 |0 > # ∆E0dia ≈ e2 B 2 e2 B 2 2 Z r̄atom < 0|rk2 |0 > ∼ 12m k 12m , 2(= Z k 2 r̄atom + * " Z ∼ 30 2 2 r̄atom F ∆E0dia ∼ 10−9 6 # " χmag,dia = − 2 µo ∂ 2 E0 µo e2 Z r̄atom ∼ −10−4 . = − V ∂B 2 6mV 2(5 χmag,dia < 0 0 0 # + # ?+ 2(< J|0 >= L|0 >= S|0 > * |0> ; ?+ 2(< = # * + ?+ 2:< χmag,dia - " ?+ 2(< 2µo µ2B | < 0|(Lz + g0 Sz )|n > |2 χmag,vleck = . 2(2 V E −E n n 0 9 ?+ 2(< χmag,vleck $ # En > E0 χmag,vleck > 0 6 6 " * + " 6 6 " (:4 ?+ 2(< 0 6 6 " - / J = 0 % ?+ 2(< % J = 0 (2J + 1) ?+ 2(< * α = 1, . . . , (2J + 1) (2J+1) ∆E0,α = µB B α =1 < 0α|Lz + g0 Sz |0α > = µB B (2J+1) α =1 Vα,α , 2(> z# # Vα,α # %, # J Jz < JLS, Jz |Lz + g0 Sz |JLS, Jz > = g(JLS)Jz δJ ,J . 23) JLS + |0> g(JLS) %# go ≈ 2 1 S(S + 1) − L(L + 1) 3 + g(JLS) = . 23: 2 2 J(J + 1) z z * ?+ 23) ?+ 2(> 23( (2J + 1) + g(JLS)µB B −g(JLS)µB JB, −g(JLS)µB (J−1)B, . . . , +g(JLS)µB (J− 1)B, +g(JLS)µB JB ! matom = −g(JLS)µB J. 233 ?+ 2(< # J = 0 ∆EJLS,Jz = g(JLS)µB Jz B , - matom ?+ 2(< (:< / 2:. C - BJ (x) J ! B H spin = −matom · B + (2J + 1) * " # H spin B - # ! ! ! $ # " # % # B " ! (2J + 1) g(JLS)µB B A µB = 0.579 · 10−4 6, 10−4 6 kB T % # + ?+ 2:< + (2J +1) E η = (g(JLS)µB B)/(kB T ) (:= q = J e−ηJz = Jz =−J = e−ηJ − eη(J+1) 1 − eη e−η(J+1/2) − eη(J+1/2) sinh [(J + 1/2)η] = −η/2 η/2 e −e sinh [η/2] 234 . 1 ∂(−kB T lnq) 1 ∂F = − 23< V ∂B V ∂B g(JLS)µB J kB T ∂ [ln (sinh[(J + 1/2)η]) − ln (sinh[η/2])] = BJ (η), = V ∂B V M(T ) = − η 1 1 1 1 BJ (η) = (J + ) coth (J + )η/J − coth J 2 2 2 2J . 23= % / 2: BJ → 1 η 1 ?+ 23< matom ?+ 233 # # M = matom /V η = (g(JLS)µB B)/(kB T ) % - BJ (η → 0) η # BJ (η 1) ≈ J +1 η + O(η 3 ) . 3 235 * χmag,para (T ) = µo µo µ2B g(JLS)2 J(J + 1) 1 ∂M = ∂B 3V kB T . 232 χmag,para > 0 ?+ 2(< J = 0 " χmag,para = CCurie /T CCurie ' $ % η ' * " V ∼ F3 ?+ 232 χmag,para ∼ 10−2 % 6 6 " (:5 9 χmag,para 1 + + 234 ! B # # $ ; # . @ " + * # " 0 C " ! / N V * ( E@$ 1 N() = 2π 2 2me h̄2 3/2 √ 23> . * / ∞ N N() f (, T ) d, = V 0 24) N/V + / G / # / / $ rs = 50.1 eV F = r . 24: s aB E@$ / + rs N(F ) = 1 20.7 eV3 rs aB −1 . 24( H # $ # ! # E@$ N ↑ N ↓ E@$ * (:2 / 2(. / ! # . 9↑ 9↓ z# 9 B0 z + E@$ E@$ ?+ 23> N ↑ () = N ↓ () = 1 N() , 2 243 / 2( % # B ! $ # * ! + ?+ 2(: ∆H spin (B) = µB go B · s = +µB B (for spin up) 244 = −µB B (for spin down) 24< # go ( ! (:> # # E@$ 1 N( − µB B) 2 1 N( + µB B) , N ↓ () = 2 24= N ↑ () = 245 / 2( * / ! # $ # / T ≈ 0 " / 2( ? µB B ∼ 10−4 6 # µB B 12 N(F ) / E@$ N↑ = N 1 + N(F )µB B 2 2 242 N↓ = 1 N − N(F )µB B 2 2 24> $ µB 2<) E@$ ∂M = µo µ2B N(F ) . χmag,Pauli = µo 2<: ∂B H ?+ 24( / E@$ $ rs M = (N ↑ − N ↓ )µB = N(F )µ2B B χmag,Pauli = 10−6 2.59 rs /aB . 2<( A $ 3< aB # C χmag,Pauli > 0 " # / C # (() * " ' ?+ 232 / @ C ' # TF T $ TF T C ! 0 + + B " B 1 χmag,Landau = − χmag,Pauli , 2<3 3 + * " " C ! ())) " * " + % " * ; . # # • % . C 0 • χmag,para χmag,dia ≈ 1/T ∼ 10−2 A ≈ const. ∼ −10−4 ∆E0para ∼ 10−4 6 ∆E0dia ∼ 10−9 6 / . C 0 χmag,Pauli ≈ const. ∼ 10−6 χmag,Landau ≈ const. ∼ −10−6 ∆E0Pauli ∼ 10−4 6 ∆E0Landau ∼ 10−4 6 * ! * # , ((: / 23. * 4f 5s 5p 4f ! * 3d ; % . " J = 0 * L = " " I @ 6 6 " 0 * ! # + + J = 0 A? f d $ ' # / A? ' ?+ 232 / ' L = 0 S B1 " . % / 23 f A? s p ! @ d 7 % B1 @ S=0 ((( ' ' ' # B ' " $ II # # * * " " % J = L = S = 0 # C # ?+ 2<( + ! # ! . . . ! % 1 # ! . B # $ " " #$ #$ ((3 / 24. $ + # ?# * # / 24 * # G / 24 B ! ! * + # / 24 $ $ # # " " Ms # # / 24 % $ / 24 * ! " Ms = 0 $ / 2< # # B # ((4 / 2<. # " % & '#( )* ? % Tc " * Tc " # TN 9 Tc I * # Tc # J # ((< / 2=. Ms cV χo ' Tc % # # 7 Ms (T ) / 2= K Tc Ms (T ) ∼ (Tc − T )β (for T → Tc− ) , 2<4 # β 1/3 ' + T Tc χo (T ) = χ(T )|B=0 ∼ (T − Tc )−γ (for T → Tc+ ) , 2<< γ 4/3 + 7 + " cV (T )|B=0 ∼ (T − Tc )−α (for T → Tc ) , 2<= α ): C G * " # α, β γ / C Tc ((= µB matom µB Tc L Θc L / (( = 4 :)43 ::)) ' :5 = 3 :3>4 :4:< 9 )= < ( =(2 =<) ? 5: 5 (2> :)2 & 2) 2 3)( (2> E :)= :) 2< :<5 2(. + . T = 0 L m̄s Tc ' Θc L / matom " + m̄s $ / 2= χo (T ) ∼ (T − Θc )−1 (for T Tc ) , 2<5 Θc ' $ γ ?+ 2<< # : Θc ' Tc γ # 2( T → 0 L * Ms (T → 0 K) m̄s µB * matom = g(JLS)µB J ?+ 233 % 2( ! A + 234 ! d M L = 0 J = S g(JLS) = 2 2( * A? / ' 9 % # ! # ((5 ' ! # ' ' . * # - Tc + ; $ C C " d f B A? # / A? f " # s d " + % H A? # # ! " G ; ' " * + " # $#% ! :>)= ! # / ! " @ ! ((2 ! " $ ! M I " M B mol = µo λM 2<2 , λ / # $ ! + # ' χmag,para = C/T ) M = 1 mag 1 mag ext χ B = χ (B + B mol ) µo µo 1 C ext = (B + µo λM) . µo T 2<> $ M = C 1 B ext µo (T − λC) 2=) , ∂M C χo (T ) = µo = ext ∂B Bext =0 T − λC (for T > Tc ) . 2=: * λ = Θc /C ' ' ! & # ' " B T > Tc Θc = Tc γ = 1 # & + * " 9 . # " Ms Tc ((> 1 " / ' C ?+ 23< C = Nµo µ2B g(JLS)2 J(J + 1) ≈ 3kB V N V µo m2atom 3kB , 2=( # J(J + 1) ∼ J 2 matom = µB g(JLS)J T = 0 L B mol Tc (0 K) = µoλMs (0 K) = µo C N 3kB Tc m̄s m̄s ≈ V m2atom 2=3 2( m̄s matom B mol ∼ [5Tc in K] Tesla . [matom in µB ] 2=4 0" 2( 103 % " " + % / 2= Ms (T ) T = 0 L $ # Ms (T ) + ; # H 23( + ?+ 23< Ms (T ) = Ms (0 K) BJ g(JLS)µB B mol kB T , 2=< - BJ (η) ?+ 23= % # # " + ; . * " / 2= $ ' + Ms (T ) T → 0 L T → Tc− Ms (T → Tc− ) ∼ (Tc − T )1/2 2== β = 1/2 :,3 * - # T 3/2 " T 3/2 (3) # 7 # # " & & % % $ * # f A? i # mi % ! i j coupling Hi,j = − Jij mi · mj µ2B . 2=5 B Jij " # . 6 E " −Jij mi mj /µ2B +Jij mi mj /µ2B 9 * + # B A * # Jij Jij # # + / + # % / 25 B " / 25 B B (3: / 25. $ . # # # ! H Heisenberg = M i,j=1 coupling Hi,j = − M Jij mi · mj 2 i,j=1 µB . 2=2 $ = ; $ 1 " + * # % B f B ?+ 2=2 " % % % + + # " B B B ?# B B & (3( / 22. $ * B B G " + " ' * + # m ?+ 2=2 J > 0 J < 0 / | ↑↑↑ . . . ↑↑> @ # 7 | ↑↓↑ . . . ↑↑> $ B B # " / 22 % $ B B - T 3/2 Ms (T ) T → 0 L $ # + # * # B # # B ; (33 ' 1/T ' ' B # # @ # # Jij 10−2 6 10−3 − 10−4 6 A? + + # B ?+ 2=2 H Heisenberg = − M Jij mi · mj 2 i,j=1 µB M ⎛ ⎞ M M Jij ⎠ = − = − mi · ⎝ m mi · Bmol j 2 µ i=1 j=1 B i=1 . 2=> * " Bmol i B ! ! # ! < Bmol > / <B mol M Jij >= < mj > = 2 j=1 µB M j=1 Jij µ2B N Ms (T ) ∼ λMs (T ) , V 25) i % ?+ 25) * + Jij * ?+ 25) µ2 B mol J = JijN N = B . 25: 12m̄ s H 2( 103 # 10−2 6 10−3 −10−4 6 A? (34 "" , B " J + m1 m2 r / J mag dipole = 1 [m1 · m2 − 3(m1 · r̂)(m2 · r̂)] r3 , 25( & J mag dipole ≈ 1 m1 m2 r3 . 253 * µB 2( ( F J mag dipole ∼ 10−4 6 :( # B ' % 0 " # " ' ! ! # " G * + C ' ! " . '( " ! ! ) # B : ( B A B * B ho ho |φ > = o |φ > , 254 |φ >= |r, σ > r σ B (3< B H|Φ > = (ho (A) + ho (B) + hint )|Φ > , 25< |Φ > A B (1) (2) σ1 σ2 $ H # H |Φ > = |Ψorb > |χspin > , 25= % S2 Sz |χspin |χspin |χspin |χspin >S >T1 >T2 >T3 = = = = 2−1/2 (| ↑↓> − | ↓↑>) | ↑↑> 2−1/2 (| ↑↓> + | ↓↑>) | ↓↓> S S S S =0 =1 =1 =1 Sz Sz Sz Sz =0 =1 =0 = −1 / C # $ |χspin >S |χspin >T |Φ >singlet = |Ψorb,sym > |χS > |Φ >triplet = |Ψorb,asym > |χT > , 255 |Ψorb,sym(1, 2) > = |Ψorb,sym(2, 1) > |Ψorb,asym(1, 2) > = −|Ψorb,asym (2, 1) > E B % B2 * < Φ|hint |Φ >= 0 |φ > B + ?+ 255 |Ψ∞ orb,sym > = 2−1/2 [ |φ(1A) > |φ(2B) > + |φ(2A) > |φ(1B) > ] |Ψ∞ orb,asym > = 2−1/2 [ |φ(1A) > |φ(2B) > − |φ(2A) > |φ(1B) > ] 252 |φ(1A) > # (1) A B2 # 2o , B % (3= $ |φ(1A) > |φ(1B) > + |φ(2A) > |φ(2B) > S = < φ(1A)|φ(1B) >< φ(2A)|φ(2B) > = | < φ(1A)|φ(1B) > |2 . 25> * + * % ?+ 252 ; |ΨHL orb,sym > = (2 + 2S)−1/2 [ |φ(1A) > |φ(2B) > + |φ(2A) > |φ(1B) > ] 22) |ΨHL orb,asym > = (2 − 2S)−1/2 [ |φ(1A) > |φ(2B) > − |φ(2A) > |φ(1B) > ] . E ES =< Φ|H|Φ >singlet ET =< Φ|H|Φ >triplet ET − ES = 2 CS − A 1 − S2 22: , C = < φ(1A)| < φ(2B)| Hint |φ(2B) > |φ(1A) > A = < φ(1A)| < φ(2B)| Hint |φ(2A) > |φ(1B) > (Coulomb integral) (Exchange integral) . 22( 223 ' A # * A = CS B / C # A = CS ! B2 * . # ' G # C # . ! ' / " / " C ? C A ?+ 223 B (ET − ES) * B2 + B (35 B ?+ 2=2 # J B 0 # " # B B B " ; # ?+ 22) + B B % # ' N % U '( " & ' * B 0 # B B + # / # ; " " 233 # # " E ! " C * # # ! B /" # # * # :> # # (E/N)jellium = Ts + E XC HF ≈ 30.1 eV rs aB 2 − 12.5 eV rs aB , 224 233 " # # (32 / 2>. C ∆E(P ) ?+ 22> P α % α > 0.905 # # $ rs /aB = 1/3 3 (V /N) 4π N Ejellium,HF(N) = N 78.2 eV V 2/3 N − 20.1 eV V 1/3 22< . spin Ejellium,HF (N ↑ , N ↓ ) = Ejellium,HF(N ↑ ) + Ejellium,HF(N ↓ ) = ⎧ ⎨ = ⎩ ⎡ 2/3 N↑ ⎣ 78.2 eV V + 2/3 ⎤ N↓ ⎦ V − ⎡ 1/3 N↑ ⎣ 20.1 eV V + 1/3 ⎤⎫ ⎬ N↓ ⎦ ⎭ V 22= , N ↑ N ↓ N ↑ +N ↓ = N) ! P = N↑ − N↓ N 225 , P = ±1 P = 0 ?# N ↑ = N2 (1 + P ) N ↓ = N2 (1 − P ) ?+ 22= Ejellium,HF(N, P ) = ! " " 1 5 ! 5/3 5/3 4/3 4/3 NT (1 + P ) + (1 − P ) − α (1 + P ) + (1 − P ) 2 4 (3> 222 , α = 0.10(V /N)1/3 / P = 0 ∆E(N, P ) = E(N, P ) − E(N, 0) < 0 C # B /" # ∆E(N, P ) = NT ! " ! 22> " 1 5 (1 + P )5/3 + (1 − P )5/3 − 2 − α (1 + P )4/3 + (1 − P )4/3 − 2 . 2 4 / 2> P α % ∆E(N, P ) < 0 α > αc = 2 1/3 (2 + 1) ≈ 0.905 , 5 2>) P = 1 H α # * $ rs > ∼ 5.45 , 2>: a B $ <= aB A 1.8 < rs < 5.6 ' ; B /" # % ' / ,',9 B # ! B /" # # ?+ 2>: + " (rs /aB ) ≈ 50 ± 2 O/B P ' 0 E ' C A - ++ )3=5)3 ())(Q % B /" + ! # rs M # 1.8 < rs < 5.6 # ; . ' / ,',9 # d * # " ; . ! (4) "- . ' * 35 G # E/ B E/N = Ts [n] + E ion−ion [n] + E el−ion [n] + E Hartree [n] + E XC [n] , 2>( + n(r) + # # # 0E% R' r + n(r) A E/ E/N = Ts [n↑ , n↓ ] + E ion−ion [n] + E el−ion [n] + E Hartree [n] + E XC [n↑ , n↓ ] . 2>3 n↓ (r) * " ! # / ! 0$E% R' ; * n↑ (r) m(r) = n↑ (r) − n↓ (r) µB , 2>4 n(r) m(r) $ L$ + '()* % 0$E% / ' 9 A E@$ / 9 # / 2:) % # ; E ! ! L$ ! / ! J 0$E% m̄s = 2.1 µB / 1.6 µB ' 0.6 µB 9 # # T = 0 L 2( E/ 0$E% + N ; # " (4: / 2:). $ E@$ " / 9 E/ 0$E% O 60 K/ K" %A C C :>52Q # , " / " E@$ ; / 2:) ! " E@$ ! / R' # ↑↓ VXC (r) = ↑↓ δEXC [n(r), m(r)] o (r) ± Ṽ (r)m(r) , ≈ VXC δn(r) (4( 2>< o VXC (r) R' * ! R' Ṽ (r)m(r) * ) # 1 ↑↓ o VXC,Stoner (r) = VXC (r) ± IM 2 2>= , I $ # # M = unit−cell m(r)dr M = (m̄s /µB )× I $ ! R' . IM L$ + ! R' ↑↓ i ↑↓ = oi ± 1/2IM . 2>5 i E@$ ↑↓ N (E) = i BZ o δ(E − ↑↓ k,i )dk = N (E ± 1/2IM) , 2>2 $ # # E@$ M E@$ ! S $ $ " " # E@$ N o (E) N * N M * $ ! I + M I I M N M E@$ / N = M = F F 2>> [N o (E + 1/2IM) + N o (E − 1/2IM)] dE [N o (E + 1/2IM) − N o (E − 1/2IM)] dE . 2:)) $ N o(E) N # + F M B + M M = F (M ) [N o (E + 1/2IM) − N o (E − 1/2IM)] dE ≡ F (M) (43 2:): / 2::. & M = F (M) ?+ 2:): F (M) % # M F (M) $ I E@$ N o (E) F N + M # " N o (E) M " F (M) N o (E) > 0 F (M) = F (−M) F (±∞) = ±M∞ F (0) = 0 F (M) > 0 B M∞ ; F (M) + . −∞ +∞ # F (M) + " / 2:: * % M = 0 M = F (M) ?+ 2:): * - # M = 0 M = Ms = 0 ! F (M) . * : F (M) M % G # Ms F (0) > 1 " ?+ 2:): F (0) = IN o (F ) ) IN o (F ) > 1 . 2:)( % G # / $ E/ " Vxc↑↓ (r) D K/ K" C A - -+ (<< :>55 0 (44 " / * # N o (F ) ' + $ . * # / 2:( + $ E/ 0$E% & / ' 9 $ . / / + * N o (F ) d * / + $ % 3d 4d 5d ' / ' 9 M ' $ C + $ ". E@$ + W . * K W * $ ' BT $ " E # " " A? + # " f / ' 9 # " d s B B # B 0 0E%UH " E/ 0$E% E + (4< / 2:(. $ I E@$ / D̃(EF ) $ / ' 9 O B * B 0V ) ) ! $ :>>)Q (4= ' * # " / 2:3. $ # ! % + # $ "D # @ ! ' + * / 2:3 ! "" ! # - # # ! C # . ? # # # * " * / 2:4 # % # ! 7 (45 / 2:4. $ # " # / 2:< + % + # ! ! # / 2:= $ # Ms @ " MR @ Bc E . % Bc # / 2:5 $ + " # / / 9 / ' + / 2:5 # % ; / '@# / 2:2 (42 / 2:<. * # % # * / 2:=. (4> / 2:5. B / 2:2. * ! B ) : % W W A . * * :>22 # " / ' ! " # (<)
© Copyright 2026 Paperzz