Vertex and Standard Form Graphing

Vertex and Standard Form Graphing
Warm Up – Translating Quadratics Discovery Activity
1. a. Graph the quadratic parent function 𝑦 = π‘₯ ! using the FreeGraCalc App. Insert a picture of it here: b. What is the vertex of the parent function? _______ 2. Graph each of the following using your FreeGraCalc App. Write the coordinates of the vertex (double tap graph and choose β€œFind minima and maxima” then tap near vertex graph). Indicate in which direction the graph moved compared to the parent function and by how many units. a. 𝑦 = (π‘₯ + 3)! b. 𝑦 = (π‘₯ βˆ’ 7)!
c. 𝑦 = π‘₯ ! + 5 d. 𝑦 = π‘₯ ! βˆ’ 2
e. 𝑦 = βˆ’π‘₯ !
f. 𝑦 = (π‘₯ βˆ’ 4)! βˆ’ 3 g. 𝑦 = βˆ’(π‘₯ + 8)!
h. 𝑦 = (π‘₯ + 1)! βˆ’ 5
i. 𝑦 = βˆ’(π‘₯ βˆ’ 6)! + 4 3. Rewrite the parent function 𝑦 = π‘₯ ! using vertex form 𝑦 = (π‘₯ + β„Ž)! + π‘˜ such that the graph is translated. Then graph all 3 simultaneously on FreeGraCalc and insert the picture: a. Right 3, down 6 b. Flipped, left 3 c. Up 9, right 5 4. Summarize the effects of β„Ž and π‘˜ within the form 𝑦 = (π‘₯ + β„Ž)! + π‘˜ on the graph of the parent function. What happens when β„Ž is positive? What happens when β„Ž is negative? What happens when π‘˜ is positive? What happens when π‘˜ is negative? Graphing Quadratic Function Basics
Standard Form
Vertex Form
𝑦 = π‘Žπ‘₯ ! + 𝑏π‘₯ + 𝑐
𝑦 = π‘Ž(π‘₯ βˆ’ β„Ž)! + π‘˜
Axis of Symmetry: Vertex: Ex: 𝑦 = 2(π‘₯ + 2)! βˆ’ 5 Axis of Symmetry: Vertex: Ex: 𝑦 = βˆ’2π‘₯ ! + 8π‘₯ + 3 Key Facts
If a > 0, then the graph _____________________________________ If a < 0, then the graph _____________________________________ If a > 1 or if a < -­β€1, then the graph ____________________________ If -­β€1 < a < 1, then the graph _________________________________ The c-­β€value represents the _________________________________ Converting Between Forms
Vertex to Standard (FOIL or BOX method) 1. 𝑦 = (π‘₯ βˆ’ 1)! + 2 *** Standard to Vertex (Complete the square!) 1. 𝑦 = π‘₯ ! βˆ’ 4π‘₯ + 6 2. 𝑦 = 2(π‘₯ + 2)! βˆ’ 5 2. 𝑦 = π‘₯ ! βˆ’ 6π‘₯ + 17 Practice
Find the axis of symmetry and vertex of the following quadratic functions. 1. 𝑦 = (π‘₯ + 3)! βˆ’ 4 2. 𝑦 = βˆ’(π‘₯ βˆ’ 7)! + 10 3. 𝑦 = 2π‘₯ ! βˆ’ 6π‘₯ + 3 4. 𝑦 = 3π‘₯ ! βˆ’ 4π‘₯ βˆ’ 2 Convert from vertex to standard form. 5. 𝑦 = (π‘₯ βˆ’ 5)! βˆ’ 2 6. 𝑦 = βˆ’3(π‘₯ + 1)! + 5 Convert from standard to vertex form. 7. 𝑦 = π‘₯ ! + 2π‘₯ + 5 8. 𝑦 = π‘₯ ! + 8π‘₯ βˆ’ 1 9. 𝑦 = π‘₯ ! + 10π‘₯ βˆ’ 7 10. 𝑦 = π‘₯ ! + 4π‘₯ βˆ’ 9 11. 𝑦 = π‘₯ ! βˆ’ 12π‘₯ + 4 12. 𝑦 = π‘₯ ! βˆ’ 2π‘₯ βˆ’ 1