LNPhysiqueAtomique2016 Towards bigger atoms The central field approximation (CFA) • To start with, we still ignore the spin-orbit interaction 2 • The Schrödinger equation for the spatial part : 3 N ✓ X 1 2 4 ri 2 1=1 ⁃ ⁃ ⁃ Z ri ◆ N X 1 5 + (~r1 , ~r2 , . . . , ~rN ) = E (~r1 , ~r2 , . . . , ~rN ) r ij j>i 3N-dimensional differential equation Not separable The 1/rij -term is too large for a very accurate perturbation treatment Effective potential • A large part of the 1/rij -term will be radial • On an individual valence electron, the other electrons will act like an almost spherical screening of the nuclear charge • The effective radial part of the total potential, felt by one electron: Z VCF (r) = + S(r) r ⁃ with S (r) being the screening potential from the (N-1) other electrons 1 LNPhysiqueAtomique2016 N X 1 • The term S (r) will include all the radial part of r j>i ij • The angular part of the mutual interaction term, we will treat as a perturbation Form of VCF • Asymptotically, when ri ! 1 : ) rij ⇡ ri N X1 1 Z Z VCF (r) ⇡ + = ri r j=1 i N +1 ri ⁃ for a neutral atom, Z = N : 1 VCF (r) ⇡ ri • Asymptotically, when ri ! 0 : ) rij ⇡ rj *N 1 + X 1 Z VCF (r) ⇡ + ⇡ ri r j=1 j Z ri • In between the limits, an electron will feel an effective Z, between 1 and Z Ze↵ (r) VCF (r) = ri 2 LNPhysiqueAtomique2016 • Usually, we can only guess VCF , or calculate it numerically • Nevertheless, even without knowing the exact form of VCF and ψ0 , we can understand a lot of atomic structure 3 LNPhysiqueAtomique2016 Perturbative treatment • We now treat the reminder of the total Hamiltonian, N X 1 the angular part of , as a perturbation; Hres r ij j>i H = HCF + Hres ◆ X ◆ X N ✓ N ✓ N X 1 2 Z 1 H= rri + + 2 ri r i=1 i=1 j>i ij ◆ X N ✓ N X Z (all) VCF (r) = + S(r) r i=1 i=1 HCF ◆ N ✓ N X X 1 2 (all) = rri + VCF (ri ) = Hi 2 i=1 i=1 Hres N X✓ = H HCF ◆ X ◆ X ◆ N ✓ N N ✓ X 1 2 Z 1 1 2 = rri + + rri 2 r r 2 i i=1 i=1 j>i ij i=1 ◆ ✓ ◆ ✓ N N N N X 1 X X X Z Z + S(ri ) = r r r i ij i j>i i=1 i=1 i=1 N X 1 = r j>i ij N X S(ri ) i=1 4 (all) VCF (ri ) LNPhysiqueAtomique2016 zero-order wave functions, ψCF • Schrödinger equation: N X 1 2 HCF CF = rri + VCF (ri ) 2 i=1 CF = ECF CF • This is a separable equation : r1 ) u2 (~r2 ) . . . uN (~rN ) CF = u1 (~ • This is N separate equations, of the type : 1 2 r + VCF (r) unlml (~r) = Enl unlml (~r) 2 r ⁃ where unlml (~r) = Rnl (r) Ylml (✓, ') • The solutions will be similar to the hydrogenic ones n = 1, 2, 3, . . . l = 0, 1, . . . , n 1 m = l, l + 1, . . . , l • The total (zero-order) energy : N X ECF = Eni li i=1 5 LNPhysiqueAtomique2016 Electron configurations, Orbitals • The individual one-electron wav functions will be a bit different from hydrogenic ones • But the potential is central, and the will be close to the hydrogenic ⁃ Logical to use the hydrogenic notation • Possible solutions : u1s , u2s , u2p , u3s , u3p , . . . • We say the electrons “occupy the orbitals” : 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, . . . The Pauli principle • Two electrons may not be in the same state: • the set of quantum numbers, ( n , l , ml , ms ) has to be unique for every electron • For one combination of ( n , l , ml ) , there may be two electrons ( ms=+½ , ms=-½ ) • For one particular orbit ( n , l ), there may be 2 ( 2l + 1 ) electrons 6 LNPhysiqueAtomique2016 l = 0 ; “s-orbital” ; 2 electrons l = 1 ; “p-orbital” ; 6 electrons l = 2 ; “d-orbital” ; 10 electrons l = 3 ; “f-orbital” ; 14 electrons …… • For the ground sate, the electrons will gradually fill up the lowest energy orbitals • Energy order (with lowest first) : 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p 8s 7 LNPhysiqueAtomique2016 The periodic system • We gradually “build up” the atom ⁃ “the aufbau-principle” ⁃ (“règle de Klechkowski”) • Electronic configuration of the ground states of the atoms: 1 2 3 4 5 6 7 8 9 10 11 H He Li Be B C N O F Ne Na : 1s : 1s2 (full) : 1s2 2s : 1s2 2s2 (full) : 1s2 2s2 2p : 1s2 2s2 2p2 : 1s2 2s2 2p3 : 1s2 2s2 2p4 : 1s2 2s2 2p5 : 1s2 2s2 2p6 (full) : 1s2 2s2 2p6 3s = [Ne] 3s ………… 8 LNPhysiqueAtomique2016 1 2 H hydrogen 1s 3 Li lithium 2s 11 Na sodium 3s 19 K 4 5 Be 2p 12 boron 13 Mg magnesium 3s2 20 Ca 21 Sc 22 23 Ti 24 V 25 Cr Mn 26 Fe 27 28 Co 29 Ni 30 Cu Zn 31 32 vanadium 3d3 4s2 chromium 3d5 4s manganese 3d5 4s2 iron 3d6 4s2 cobalt 3d7 4s2 nickel 3d8 4s2 copper 3d10 4s zinc 3d10 4s2 4p 37 38 39 40 41 42 43 44 45 46 47 48 49 Nb Mo Tc Ru Rh Pd Ag Cd strontium 5s2 yttrium 4d 5s2 zirconium 4d2 5s2 niobium 4d4 5s 4d5 5s technetium 4d5 5s2 ruthenium 4d7 5s1 rhodium 4d8 5s palladium 4d10 silver 4d10 5s cadmium 4d10 5s2 5p 55 56 57-71 72 73 74 75 76 77 78 79 80 81 lanthanides hafnium 5d2 6s2 tantalum 5d3 6s2 tungsten 5d4 6s2 rhenium 5d5 6s2 osmium 5d6 6s2 iridium 5d7 6s2 platinum 5d9 6s 104 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Cs cesium 6s 87 Ba barium 6s2 Fr francium 7s 88 Ra radium 89-103 actinides 7s2 Hf Rf rutherfordium 6d2 7s2 57 La 58 Ta dubnium 6d3 7s2 Ce 59 lanthanum 5d 6s2 cerium 4f 5d 6s2 4f3 89 90 91 Ac actinium 6d 7s2 Th thorium 6d2 7s2 W seaborgium 6d4 7s2 60 Pr praseodymium 6s2 Pa protactinium 5f2 6d 7s2 Re bohrium 6d5 7s2 Nd 61 Os hassium 6d6 7s2 Pm 62 Ir meitnerium 6d7 7s2 Sm 63 Pt Ds Eu 112 Cn 113 Uut Gd 65 promethium 4f5 6s2 samarium 4f6 6s2 europium 4f7 6s2 gadolinium 4f7 5d 6s2 4f9 92 93 94 95 96 97 U Np neptunium 5f4 6d 7s2 Pu plutonium 5f6 7s2 Am americium 5f7 7s2 9 Tl 111 Rg neodymium 4f4 6s2 uranium 5f3 6d 7s2 Hg thallium 6p roentgenium Cm curium 5f7 6d 7s2 copernicium 6d10 7s2 Tb terbium 6s2 Bk berkelium 5f9 7s2 66 Ge ununtrium 7p Dy 67 10 F fluorine 2p5 2p6 15 16 17 18 P S Cl phosphorus 3p3 sulphur 3p4 chlorine 3p5 3p6 33 34 35 36 As Se Br Ne neon Ar argon Kr selenium 4p4 bromine 4p5 krypton 4p6 50 51 52 53 54 Sn tin 82 Pb lead 6p2 114 Fl flerovium 7p2 Ho holmium 4f11 6s2 98 99 Cf 9 O oxygen 2p4 arsenic 4p3 dysprosium 4f10 6s2 californium 5f10 7s2 8 N nitrogen 2p3 germanium 4p2 5p2 mercury 5d10 6s2 6d9 7s2 64 In Si silicon indium 5d10 darmstadtium 6d8 7s2 Au gold 6s Ga gallium rubidium 5s molybdenum 14 3p2 titanium 3d2 4s2 Zr Al aluminium 3p scandium 3d 4s2 Y 7 C carbon 2p2 calcium 4s2 Sr 6 B beryllium 2s2 potassium 4s Rb He helium 1s2 Es einsteinium 5f11 7s2 68 Sb Te I Xe antimony 5p3 tellurium 5p4 iodine 5p5 xenon 5p6 83 84 85 86 Bi Po At Rn bismuth 6p3 polonium 6p4 astatine 6p5 6p6 115 Uup 116 Lv 117 Uus 118 Uuo ununpentium 7p3 Er erbium 69 livermorium 7p4 Tm 70 7p5 Yb 71 ununoctium 7p6 Lu 4f12 6s2 4f13 6s2 ytterbium 4f14 6s2 lutetium 4f14 5d 6s2 100 Fm 101 Md 102 No 103 Lr fermium 5f12 7s2 thulium ununseptium radon mendelevium 5f13 7s2 nobelium 5f14 7s2 lawrencium 5f14 7s2 7p LNPhysiqueAtomique2016 • Chemical properties are given by the number of valence electrons (outermost orbital) ⁃ alkalis ⁃ alkaline earths ⁃ …… ⁃ metals ⁃ …… ⁃ halogens ⁃ rare gases • Optical properties are also given by the valence electrons • Inner orbital are typically only accessible with x-rays 10
© Copyright 2026 Paperzz