1 EXPERIMENTC2:BUFFERS&TITRATION LearningOutcomes Uponcompletionofthislab,thestudentwillbeableto: 1) PrepareabuffersolutionatagivenpHandconcentration. 2) Analyzethetitrationcurveforthetitrationofa: a. Weakacidwithastrongbase b. Weakbasewithastrongacid Introduction AbufferisasolutionthatresistschangestopHwhenastrongacidorbaseisadded tothesolution.Therearetwocombinationsofsolutionsthatmayresultinabuffer. 1)asolutionpreparedbycombiningaweakacidandasaltofitsconjugatebaseor 2)asolutionpreparedbycombiningaweakbaseandasaltofitsconjugateacid. Inabuffersolution,theweakacid(ortheweakbase)isinequilibriumwithits conjugatebase(oracid).AssumethattheformulaoftheweakacidisHAandthe conjugatebaseisA−;inabuffermadebycombiningHAandA−thefollowing equilibriumwillbeestablished: HA(aq) ⇔ H+(aq)+A−(aq) ThepHoftheabovebuffercanbecalculatedbymanipulatingtheequilibrium constantfortheequationgivenaboveinthefollowingmanner. € [H + ][A − ] Ka = [HA] [HA] [H + ] = K a × − [A ] ⎛ [HA] ⎞ −log[H + ] = −log⎜ K a × − ⎟ [A ] ⎠ ⎝ ⎛ [HA] ⎞ −log[H + ] = −logK a − log⎜ − ⎟ ⎝ [A ] ⎠ ⎛ [A − ] ⎞ pH = pK a + log⎜ ⎟ ⎝ [HA] ⎠ TheaboveequationisreferredtoastheHendersonHasselbachequationandis (only)usedtocalculatethepHofabuffer.ThepKaintheequationisthatofthe € 2 weakacidfoundinthebuffersolution.[HA]and[A−]arerespectively,the concentrationsoftheweakacidandtheconjugatebase. TheexactsameequationcanalsobeusedtocalculatethepHofabuffermadefrom acombinationofaweakbaseanditsconjugateacid.Inthisinstance,thepKawould bethatoftheconjugateacidinthesolution. Whenpreparingabuffer,itisimportanttochooseanacid/conjugatebasepairsuch thatthedesiredpHofthebufferiswithinaboutoneunitofthepKaoftheacidinthe buffer.Thisisdoneinordertomaximizethebuffercapacity-anindicatorofthe extenttowhichthebufferisabletoresistchangestopHuponadditionofastrong acidorbase. Inordertoprepareabufferthefollowingpiecesofinformationareessential: 1. ThedesiredpH 2. Thetotalconcentrationoftheionsinthebuffer 3. Therequiredvolume 4. Theidentityoftheionsinthebuffer BufferPreparation Forinstance,assumethatthefollowingbufferistobeprepared:100.0mLof0.10M phosphatebufferatapHof7.40 100.0mListhetotalvolumeofthebufferand0.10Misthetotalconcentrationof thephosphateionsthatshouldbefoundinthebuffer.Inordertodeterminethe identityofthephosphateionsthatwouldberequiredtopreparethisbuffer,one mustconsiderthevariousformsofphosphate:H3PO4,H2PO4−,HPO42−,PO43−. STEP1:Determinetheacid/conjugatebasepairsofthesedifferentformsof phosphateandusethetableofequilibriumconstantvaluestoarriveatthepKaof eachacid.ThisinformationisprovidedinTable1below. ACID CONJUGATEBASE pKa H3PO4 H2PO4− 2.16 − 2− H2PO4 HPO4 7.21 HPO42− PO43− 12.32 Table1 FromTable1,itisapparentthatthephosphateacidwithapKawithinoneunitofthe pHofthedesiredbufferisH2PO4−. Thereforethebestcombinationofweakacidandconjugatebaseforthebuffer wouldbe: 3 Weakacid=A=H2PO4− (dihydrogenphosphate) Conjugatebase=B=HPO42− (monohydrogenphosphate) STEP2:Nowthattheidentityofthephosphateionsinthebufferhasbeen established,thenexttaskinhandistodeterminethemolarconcentrationsofthese ionsinthebuffer. Keepinmindthatthetotalconcentrationofthephosphatesinthedesiredbufferis giventobe0.10M.Thisimpliesthat: [A]+[B]=0.10 Equation1 InordertodeterminetheexactconcentrationsofAandB,itisnownecessarytouse theHendersonHasselbachequation. ⎛ [B] ⎞ Equation2 pH = pK a + log⎜ ⎟ ⎝ [A] ⎠ Inequation2,forthepresentsituation,pH=7.40andpKa=7.21.Substitutethese valuesinequation2: € ⎛ [B] ⎞ Equation3 7.40 = 7.21+ log⎜ ⎟ ⎝ [A] ⎠ Manipulationofequation3resultsinthefollowing: € [B]=1.55[A] Equation4 Substituteequation4inequation1andsolvefor[A]and[B]. [A]=0.039M [B]=0.061M STEP3:Oncethemolarconcentrationoftheacidandconjugatebasepairhasbeen determined,determinethegramsormLoftheacidandconjugatebaseneededfor thebuffer. Inthelaboratory,theweakacidtobeusedinthisbuffer,H2PO4−,islikelyfoundasa solidinitssodiumsaltform:NaH2PO4andlikewisetheconjugatebaseHPO42−,is likelyd=foundasasolidinitssodiumsaltform:Na2HPO4.So,theexactmassofthe acidandconjugatebaseneededtoprepare100.0mLofthebuffermustbe calculatedasfollows: 4 GramsofNaH2PO4= 0.039 moles grams × 0.1000L × 120 = 0.47grams L mole moles grams × 0.1000L × 142 = 0.87grams GramsofNa2HPO4= 0.061 L mole € STEP4:Usingtheinformationfromsteps1,2,and3,thedesiredbuffercanbe preparedasfollows: € “Combine0.47gramsofNaH2PO4and0.87gramsofNa2HPO4ina100-mL volumetricflask.Addasmallamountofdeionizedwatertocompletelydissolvethe solidsandaddwatertothegraduationmarkofthevolumetricflask.Carefullymix thecontentsoftheflaskandmeasurethepHtoconfirmthatitisindeed7.40.” EffectofacidonthepHofabuffer Whenastrongacidisaddedtoabuffer,theconjugatebasepresentinthebuffer neutralizesit.Theequilibriumbetweentheweakacidandtheconjugatebaseofthe bufferisshifted.Theamountofconjugatebaseinthebufferdecreasesand consequentlytheamountofweakacidincreases.Thisleadstoadecreaseinthe overallpHofthebuffer.ThedecreaseinthepHwouldbefarmorepronouncedifthe solutionwerenotabuffer,i.e.,ifnoconjugatebasewasavailabletoneutralizethe addedacid. Thefollowingcalculationdemonstratestheeffectofaddingastrongacidsuchas hydrochloricacidonthepHofabuffersolution. Example:CalculatethepHofthebufferpreparedearlier(100.0mLof0.10M phosphatebufferatpH7.40)aftertheadditionof1.00mLof1.0MHCl. NOTE:TheHClwillreactwiththeconjugatebaseinthebuffer(HPO42−).Therefore thenewconcentrationsoftheweakacidandconjugatebaseinthebuffermustbe calculated. moles = 3.9 Millimolesofweakacid(H2PO4−)presentinitially= 100.0mL × 0.039 L moles = 6.1 Millimolesofconjugatebase(HPO42−)presentinitially= 100.0mL × 0.061 L moles = 1.0 MillimolesofHCl(H+)addedtothebuffer= €1.00mL × 1.0 L € € 5 Reaction: Initialmillimoles: Reaction: Amountleft: Molarity: H+(aq)+HPO42−!H2PO4− (NOTE:TheH+hereisfromHCl) 1.06.13.9 -1.0-1.0+1.0 05.14.9 5.1 4.9 101.0 101.0 ⎛ 5.1 101.0 ⎞ Therefore:pH=7.21+log ⎜ ⎟ =7.23 101.0 ⎠ ⎝ 4.9 € € ThepHofthebufferchangedfrom7.40to7.23uponadditionof1.0mLofastrong acidsuchas1.0MHCl. € EffectofbaseonthepHofabuffer Whenastrongbaseisaddedtoabuffer,theweakacidpresentinthebuffer neutralizesit.Theequilibriumbetweentheweakacidandtheconjugatebaseofthe bufferisshifted.Theamountofconjugatebaseinthebufferincreasesand consequentlytheamountofweakaciddecreases.Thisleadstoanincreaseinthe overallpHofthebuffer.TheincreaseinthepHwouldbefarmorepronouncedifthe solutionwerenotabuffer,i.e.,ifnoweakacidwasavailabletoneutralizetheadded base. Thefollowingcalculationdemonstratestheeffectofaddingastrongbasesuchas sodiumhydroxideonthepHofabuffersolution. Example:CalculatethepHofthebufferpreparedearlier(100.0mLof0.10M phosphatebufferatpH7.40)aftertheadditionof1.00mLof1.0MNaOH. NOTE:TheNaOHwillreactwiththeweakacidinthebuffer(H2PO4−).Thereforethe newconcentrationsoftheweakacidandconjugatebaseinthebuffermustbe calculated. moles = 3.9 Millimolesofweakacid(H2PO4−)presentinitially= 100.0mL × 0.039 L moles = 6.1 Millimolesofconjugatebase(HPO42−)presentinitially= 100.0mL × 0.061 L moles 1.00mL × 1.0 = 1.0 MillimolesofNaOH(OH−)addedtothebuffer= € L € € Reaction: Initialmillimoles: Reaction: Amountleft: 6 OH−(aq)+H2PO4−!HPO42−+H2O 1.03.96.1 -1.0-1.0+1.0 02.97.1 2.9 7.1 Concentrations: 101.0 101.0 ⎛ 7.1 101.0 ⎞ Therefore:pH=7.21+log ⎜ ⎟ =7.60 ⎝ 2.9 101.0 ⎠ € € ThepHofthebufferchangedfrom7.40to7.60uponadditionof1.0mLofastrong basesuchas1.0MNaOH. € Titration Thetitrationofaweakacidwithastrongbasewillbeexaminedtheoreticallyinthis section.Thecalculationswillthenbeusedtoplotatitrationcurve.Thetitration curveprovidesseveralusefulpiecesofinformationandcanoftenbeplotted qualitatively. Example:CalculatethepHduringthetitrationof10.0mLof0.10Maceticacid(Ka= 1.8×10-5)aftertheadditionofthefollowingvolumes(inmL)of0.10Msodium hydroxide:a)0.0b)2.5c)5.0d)7.5e)10.0andf)11.0 Inthefollowingcalculations,aceticacid(CH3COOH),aweakmonoproticacidwillbe writtenasHA. a) 0.0mLNaOHadded Sincethetitrationhasnotbegunyetatthispoint,thepHofthesolutionissimplythe pHof0.10Maceticacid. HA(aq) ⇔ H+(aq) + A−(aq) Initialconcentration 0.10 ~0 0 € Change -x x x Equilibriumconcentration 0.10–x x x 7 x2 x2 ≈ 0.1 − x 0.1 x = 0.00134 = [H + ] pH = 2.87 K a = 1.8 × 10 −5 = b) 2.5mLNaOHadded € TheOH−fromtheaddedNaOHwillreactwiththeaceticacid. MillimolesofHApresent=10.0mL×0.10M=1.0 MillimolesofOH−added=2.5mL×0.10M=0.25 HA(aq) + OH−(aq)! A−(aq) + H2O(l) Initialmilimoles 1.0 0.25 Amountreacted -0.25 -0.25 0.25 Finalmillimoles 0.75 0 0.25 0.75 0.25 Concentrations 12.5 12.5 Atthispointinthetitration,sinceaceticacid(HA)ispresentincombinationwithits conjugatebase(A−),thesolutionisabuffer.ThepHofthesolutionmaythereforebe € € calculatedusingtheHendersonHasselbachequation. ⎛ 0.25 12.5 ⎞ pH=4.74+log ⎜ ⎟ =4.26 ⎝ 0.75 12.5 ⎠ c) 5.0mLNaOHadded € TheOH−fromtheaddedNaOHwillreactwiththeaceticacid. MillimolesofHApresent=10.0mL×0.10M=1.0 MillimolesofOH−added=5.0mL×0.10M=0.50 HA(aq) + OH−(aq)! A−(aq) + H2O(l) Initialmilimoles 1.0 0.5 Amountreacted -0.5 -0.5 0.5 8 Finalmillimoles 0.5 Concentrations 0.5 15.0 0 0.5 0.5 15.0 Atthispointinthetitration,sinceaceticacid(HA)ispresentincombinationwithits conjugatebase(A−),thesolutionisabuffer.ThepHofthesolutionmaythereforebe € € calculatedusingtheHendersonHasselbachequation. ⎛ 0.5 15.0 ⎞ pH=4.74+log ⎜ ⎟ =4.74 ⎝ 0.5 15.0 ⎠ NOTE:Here,theamountofNaOHaddedisexactlyonehalfoftheamountofacetic acidpresent.ThispointinthetitrationisreferredtoastheHALFEQUIVALENCE € POINT.ThepH,asshownabove,atthehalfequivalentpointinthesetypesof titrationsisalwaysequaltothepKaoftheweakacid. d) 7.5mLNaOHadded TheOH−fromtheaddedNaOHwillreactwiththeaceticacid. MillimolesofHApresent=10.0mL×0.10M=1.0 MillimolesofOH−added=7.5mL×0.10M=0.75 HA(aq) + OH−(aq)! A−(aq) + H2O(l) Initialmilimoles 1.0 0.75 Amountreacted -0.75 -0.75 0.75 Finalmillimoles 0.25 0 0.75 0.25 0.75 Concentrations 17.5 17.5 Atthispointinthetitration,sinceaceticacid(HA)ispresentincombinationwithits conjugatebase(A−),thesolutionisabuffer.ThepHofthesolutionmaythereforebe € € calculatedusingtheHendersonHasselbachequation. ⎛ 0.75 17.5 ⎞ pH=4.74+log ⎜ ⎟ =5.22 ⎝ 0.25 17.5 ⎠ € 9 e) 10.0mLNaOHadded TheOH−fromtheaddedNaOHwillreactwiththeaceticacid. MillimolesofHApresent=10.0mL×0.10M=1.0 MillimolesofOH−added=10.0mL×0.10M=1.0 NOTE:Thisistheequivalencepointinthistitration. HA(aq) + OH−(aq)! A−(aq) + H2O(l) Initialmilimoles 1.0 1.0 Amountreacted -1.0 -1.0 1.0 Finalmillimoles 0 0 1.0 1.0 = 0.05M Concentrations 20.0 Attheequivalencepointofthetitration,alltheaceticacidandtheaddedNaOHare completelyconsumed.Theonlyremainingspeciesinthesolutionistheconjugate € base,CH3COO−(A−).Thissolutionisnolongerabuffer.ThepHofthesolutionmust becalculatedbyconsideringtheequilibriumestablishedbytheconjugatebase. A−(aq) + H2O(l) ⇔ HA(aq) + OH−(aq) Initialconcentration 0.05 0 0 € Change -x x x Equilibriumconcentration 0.05–x x x Sincethisistheequilibriumestablishedbythebase,theKbofthebasemustfirstbe calculatedinordertosolvefor“x”. K a × K b = KW = 1.0 × 10 −14 1.0 × 10 −14 x2 x2 −10 Kb = = 5.6 × 10 = ≈ 1.8 × 10 −5 0.05 − x 0.05 x = 5.27 × 10 −6 = [OH − ] pOH = 5.28 pH = 8.72 € 10 NOTE:Attheequivalencepointinthetitrationofaweakacidwithastrongbase,the speciespresentinthesolutionistheconjugatebaseoftheweakacid.Thereforethe pHwillalwaysbegreaterthe7(basic). f) 11.0mLNaOHadded TheOH−fromtheaddedNaOHwillreactwiththeaceticacid. MillimolesofHApresent=10.0mL×0.10M=1.0 MillimolesofOH−added=11.0mL×0.10M=1.1 NOTE:Sincethispointisbeyondtheequivalencepoint,theaddedNaOHisthe excessreagentandtheaceticacidisthelimitingreagent. HA(aq) + OH−(aq)! A−(aq) + H2O(l) Initialmilimoles 1.0 1.1 Amountreacted -1.0 -1.0 1.0 Finalmillimoles 0 0.1 1.0 0.1 1.0 Concentrations 21.0 21.0 Atthispointinthetitration,twobasesarepresentinthesolution:1)thestrong baseNaOHand2)theconjugatebaseofaceticacid,A−.Theconjugatebaseofacetic € € acidisaweakerbasethanthestrongbaseNaOH.Insolutionsthatcontainastrong baseandaweakbase,thepHofthesolutioncansimplybedeterminedfromthe concentrationofthestrongbase.ThecontributiontothepHfromtheweakbaseis negligibleincomparisontothestrongbase. ⎛ 0.1 ⎞ pOH=-log ⎜ ⎟ =2.32 ⎝ 21.0 ⎠ Therefore,pH=11.68 € 11 Thedatafromtheabovecalculationissummarizedinthefollowingtable: Volumeofbaseadded(mL) pH 0.0 2.87 2.5 4.26 5.0 4.74 7.5 5.22 10.0 8.72 11.0 11.68 AcompletelabeledtitrationcurveisshowninFigure1below. TitrationCurve:Aceticacidvs.NaOH 14 12 Buffer:CH3COOH+CH3COO− 10 pH 8 6 pKa 4 2 0 0 2 4 6 8 10 12 VolumeofNaOH(mL) HalfEquivalencepoint FIGURE1 Equivalencepoint 12 ExperimentalDesign Inthefirstpartoftheexperiment,eachstudentwillberequiredtoprepareabuffer. ThepHofthepreparedbufferwillbemeasuredusingapHmeterandadjustedto thedesiredvalueusingeitheranacidorabase.Astrongacidandastrongbasewill beaddedtothisbufferandthemeasuredpHineachinstancewillbecomparedwith thecalculatedvalueofthepH. Inthesecondpartofthisexperiment,eachstudentwilltitrateaweakbasewitha strongacidandrecordthepHduringthecourseofthetitration.Adetailedtitration curvewillbeplottedandlabeledusingthedatafromthetitration. ReagentsandSupplies 0.10Maceticacid,solidsodiumacetate,solidsodiumphosphate,solidsodium monohydrogenphosphate,0.10Mammonia,solidammoniumchloride,0.10M hydrochloricacid,0.10Msodiumhydroxide,1.0Mhydrochloricacid,1.0Msodium hydroxide pHmeterkit,50-mLvolumetricflask,25-mLburette (SeepostedMaterialSafetyDataSheets) Procedure 13 PART1:PREPARATIONOFABUFFER 1. Obtainone50-mLvolumetricflaskandapHmeterkitfromthestockroom. 2. Prepare50mLof0.05M(totalconcentrationofions)ofoneofthefollowing threebuffers(asassignedbytheinstructor): i. pH=5.0 ii. pH=10.0 iii. pH=12.0 Beforepreparingthebuffercompletethefollowingsteps: a. Choosetheappropriateacid/conjugatebasecombinationfromtheprovided reagents. b. Calculatetheamountsofacidandconjugatebase(ingramsormL)neededto preparethebuffer. c. Verifystepsaandbwiththeinstructor. 3. CalibratethepHmeteraspreviouslyindicated(SeeExperiment…….). 4. MeasurethepHofthepreparedbufferandadjustthepHtotherequiredvalue using1.0MHClor1.0MNaOH. 5. OncethebufferhasbeenbroughttotherequiredpHvalue,showtheinstructor thevalueofthepHonthepHmeter. 6. Transferexactlytwo25mLpotionsofthebufferintotwo100-mLbeakers. 7. Performthefollowingcalculations: a. CalculatethepHofthepreparedbufferif0.25mLof1.0MHClisaddedto25 mLofthebuffer. b. CalculatethepHofthepreparedbufferif0.25mLof1.0MNaOHisaddedto 25mLofthebuffer. 8. Toone25-mLpotionofthebuffer,add0.25mLof1.0MHCl.Thoroughlymixthe contentswithastirringrod.MeasurethepHandcomparethemeasuredpHwith thevaluecalculatedin7a. 9. Tothesecond25-mLpotionofthebuffer,add0.25mLof1.0MNaOH. Thoroughlymixthecontentswithastirringrod.MeasurethepHandcompare themeasuredpHwiththevaluecalculatedin7b. 10. Discardthebufferandanyotherwastegeneratedasdirectedbytheinstructor. 14 PART2:TITRATIONOFAWEAKBASEWITHASTRONGACID 1. Obtaina25-mLburetteandapHmeterfromthestockroom. 2. Obtain20mLof0.10Mammoniasolutionand30mLof0.10MHClsolution fromthereagentstation. 3. Addthe20mLof0.10Mammoniasolutionintoa125-mLErlenmeyerflask. 4. Rinseandcleantheburettewithdeionizedwaterandconditionandfillthe burettewith0.10MHCl. 5. MeasurethepHoftheammoniasolutionintheflaskpriortobeginningthe titration. 6. Addexactly1.0mLof0.10MHClsolutionfromtheburetteintotheErlenmeyer flaskcontainingtheammoniasolution. 7. ThoroughlymixthecontentsoftheErlenmeyerflaskandmeasureandrecord thepH. 8. Repeatsteps6and7untilatotalof25mLofHClhasbeenadded. 9. Discardallsolutionsandanyotherwastethathasbeenaccumulatedintoawaste containerprovidedbytheinstructor. 15 DataTable&Analysis PART1:PREPARATIONOFABUFFER Requiredbuffer(volume,concentration,pH) ChosenAcid/Conjugatebasepair CALCULATIONS(FORAMOUNTSOFACIDANDBASE) Amountofacid Amountofconjugatebase MeasuredpHofthebuffer 16 CalculatethepHofthepreparedbufferif0.50mLof1.0MHClisaddedto50 mLofthebuffer. CalculatedpHvalue MeasuredpHvalue CalculatethepHofthepreparedbufferif0.50mLof1.0MNaOHisaddedto50 mLofthebuffer. CalculatedpHvalue MeasuredpHvalue 17 PART2:TITRATIONOFAWEAKBASEWITHASTRONGACID VolumeofHCladded(mL) pH 0.00 Plotalabeledtitrationcurveusingthedataobtainedandindicatethe following: a. Chemicalspeciesbeforethetitrationwasbegun. b. Bufferregion c. Chemicalcompositionofthebuffer d. Halfequivalencepointandequivalencepoint e. Chemicalcompositionbeyondtheequivalencepoint. 18
© Copyright 2026 Paperzz