ProblemoftheMonth:Courtney’sCollection TheProblemsoftheMonth(POM)areusedinavarietyofwaystopromoteproblem solvingandtofosterthefirststandardofmathematicalpracticefromtheCommon CoreStateStandards:“Makesenseofproblemsandpersevereinsolvingthem.”The POMmaybeusedbyateachertopromoteproblemsolvingandtoaddressthe differentiatedneedsofherstudents.Adepartmentorgradelevelmayengagetheir studentsinaPOMtoshowcaseproblemsolvingasakeyaspectofdoing mathematics.POMscanalsobeusedschoolwidetopromoteaproblem‐solving themeataschool.Thegoalisforallstudentstohavetheexperienceofattacking andsolvingnon‐routineproblemsanddevelopingtheirmathematicalreasoning skills.Althoughobtainingandjustifyingsolutionstotheproblemsistheobjective, theprocessoflearningtoproblemsolveisevenmoreimportant. TheProblemoftheMonthisstructuredtoprovidereasonabletasksforallstudents inaschool.ThestructureofaPOMisashallowfloorandahighceiling,sothatall studentscanproductivelyengage,struggle,andpersevere.ThePrimaryVersion LevelAisdesignedtobeaccessibletoallstudentsandespeciallythekeychallenge forgradesK–1.LevelAwillbechallengingformostsecondandthirdgraders. LevelBmaybethelimitofwherefourthandfifth‐gradestudentshavesuccessand understanding.LevelCmaystretchsixthandseventh‐gradestudents.LevelDmay challengemosteighthandninth‐gradestudents,andLevelEshouldbechallenging formosthighschoolstudents.Thesegrade‐levelexpectationsarejustestimatesand shouldnotbeusedasanabsoluteminimumexpectationormaximumlimitationfor students.Problemsolvingisalearnedskill,andstudentsmayneedmany experiencestodeveloptheirreasoningskills,approaches,strategies,andthe perseverancetobesuccessful.TheProblemoftheMonthbuildsonsequentiallevels ofunderstanding.AllstudentsshouldexperienceLevelAandthenmovethroughthe tasksinordertogoasdeeplyastheycanintotheproblem.Therewillbethose studentswhowillnothaveaccessintoevenLevelA.Educatorsshouldfeelfreeto modifythetasktoallowaccessatsomelevel. Overview IntheProblemoftheMonthCourtney’sCollection,studentsusenumbertheory, numberoperations,organizedlists,andcountingmethodstosolveproblems.The mathematicaltopicsthatunderliethisPOMareknowledgeofnumbersense, numberproperties,comparisonsubtraction,division,factorsanddivisibility, countingprinciples,systematiccharting,andgeneralizations.Themathematicsthat includescountingprinciplesandsystematicchartingisoftenreferredtoasdiscrete mathematics. InthefirstlevelofthePOM,studentsarepresentedwithaproblemthatinvolves summingthreevalues.Theirtaskinvolvesasituationwheretheyaretoselectthree coinsfromalargesetofpennies,nickels,anddimes.Thestudentsareaskedto ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). selectthreecoinsanddeterminehowmuchmoneytheyhavealtogether.InLevelB, studentsstarttoexaminehowmanydifferentwaystheycanselectthreecoinsand thesumofeachsetofthreecoins.InLevelC,studentsconsideracollectionof5cent, 6cent,and7centstamps.Theyareaskedtodetermine,whichpostageamountsthey couldmakeandwhichpostageamountstheycouldn’tmakeiftheyhadanunlimited numberofeachstamp.InLevelD,thestudentsexaminethreedifferentsetsof stamps.Theyareaskedtodeterminewhetherthesetsproduceafinitesetof impossiblevaluesoraninfinitesetofimpossiblevalues.Forthestampswithafinite amountofimpossiblevalues,thestudentsareaskedtofindthelargestimpossible value.InLevelE,studentsareaskedtogeneralizetheirfindingsfromLevelD. Studentsareaskedtopredictandjustifywhetherasetofstamps(cardinality3)has afinitesetofimpossiblevaluesoraninfinitesetofimpossiblevalues.Forthe stampswithafiniteamountofimpossiblevalues,thestudentsareaskedtodescribe aprocessforfindingthelargestimpossiblevalue. ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). Problem of the Month Courtney’s Collection Level A Courtney has a bank of pennies, nickels and dimes. Courtney pulled out three coins from the bank. Name the coins she picked. How much money does she have? Show how you figured it out. Show a different way that Courtney could pick three coins. How much does Courtney have now? Show how you figured it out. Problem of the Month Courtney’s Collection Page 1 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level B How many different ways can Courtney pick three coins out of her bank? Show all the ways you can find. What are the different amounts of money Courtney would have by picking any three coins? How do you know you found all the possible ways? Explain your answer. Problem of the Month Courtney’s Collection Page 2 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level C Courtney visited her grandmother. Her grandmother used to collect stamps. She had a shoebox full of 5 cent, 6 cent and 7 cent stamps. Courtney thought, “I could mail a lot of different-sized letters and postcards with these stamps.” She tried to figure out the different amount of postage she could make with a combination of those stamps. What totals could she make and what totals are impossible? Explain how you found your solution. How do you know your solution is correct? Problem of the Month Courtney’s Collection Page 3 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level D Courtney’s grandmother said, “Your grandpa has different shoeboxes with other stamps. His shoebox has just 4 cent, 6 cent and 8 cent stamps. Which totals can you make with these stamps?” Courtney said, “I wonder why there is a difference between Grandma’s and Grandpa’s shoeboxes. I like finding the largest total I can’t make, but Grandpa’s box has an unlimited amount of totals I can’t make. I wonder why it works for some and not for others.” She continues, “I am going to investigate which three stamp amounts are like Grandma’s shoebox and which three stamp amounts are like Grandpa’s shoebox. I am going to compare three different sets. I will try 6 cents, 7 cents and 8 cents. Then I will try 6 cents, 9 cents and 12 cents. Finally I will try 6 cents, 8 cents and 9 cents.” Explain how the three different sets are like either Grandma’s shoebox or Grandpa’s shoebox. Problem of the Month Courtney’s Collection Page 4 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level E Determine a method for predicting whether a given set of any three stamps would have a largest impossible total, or infinite impossible totals. Justify your method using mathematical reasoning. For those sets of three stamps that have a largest impossible total, make a conjecture about how to find that total. Problem of the Month Courtney’s Collection Page 5 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Problem of the Month Courtney’s Collection Materials: A set of coins (pennies, nickels, dimes - several of each kind) in a container for each pair of students, paper and pencil, crayons, or markers Discussion on the rug: “What is a piggy bank?” Teacher asks the students questions about where there might be a collection of coins. If a bank is not familiar, then maybe introduce a jar of coins. Teacher holds a collection of coins in a container. “Suppose I pick three coins from my bank/jar. Name the coins I might pick.” The teacher encourages the students to find answers for different selections of three coins. In small groups: Each group has a set of coins in a container. Teacher asks the following questions. Go on to the next question when students have success. 1. “Name the three coins you picked out of your bank/jar. How much money do you have in all? Show how you know.” 2. “Now name three more coins you can pick from your bank/jar. How much money do you have in all?” At the end of the investigation, have students either draw a picture or dictate to you to represent their solutions. Problem of the Month Courtney’s Collection Page 6 (c) Noyce Foundation 2014. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). ProblemoftheMonth Courtney’sCollection TaskDescription–LevelA Thistaskchallengesstudentstoselectthreecoinsandthendeterminehowmuchmoneythethree coinsarealltogether.Thesetofcoinsincludespennies,nickels,anddimes.Thestudentsareasked toshowtwodifferentcombinationsofcoinsandtheirrespectivesums. CommonCoreStateStandardsMath‐ContentStandards CountingandCardinality Knownumbernamesandthecountsequence. K.CC.3Writenumbersfrom0to20.… OperationsandAlgebraicThinking Understandadditionasputtingtogetherandaddingto,andunderstandsubtractionastakingapartand takingfrom. K.OA.1Representadditionandsubtractionwithobjects,fingers,mentalimages,drawings,sounds(e.g.,claps), actingoutsituations,verbalexplanations,expressions,orequations. Representandsolveproblemsinvolvingadditionandsubtraction. 1.OA.1Useadditionandsubtractionwithin20tosolvewordproblemsinvolvingsituationsofaddingto, takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,byusingobjects, drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem. 1.OA.2Solvewordproblemsthatcallforadditionofthreewholenumberswhosesumislessthanorequalto20, e.g.,byusingobjects,drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem. 2.OA.1Useadditionandsubtractionwithin100tosolveone‐andtwo‐stepwordproblemsinvolvingsituations ofaddingto,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,by usingdrawingsandequationswithasymbolfortheunknownnumbertorepresenttheproblem. MeasurementandData Workwithtimeandmoney. 2.MD.8Solvewordproblemsinvolvingdollarbills,quarters,dimes,nickels,andpennies,using$and¢symbols appropriately.Example:Ifyouhave2dimesand3pennies,howmanycentsdoyouhave? CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingfor entrypointstoitssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjectures abouttheformandmeaningofthesolutionandplanasolutionpathwayratherthansimplyjumpingintoa solutionattempt.Theyconsideranalogousproblems,andtryspecialcasesandsimplerformsoftheoriginal probleminordertogaininsightintoitssolution.Theymonitorandevaluatetheirprogressandchangecourseif necessary.Olderstudentsmight,dependingonthecontextoftheproblem,transformalgebraicexpressionsor changetheviewingwindowontheirgraphingcalculatortogettheinformationtheyneed.Mathematically proficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables,andgraphsor drawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem. Mathematicallyproficientstudentschecktheiranswerstoproblemsusingadifferentmethod,andthey continuallyaskthemselves,“Doesthismakesense?”Theycanunderstandtheapproachesofotherstosolving complexproblemsandidentifycorrespondencesbetweendifferentapproaches. MP.3 Constructviableargumentsandcritiquethereasoningofothers. Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviously establishedresultsinconstructingarguments.Theymakeconjecturesandbuildalogicalprogressionof statementstoexplorethetruthoftheirconjectures.Theyareabletoanalyzesituationsbybreakingtheminto cases,andcanrecognizeandusecounterexamples.Theyjustifytheirconclusions,communicatethemtoothers, andrespondtotheargumentsofothers.Theyreasoninductivelyaboutdata,makingplausibleargumentsthat takeintoaccountthecontextfromwhichthedataarose.Mathematicallyproficientstudentsarealsoableto comparetheeffectivenessoftwoplausiblearguments,distinguishcorrectlogicorreasoningfromthatwhichis flawed,and—ifthereisaflawinanargument—explainwhatitis.Elementarystudentscanconstructarguments usingconcretereferentssuchasobjects,drawings,diagrams,andactions.Suchargumentscanmakesenseand becorrect,eventhoughtheyarenotgeneralizedormadeformaluntillatergrades.Later,studentslearnto determinedomainstowhichanargumentapplies.Studentsatallgradescanlistenorreadtheargumentsof others,decidewhethertheymakesense,andaskusefulquestionstoclarifyorimprovethearguments. ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth Courtney’sCollection TaskDescription– LevelB Thistaskchallengesstudentstoexaminehowmanydifferentwaysthreecoinscanbeselectedfroma bankcontainingpennies,nickelsanddimes,andtodeterminethesumofeachsetofthreecoins.The studentsareaskedtoexplainhowtheyknowtheyhavefoundallthepossiblewaysorcombinations. CommonCoreStateStandardsMath‐ ContentStandards CountingandCardinality Knownumbernamesandthecountsequence. K.CC.3Writenumbersfrom0to20.… OperationsandAlgebraicThinking Understandadditionasputtingtogetherandaddingto,andunderstandsubtractionastakingapartand takingfrom. K.OA.1Representadditionandsubtractionwithobjects,fingers,mentalimages,drawings,sounds(e.g.,claps), actingoutsituations,verbalexplanations,expressions,orequations. Representandsolveproblemsinvolvingadditionandsubtraction. 1.OA.1Useadditionandsubtractionwithin20tosolvewordproblemsinvolvingsituationsofaddingto, takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,byusingobjects, drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem. 1.OA.2Solvewordproblemsthatcallforadditionofthreewholenumberswhosesumislessthanorequalto20, e.g.,byusingobjects,drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem. 2.OA.1Useadditionandsubtractionwithin100tosolveone‐andtwo‐stepwordproblemsinvolvingsituations ofaddingto,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,by usingdrawingsandequationswithasymbolfortheunknownnumbertorepresenttheproblem. MeasurementandData Workwithtimeandmoney. 2.MD.8Solvewordproblemsinvolvingdollarbills,quarters,dimes,nickels,andpennies,using$and¢symbols appropriately.Example:Ifyouhave2dimesand3pennies,howmanycentsdoyouhave? Solveproblemsinvolvingmeasurementandconversionofmeasurementsfromalargerunittoasmaller unit. 4.MD.2Usethefouroperationstosolvewordproblemsinvolvingdistances,intervalsoftime,liquidvolumes, massesofobjects,andmoney,… CommonCoreStateStandardsMath– StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingforentrypointsto itssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjecturesabouttheformandmeaningof thesolutionandplanasolutionpathwayratherthansimplyjumpingintoasolutionattempt.Theyconsideranalogous problems,andtryspecialcasesandsimplerformsoftheoriginalprobleminordertogaininsightintoitssolution.They monitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudentsmight,dependingonthecontextofthe problem,transformalgebraicexpressionsorchangetheviewingwindowontheirgraphingcalculatortogettheinformation theyneed.Mathematicallyproficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables, andgraphsordrawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem.Mathematicallyproficient studentschecktheiranswerstoproblemsusingadifferentmethod,andtheycontinuallyaskthemselves,“Doesthismake sense?”Theycanunderstandtheapproachesofotherstosolvingcomplexproblemsandidentifycorrespondencesbetween differentapproaches. MP.3 Constructviableargumentsandcritiquethereasoningofothers. Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviouslyestablishedresultsin constructingarguments.Theymakeconjecturesandbuildalogicalprogressionofstatementstoexplorethetruthoftheir conjectures.Theyareabletoanalyzesituationsbybreakingthemintocases,andcanrecognizeandusecounterexamples. Theyjustifytheirconclusions,communicatethemtoothers,andrespondtotheargumentsofothers.Theyreasoninductively aboutdata,makingplausibleargumentsthattakeintoaccountthecontextfromwhichthedataarose.Mathematically proficientstudentsarealsoabletocomparetheeffectivenessoftwoplausiblearguments,distinguishcorrectlogicor reasoningfromthatwhichisflawed,and—ifthereisaflawinanargument—explainwhatitis.Elementarystudentscan constructargumentsusingconcretereferentssuchasobjects,drawings,diagrams,andactions.Suchargumentscanmake senseandbecorrect,eventhoughtheyarenotgeneralizedormadeformaluntillatergrades.Later,studentslearnto determinedomainstowhichanargumentapplies.Studentsatallgradescanlistenorreadtheargumentsofothers,decide whethertheymakesense,andaskusefulquestionstoclarifyorimprovethearguments. ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth Courtney’sCollection TaskDescription– LevelC Thistaskchallengesstudentstodetermine,givenanunlimitednumberof5¢,6¢,and7¢stamps,whichpostage amountscanbemadeandwhichpostageamountscan’tbemade.Thestudentisaskedtoexplaintheirsolutions andtojustifyhowtheyknowtheyarecorrect. CommonCoreStateStandardsMath‐ ContentStandards CountingandCardinality Knownumbernamesandthecountsequence. K.CC.3Writenumbersfrom0to20.… OperationsandAlgebraicThinking Understandadditionasputtingtogetherandaddingto,andunderstandsubtractionastakingapartand takingfrom. K.OA.1Representadditionandsubtractionwithobjects,fingers,mentalimages,drawings,sounds(e.g.,claps), actingoutsituations,verbalexplanations,expressions,orequations. Representandsolveproblemsinvolvingadditionandsubtraction. 1.OA.1Useadditionandsubtractionwithin20tosolvewordproblemsinvolvingsituationsofaddingto, takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,byusingobjects, drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem. 1.OA.2Solvewordproblemsthatcallforadditionofthreewholenumberswhosesumislessthanorequalto20, e.g.,byusingobjects,drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem. 2.OA.1Useadditionandsubtractionwithin100tosolveone‐andtwo‐stepwordproblemsinvolvingsituations ofaddingto,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,by usingdrawingsandequationswithasymbolfortheunknownnumbertorepresenttheproblem. MeasurementandData Workwithtimeandmoney. 2.MD.8Solvewordproblemsinvolvingdollarbills,quarters,dimes,nickels,andpennies,using$and¢symbols appropriately.Example:Ifyouhave2dimesand3pennies,howmanycentsdoyouhave? Solveproblemsinvolvingmeasurementandconversionofmeasurementsfromalargerunittoasmaller unit. 4.MD.2Usethefouroperationstosolvewordproblemsinvolvingdistances,intervalsoftime,liquidvolumes, massesofobjects,andmoney,… ExpressionsandEquations Solvereal‐lifeandmathematicalproblemsusingnumericalandalgebraicexpressionsandequations. 7.EE.4Usevariablestorepresentquantitiesinareal‐worldormathematicalproblem,andconstructsimple equationsandinequalitiestosolveproblemsbyreasoningaboutthequantities. CommonCoreStateStandardsMath– StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingforentrypointsto itssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjecturesabouttheformandmeaningof thesolutionandplanasolutionpathwayratherthansimplyjumpingintoasolutionattempt.Theyconsideranalogous problems,andtryspecialcasesandsimplerformsoftheoriginalprobleminordertogaininsightintoitssolution.They monitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudentsmight,dependingonthecontextofthe problem,transformalgebraicexpressionsorchangetheviewingwindowontheirgraphingcalculatortogettheinformation theyneed.Mathematicallyproficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables, andgraphsordrawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem.Mathematicallyproficient studentschecktheiranswerstoproblemsusingadifferentmethod,andtheycontinuallyaskthemselves,“Doesthismake sense?”Theycanunderstandtheapproachesofotherstosolvingcomplexproblemsandidentifycorrespondencesbetween differentapproaches. MP.3 Constructviableargumentsandcritiquethereasoningofothers. Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviouslyestablishedresultsin constructingarguments.Theymakeconjecturesandbuildalogicalprogressionofstatementstoexplorethetruthoftheir conjectures.Theyareabletoanalyzesituationsbybreakingthemintocases,andcanrecognizeandusecounterexamples. Theyjustifytheirconclusions,communicatethemtoothers,andrespondtotheargumentsofothers.Theyreasoninductively aboutdata,makingplausibleargumentsthattakeintoaccountthecontextfromwhichthedataarose.Mathematically proficientstudentsarealsoabletocomparetheeffectivenessoftwoplausiblearguments,distinguishcorrectlogicor reasoningfromthatwhichisflawed,and—ifthereisaflawinanargument—explainwhatitis.Elementarystudentscan constructargumentsusingconcretereferentssuchasobjects,drawings,diagrams,andactions.Suchargumentscanmake senseandbecorrect,eventhoughtheyarenotgeneralizedormadeformaluntillatergrades.Later,studentslearnto determinedomainstowhichanargumentapplies.Studentsatallgradescanlistenorreadtheargumentsofothers,decide whethertheymakesense,andaskusefulquestionstoclarifyorimprovethearguments. ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth Courtney’sCollection TaskDescription – LevelD Thistaskchallengesstudentstoexaminethreedifferentsetsofstamps ‐ 4¢,6¢,and8¢stamps.Thestudents are askedtodeterminewhetherthesetsproduceafinitesetofimpossiblevaluesoraninfinitesetofimpossible values.Forthestampswithafiniteamountofimpossiblevalues,thestudentisaskedtofindthelargest impossiblevalue. CommonCoreStateStandardsMath‐ ContentStandards CountingandCardinality Knownumbernamesandthecountsequence. K.CC.3Writenumbersfrom0to20.… OperationsandAlgebraicThinking Understandadditionasputtingtogetherandaddingto,andunderstandsubtractionastakingapartandtakingfrom. K.OA.1Representadditionandsubtractionwithobjects,fingers,mentalimages,drawings,sounds(e.g.,claps),actingout situations,verbalexplanations,expressions,orequations. Representandsolveproblemsinvolvingadditionandsubtraction. 1.OA.1Useadditionandsubtractionwithin20tosolvewordproblemsinvolvingsituationsofaddingto,takingfrom, puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,byusingobjects,drawings,andequations withasymbolfortheunknownnumbertorepresenttheproblem. 1.OA.2Solvewordproblemsthatcallforadditionofthreewholenumberswhosesumislessthanorequalto20,e.g.,byusing objects,drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem. 2.OA.1Useadditionandsubtractionwithin100tosolveone‐andtwo‐stepwordproblemsinvolvingsituationsofaddingto, takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,byusingdrawingsand equationswithasymbolfortheunknownnumbertorepresenttheproblem. MeasurementandData Workwithtimeandmoney. 2.MD.8Solvewordproblemsinvolvingdollarbills,quarters,dimes,nickels,andpennies,using$and¢symbolsappropriately. Example:Ifyouhave2dimesand3pennies,howmanycentsdoyouhave? Solveproblemsinvolvingmeasurementandconversionofmeasurementsfromalargerunittoasmallerunit. 4.MD.2Usethefouroperationstosolvewordproblemsinvolvingdistances,intervalsoftime,liquidvolumes,massesof objects,andmoney,… ExpressionsandEquations Solvereal‐lifeandmathematicalproblemsusingnumericalandalgebraicexpressionsandequations. 7.EE.4Usevariablestorepresentquantitiesinareal‐worldormathematicalproblem,andconstructsimpleequationsand inequalitiestosolveproblemsbyreasoningaboutthequantities. CommonCoreStateStandardsMath– StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingforentrypointsto itssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjecturesabouttheformandmeaningof thesolutionandplanasolutionpathwayratherthansimplyjumpingintoasolutionattempt.Theyconsideranalogous problems,andtryspecialcasesandsimplerformsoftheoriginalprobleminordertogaininsightintoitssolution.They monitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudentsmight,dependingonthecontextofthe problem,transformalgebraicexpressionsorchangetheviewingwindowontheirgraphingcalculatortogettheinformation theyneed.Mathematicallyproficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables, andgraphsordrawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem.Mathematicallyproficient studentschecktheiranswerstoproblemsusingadifferentmethod,andtheycontinuallyaskthemselves,“Doesthismake sense?”Theycanunderstandtheapproachesofotherstosolvingcomplexproblemsandidentifycorrespondencesbetween differentapproaches. MP.3Constructviableargumentsandcritiquethereasoningofothers. Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviouslyestablishedresultsin constructingarguments.Theymakeconjecturesandbuildalogicalprogressionofstatementstoexplorethetruthoftheir conjectures.Theyareabletoanalyzesituationsbybreakingthemintocases,andcanrecognizeandusecounterexamples. Theyjustifytheirconclusions,communicatethemtoothers,andrespondtotheargumentsofothers.Theyreasoninductively aboutdata,makingplausibleargumentsthattakeintoaccountthecontextfromwhichthedataarose.Mathematically proficientstudentsarealsoabletocomparetheeffectivenessoftwoplausiblearguments,distinguishcorrectlogicor reasoningfromthatwhichisflawed,and—ifthereisaflawinanargument—explainwhatitis.Elementarystudentscan constructargumentsusingconcretereferentssuchasobjects,drawings,diagrams,andactions.Suchargumentscanmake senseandbecorrect,eventhoughtheyarenotgeneralizedormadeformaluntillatergrades.Later,studentslearnto determinedomainstowhichanargumentapplies.Studentsatallgradescanlistenorreadtheargumentsofothers,decide whethertheymakesense,andaskusefulquestionstoclarifyorimprovethearguments. ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth Courtney’sCollection TaskDescription– LevelE Thistaskchallengesstudentstoselectthreecoinsandthendeterminehowmuchmoneythethreecoinsareall together.Thesetofcoinsincludespennies,nickels,anddimes.Studentsareaskedtoshowtwodifferent combinationsofcoinsandtheirrespectivesums. CommonCoreStateStandardsMath‐ ContentStandards CountingandCardinality Knownumbernamesandthecountsequence. K.CC.3Writenumbersfrom0to20.… OperationsandAlgebraicThinking Understandadditionasputtingtogetherandaddingto,andunderstandsubtractionastakingapartandtakingfrom. K.OA.1Representadditionandsubtractionwithobjects,fingers,mentalimages,drawings,sounds(e.g.,claps),actingout situations,verbalexplanations,expressions,orequations. Representandsolveproblemsinvolvingadditionandsubtraction. 1.OA.1Useadditionandsubtractionwithin20tosolvewordproblemsinvolvingsituationsofaddingto,takingfrom, puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,byusingobjects,drawings,andequations withasymbolfortheunknownnumbertorepresenttheproblem. 1.OA.2Solvewordproblemsthatcallforadditionofthreewholenumberswhosesumislessthanorequalto20,e.g.,byusing objects,drawings,andequationswithasymbolfortheunknownnumbertorepresenttheproblem. 2.OA.1Useadditionandsubtractionwithin100tosolveone‐andtwo‐stepwordproblemsinvolvingsituationsofaddingto, takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,byusingdrawingsand equationswithasymbolfortheunknownnumbertorepresenttheproblem. Gainfamiliaritywithfactorsandmultiples. 4.OA.4Findallfactorpairsforawholenumberintherange1‐100.Recognizethatawholenumberisamultipleofeachofits factors.Determinewhetheragivenwholenumberintherange1‐100isamultipleofagivenone‐digitnumber. MeasurementandData Workwithtimeandmoney. 2.MD.8Solvewordproblemsinvolvingdollarbills,quarters,dimes,nickels,andpennies,using$and¢symbolsappropriately. Example:Ifyouhave2dimesand3pennies,howmanycentsdoyouhave? Solveproblemsinvolvingmeasurementandconversionofmeasurementsfromalargerunittoasmallerunit. 4.MD.2Usethefouroperationstosolvewordproblemsinvolvingdistances,intervalsoftime,liquidvolumes,massesof objects,andmoney,… ExpressionsandEquations Solvereal‐lifeandmathematicalproblemsusingnumericalandalgebraicexpressionsandequations. 7.EE.4Usevariablestorepresentquantitiesinareal‐worldormathematicalproblem,andconstructsimpleequationsand inequalitiestosolveproblemsbyreasoningaboutthequantities. HighSchool–Algebra‐CreatingEquations A‐CED.2Createequationsintwoormorevariablestorepresentrelationshipsbetweenquantities… CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.1Makesenseofproblemsandpersevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingforentrypointsto itssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjecturesabouttheformandmeaningof thesolutionandplanasolutionpathwayratherthansimplyjumpingintoasolutionattempt.Theyconsideranalogous problems,andtryspecialcasesandsimplerformsoftheoriginalprobleminordertogaininsightintoitssolution.They monitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudentsmight,dependingonthecontextofthe problem,transformalgebraicexpressionsorchangetheviewingwindowontheirgraphingcalculatortogettheinformation theyneed.Mathematicallyproficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables, andgraphsordrawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Younger studentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem.Mathematicallyproficient studentschecktheiranswerstoproblemsusingadifferentmethod,andtheycontinuallyaskthemselves,“Doesthismake sense?”Theycanunderstandtheapproachesofotherstosolvingcomplexproblemsandidentifycorrespondencesbetween differentapproaches. MP.3 Constructviableargumentsandcritiquethereasoningofothers. Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviouslyestablishedresultsin constructingarguments.Theymakeconjecturesandbuildalogicalprogressionofstatementstoexplorethetruthoftheir conjectures.Theyareabletoanalyzesituationsbybreakingthemintocases,andcanrecognizeandusecounterexamples. Theyjustifytheirconclusions,communicatethemtoothers,andrespondtotheargumentsofothers.Theyreasoninductively aboutdata,makingplausibleargumentsthattakeintoaccountthecontextfromwhichthedataarose.Mathematically proficientstudentsarealsoabletocomparetheeffectivenessoftwoplausiblearguments,distinguishcorrectlogicor reasoningfromthatwhichisflawed,and—ifthereisaflawinanargument—explainwhatitis.Elementarystudentscan constructargumentsusingconcretereferentssuchasobjects,drawings,diagrams,andactions.Suchargumentscanmake senseandbecorrect,eventhoughtheyarenotgeneralizedormadeformaluntillatergrades.Later,studentslearnto determinedomainstowhichanargumentapplies.Studentsatallgradescanlistenorreadtheargumentsofothers,decide whethertheymakesense,andaskusefulquestionstoclarifyorimprovethearguments. ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth Courtney’sCollection TaskDescription–PrimaryLevel Thistaskchallengesstudentstoselectthreecoinsandthendeterminehowmuchmoneythethree coinsarealltogether.Thesetofcoinsincludespennies,nickels,anddimes.Thestudentsarethen askedtochooseasecondsetofthreecoinsanddeterminethetotalforbothsets. CommonCoreStateStandardsMath‐ContentStandards CountingandCardinality Knownumbernamesandthecountsequence. K.CC.3Writenumbersfrom0to20.… OperationsandAlgebraicThinking Understandadditionasputtingtogetherandaddingto,andunderstandsubtractionastaking apartandtakingfrom. K.OA.1Representadditionandsubtractionwithobjects,fingers,mentalimages,drawings,sounds (e.g.,claps),actingoutsituations,verbalexplanations,expressions,orequations. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.1Makesenseofproblemsand persevereinsolvingthem. Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemand lookingforentrypointstoitssolution.Theyanalyzegivens,constraints,relationships,andgoals. Theymakeconjecturesabouttheformandmeaningofthesolutionandplanasolutionpathway ratherthansimplyjumpingintoasolutionattempt.Theyconsideranalogousproblems,andtry specialcasesandsimplerformsoftheoriginalprobleminordertogaininsightintoitssolution.They monitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudentsmight,depending onthecontextoftheproblem,transformalgebraicexpressionsorchangetheviewingwindowon theirgraphingcalculatortogettheinformationtheyneed.Mathematicallyproficientstudentscan explaincorrespondencesbetweenequations,verbaldescriptions,tables,andgraphsordraw diagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends. Youngerstudentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolvea problem.Mathematicallyproficientstudentschecktheiranswerstoproblemsusingadifferent method,andtheycontinuallyaskthemselves,“Doesthismakesense?”Theycanunderstandthe approachesofotherstosolvingcomplexproblemsandidentifycorrespondencesbetweendifferent approaches. MP.3Constructviableargumentsandcritiquethereasoningofothers. Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,and previouslyestablishedresultsinconstructingarguments.Theymakeconjecturesandbuildalogical progressionofstatementstoexplorethetruthoftheirconjectures.Theyareabletoanalyze situationsbybreakingthemintocases,andcanrecognizeandusecounterexamples.Theyjustify theirconclusions,communicatethemtoothers,andrespondtotheargumentsofothers.Theyreason inductivelyaboutdata,makingplausibleargumentsthattakeintoaccountthecontextfromwhich thedataarose.Mathematicallyproficientstudentsarealsoabletocomparetheeffectivenessoftwo plausiblearguments,distinguishcorrectlogicorreasoningfromthatwhichisflawed,and—ifthereis aflawinanargument—explainwhatitis.Elementarystudentscanconstructargumentsusing concretereferentssuchasobjects,drawings,diagrams,andactions.Suchargumentscanmakesense andbecorrect,eventhoughtheyarenotgeneralizedormadeformaluntillatergrades.Later, studentslearntodeterminedomainstowhichanargumentapplies.Studentsatallgradescanlisten orreadtheargumentsofothers,decidewhethertheymakesense,andaskusefulquestionstoclarify orimprovethearguments. ©NoyceFoundation2014. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US).
© Copyright 2026 Paperzz