Title Author(s) Citation Issue Date URL Statistical Mechanics of Non-Equilibrium Systems : Extensive Property, Fluctuation and Nonlinear Response SUZUKI, Masuo 物性研究 (1975), 23(5): C44-C54 1975-02-20 http://hdl.handle.net/2433/88897 Right Type Textversion Departmental Bulletin Paper publisher Kyoto University ~ X ;f!5 mk 1) L.Onsager: Phys. Rev. 37· (1931) 405; ibid. 38 (193J) 2265. 2) N.Flashitzume: Pr0g. ,Theor. Phys. 8 (J952) 46:1; ibid 1~ (1956) 369 3) L.Onsager and S.Mach-Iup: Phys. Rev. 91 (1953) 1505;'ibid 15J2 4) M.S.Green:Journ. Chern. Phys. 20 (1952) 1281 5) J.L.Lebowitz and P.G.Bergmann: Ann. Phys. 1 (1957) 1 6) 'P.Glansdo'rff and I.Prigogine:Physica 30 (1964) 351 7) F.Schl~gr: Ann. Phys., 45 (1967) 155 8) RcGraham and H.Haken: ZcPhys. 243 (J971') 289, ibid 245 (J971) 141 9) RcGraham: Springer Tr'acts in Modern Physics 66 (1973) Springer-Verlag 10) H.Nakano: Prog. 'Theo-r. Phys. 51 (1974) 1279 11 ) E . N e I s on: Ph y s. Rev. 150 (] 966) 1079 Statistical ~~chanics of 'Non-Equi I ibrium Systems - Extensive Property, Fluctuation and NonIinear Response Ma suo SUZUK I (Dep t. 0 f Phys i c~, Un i v. ( to be subm it ted to Prog. Theor ~ 1. 0 f T0kyo) Phys. ) Kubo's Ansatz:'Extensi-ve Property P(X, t) = Cexp CO¢(x, t)) , for large 2. n with x = YO; X = macrovariable. 'Whe n Xis a Mar k 0 f f ian m a cr 0 va ria b Ie, 8p (x, 8 -t t ) = FM P ( x , t ) rM = -C44- time, devel0p. op. • Stat,istical Mechanics of Non":-Equil ibrium Systems eVQI. eq. fo,ry (0 = deterministic path Cn == n - th mornen t , variance a (t) : I . 2 C 1 (y ( t) 30 When X IS P (X, 4. a (t) + Cz ( y (t) ) a non-Markoffian macrovariable, = t ) conf ig L . . ·0 (x- X) p ( {a. }; t ) , J PorthemacrovariableX in quantum systems, p(X, d -'T o(X-X)p(t); ih 8p(t) r a t = eX,. p(t)) Extensive Property: p 5. ex, t) (n ¢ ( x, t }:J C exp = C;enerating PunctionFormalism . '1' 'l'(A,t) r = L. \ p ( ) . (quantal) e AX Pt········· 1 (X, t) eAXe tFp con f ig. =: ' - - . 27l" 1 .f . .c+ i oo e (stocahstic or classical) 0 -AX' . 'l' ( A, t) dA c - i 00 qeneralized thermodynamic potential :7 ( A, t) 6. = I og 'l' (A , 'l' ( A, t) = e:7( A ,t ) t) 0 r Assumption for the initial distribution: J/ i ) P (0)= e . . or Po = J/(i). e -C45- (canonical) (normal ized) 7. Properties of W(A, t) and yO, t) when X J! ( i) and Jf are Hermi tian: 1) 'PeA,t)'> 0 and J'7(A,t) = real for 2) When A is real, '1' and J-'" are convex functions of A•. . 3) Por complex A (= not real) , we have < I '.I' (A , t) I 8. '1'( Re A, t) If 'P(A, 1) = (C1 e01f (A,t) C 27l'1 t) "Local operator Ii exp [-O{lx-1f(A,x)}]d A ' Q(d is defined by a functional of field operators {1f(r / )}; r 10. . x = OA Jc-joo , AO being given by the solution for large 0, o1f (A, (Bxtensive proper-ty) , c+joo 1 p(X,t) = - '-. 9. A real. l cD (r) . Gen.eral condi tions f0r X ,J! circle domain of radius b. (i) and Jf JJf(r)dr. 11. Theorem for- "extensive property" I (quantal) If the averages of local operators, Theorem (1) <X(r» ,,<Jf lim 1Jt O,t) O~oo for O IAI In quantal systems. = C) I (r» (2) . , ,and <Jf(r» (3), are bounded, then exist (uniformly convprgent) ' <A (fixed) and t finite. ThereforeW(A,t) has the extensive property: W(A,t) = C 1 exp C01JtCA,t)j and' consequen t ly. so d0es {J (X, t) ., -C46- Statistical Mechanics of, Non-Equilibrium Systems 12. Defini t ion of the averages ,n First separate the system X ="Xl -L.-X 2 ,· I . 1/ thJ. = (i) into [11 (1 i) 1/ ....kJ + n, 2( 7/ _ thJ. and n'2 and ~7/ J1 - +"'" J1 1- 2 , whe r e Q j = j~, Q ( r) d ~ . , J T Qp,/T <Q>(j) where ,01 P _ (s,,u) . ,0 2 ( S , ,03 13. ,u r ) , J 0 <s $1, 0 .',' exp (s,,u) [.,(i) J1 1 cA (j)) +,u J1 2 'e xp exp [J1(ist,,u) J1 ( l.) 1 $; ,u'5; 1, CAX(S',u) exp [ACX 1 +,uX 2 ) ) exp Remarks on Theorem a) Qe p. r J = ,oj (s,,u) ,.' j s ( P1 + ,up2 ) - s ( PI + ,u P 2) == e Operational; p(s,,u).Q (i) J1 (s,,u) J1 (j) ), 'Cj J1 ( s ,,u) J1 (_ it, 1) Xl ...J , ) exp [A..ff(i(S-1)t,,u)X 1 ) I W is a continuous function of A o ( indep. of 0) . c) If'{c j } < are indep. of A for IAI =9- A, the limit YO(A,O Y(Ad) is uniformly convergent in wider sense in the ~om'plex circle domain IAI dPYn (A, II e) ,II bounded II bounded II A. Hence, dPy ('A,t t) 1im ) - 0- ~OO 9) < dip ( vVe i erst r ass ) dA P _ for .0 2 /.0 1 - 0 for s = (n -1/d / I ) =9 O.K. = 1=9 "If" for 0 < s < 1, j.J. 0 < ,u < 1 ( conj ecture) commutes wi th X (r / ), f) V\hen X g) If (J1(j)(r), J/(i)(r / (r) <X (r»(l) = 0 bounded. ))= O~<J1(i(r»(I) is bounded. It is not easy to prove that <..ff(r»(3) [J1(r), J1(r / )) 1s IS bounded when 0 -C47--'- , I I > (3) h) C lea r I y, j) Only the boundness of <X(r»(l) etc. are assumed. j) ~,J1mn~oo k) Theorem I <cff (r) 1S bound ed i f cff 2 O. ' thermodynamic limit in van Ilove's sense. is extended to classical systems. (Classical Liouvi lIe op.). / 14~ Proof of Extensive Porperty.: -'-'-,7 7r - -,-'- r - - - n Separation of the domain , I/' 1 I I I, (. 0 I ./" .1 I I ,I 1 t 1 .0\ I n = large integer x ,= Xl t - - 1. I L I I 0,/1 0 I I I L 2 ~ ---: 1·1 I /1 ( __ ~ < 1 .,.-~.- -"-1 ./ _.<~-<':'-: I V ~·I 1 I cff (i}= cff ~ i)- +cff (i) 1 :' ~~ L ---L~v . f: +X 2 . /,-/--'-~ -,', / / / .//.t [/./ ,d I I t : 1-, /" ~-, I A .I I 0 1 1 I : -.JI Domains a} and O 2 with each margin of wi dth b ins i de in it; is the shaded region. ~ 1 To J?rove Cauchy IS condi t ion 0; 'on conve rgence • d = d i mens ion, :. 11ftn+m (A ,t) -1ftn eA, 1) :Formul a. Is '2-,ri ), '" ( ' :. lim 1ft (A,t) =: exist =: 1ft(A,t) n~oo n . d Aex) 'f,1 (l-s)A(x) I( ) sA(x) /,1 e sA(x) AI( x ) (l-s)Aex) - e =, e A x e ds = eds 'dx ·0' · 0 ' . 15. fjxtensive property in stochadtic models a " - pUa.} t). 8tJ , ' wh e re r J d. = J p (fa.} t) J' ±1 , r . . p({a.}t) ; J (s pIn ' r L J s y stem) r. J and = - \iV. ( a. ) p ( ... a. ...) + vV. (- a . ) p ( ... - a. ...) J J 'J' -C-18- . J J. 'J'. Statistical Mechanics of Non-Equilibrium Systems 16. Theorem II (stochastic). st (r + .' If P ("normal - e (s t) ll IJ.rZ ) 1 o;5; IJ. "$, 1 , JV r 1 (and r z =r-r) 1 for any ) J( ( i) ee and for O:SsSl and then (uniformly convergent) ~ 1fr(Ad) 17. and P(X,t) havp extensive property. Lemma 1. - If f({a.}) Lemma 2. - If f ( fa j } ) g({aj}),then e tr f ':::;;; e tr g for t ;~ O. J - constant dependent on De f .P e·if (II e.jl( Irzf j ;s' Cn then , z f, where C nz IS a n2 , no rma 111 ) ~ p ( ... - a. , t) S C p (... '" J" 3 a. ... ) ,'J' , where C 3 is a constant independent of- n, 18. Average motion, Fluctuat ion, and ~Nonl inear respunse most probable path yet) for . .o·large: 1) x y(t)+z,g (z,t) = ¢(y+z,t) = {1fr(A(y.d,t)-ykCy,d} 81fr 81fr -z{A(v.d+Cv-(-) )(-) } + , a A x= y 8 A x= y 9 '.Y (t) = 81frJ ) (8 /I. A= 0 = , <x> t;"<X> t 2 = f" • . ' Xp ( X, t). dX 2 =T Xp r ( 1) Z variance: a Ct)=( 8 1fr/ 8A )A=O = .0« x-<x:>t) >t (i) -----(i) Nonlinear response: y (t )"'-, <x> Theorem III a. - (a) t ,k case (a) ; =n -1 a,/:- (-) 8 A . A= 0 JI = =J( +KY ,~Ci)(t) T x r e~ /T The nonl inear' response for case (a) expressed by the fluctuation in non-equilibrium as -C49- J(j) r IS e 0 for a quantal system. where For stochastic systems, () r'h,a. we have a YCt)-l ---=0 (a) ""---aX aY(t» '- ':I:'Xy; y a K " " ~(i) -1 (e 1Te Y( t) - 1) < ax ; aY ( t) )a) 2) < ax ;0 Y ( t) :Ja)*K" 1, 3) <Pxy;y 1,K Jj ) • t ,K ' ~(i) e 1T ( YeJi )' = < aY ('t); aX)a) 1,K < aY ( t) ; aX)a) t ,K, (a) real. -(i) (iJ =Ji .K , For a general nonlinear disturbance of the, form Ji mea) - a Y (t ) = < ax . a (~Ji(i)(" "~aK x y ; yaK ':I:' ca s e ( b ) Theorem Ji·= Ji . Tr x e 1 ,K + K Y ": - iUf j(i) e i 1Ji e II lb. i r 1 < eX, y n'o" <l>Xy;y=~xe tTK .1 .fo dse -sTK for a stochastic system, where ( s) ) )b) ds , 1,K yes) lor a quantal system where (b) ) ) >(a) K t = exp (-is:J()Yexp (i~J(). d (dKTK)e rK <---~ Ji sT K Ji (i) e =J/+KY. For a genera I nonl inear di sturbaJlce of the form Ji =Ji K, 19. Relation between if; (x,i!) and cumulants Theorem IV. - I f 'J!(A,O (~nd p(x,t)) -C50- has extensive property, Statistical Mechanics of Non-Equilibrium Systems <x n > c, 1 ==-- 0(0)). Conversely, if <X extensive (i.e., n >.c, t are extensive, and - - ,- if lim n -.00 exi~t 20 and , n «X> h~ve Theo rem V. - c, 1/ /n-l 1/n!) = A <00, 0 then W(A,d and p(x,t) extensive property. The func t ion ¢ (x, t) is expres sed by the cumul an t s, 00 n Z ' 2 = - n= L - . lim f '«X> to 2 n! ~oo n, c, as ¢(Y+zd) ' -1 , ... , <X n -1 >c,tfi , where f n is defhned by - and' 1/J~n-3 f n is a homogeneous polynomial of order (n-2). 21. Expi ici t forms of {f n} : ( 1/J,2 1/J4 - 31/J22) -1/J5 2, . oc 22. Thorem VI. When ¢(y+z,t) cumulants <X n >c, 1 = L a n=2 zryn! I S known, alI n are obtained,exP,licitIy with use of the recurSIon formula; + ( a (dj :~-n g / 2. «X>,c,t 0 n -1 n-l for n " 3, and for large fi, where 'gn is gIven by ,I, 'Y 23. n -1 ) =- _ fiJxpl ici t forms of <X n 1/J2n~3 2 >c, t f n _,I, n-3 ,I" 'Y 2 'Y n ,are ~C51- -1 , ..; <X, c > , n t)}, • ), 24. Composed macrovariable fCx) ; x= <f (x) >= and th~ variance afcO . 25. = +0 f (y (t) arC I) (0 -1 x/o: ) isgivPD by 8f 2 -1 (-8) a (t) + 0(0. ), x x-:::y(t) x Exactly soluble models: Ex.l Non-inte'racting system: !l . .J( J L a~ = - NI . J' J Sol uti 0 n : qr ( A, t) =. ex p Yi'(A,t) =: log {tosh A + sinh A tanh h cos J Cx ,t) - t an h -1 10 g if> ( x , t ) C{ X - J a ( t) =__ sin h A (x-, t) + cos h A (x. t ) } a( t) = 1 - y 2 f or any 0) , C 2tJ/h)}. a ( t )} / { 1- a ( 0 x} ; a (0 a (1) and var i apce Y C t) - x A (x , t) . (1) Kin e tic \iVe iss 1 sin g mod e I ( K ub 0 eta I, .....• ) Ex.3 (Anisotropic) Weiss Heisenberg model X = .J((J = J x, y. J ;H) = _0- 1 L (J a~a~ + J ara~ +J,a~a~' )~,lllILa~ z· i ,j L a~' and' X(i) = - Ii J/ (J . J, J , tanh h cos (2 t J/h ), Ex. 2 .J( 26. C01f/ ( A, t ) J ( ex act 0 x, XI J J J 0 y, yl 0; z J Z I J' j II ) 0 '. Ex.4 Nonlinear relaxation In the linear kinetic, Ising model. Ex.5 Nonlinear relaxa'tion In the linear anisotropic XY-model: A pp I i c a ti 0 n s: rei ax a t i on and. flu c t ua t i () n Ins upe r con d 1I C tor s . ~C52- J' Statistical.Mechanics of Non-Equilibrium Systems References ]) R.Kllbo, J.P.hys. Soc. Japan]2 (]957) 570. 2) P.Glansdorff and I.Prigogine, Thermodynamic Theory of (~il e yIn t e r sci en c e , S t r DC t II r e, S ta b iii t Y an d Ii' I uc t ua it on s New Y0 r k J 9 7 J ) 0 3) R.Oraham and F.Haake, Springer Tracts in Modern Physics,. Vol. 4) _6~ (Springer Verlag Berlin, New York, 1973)0 Il.Haken, Cooperative Phenomena in Systems Far from Thermal Equilibrium and in Non-Physical f)) Heidelbprg~ R.Kubo, in Synergetics Schloss glmau), Systems (to be published). (Proc. Symp. Synergetics, 1972, JLHaken and B.GoTeubner, eds. Stuttgart (] 073L 6) lLKubo, K.l'vJatsuo and K.Kitahara, J.Stat. Phys. 9 (1973) 51. T) M.SUZUKi, Phys. 8) R.B.Griffiths, in Phase Transitions and Critical' Phenomena Letters A (in press). ed. C .Domb and M.. S .Green (Acado Press" 1972) and references' cited therein. D.Ruell~,Statistical Mechanics: Resul ts (VI.A.B~nj amin, Inc., and J. L. Lebowi tz, Rigorous New York, 1969). M. EoFisher Comm. Ma th. Phys. 19 (]970) 25]. 9)N.G.Van Kampen, Can. J.Physo 39 (196]).55]; mental Problems in Statistical' Mechanics and in Funda- (E.G.D.Cohen, edo' Amsterdam, ]962). 10) van Hove, Physica 21 (]955) f)]7; J J)M. Suzuki, Int. J .Magnet ism K.Matsuo, private communication. ]3) H.Kubo, J.Phvs. ]4) , 1 (] 97]) ]2 ) ' . N.Bourbaki, 1 Soc. Japan -]7 (1962) 1100. 1 I. . I Elements De Mathematique Fonctions-D Dne K.Tomita and II.Tomita, K.Tc:lmita~ 123. . Va ria b I e He e I I e <II e r man n, If)) 23 (]957) 441. Par is, 196]). Prog. Theor. Phys. 5] (1974)-]731. T.Ohta and IJ.Tomita, ibid 52 (]974) 737. ~C53- ~~;fd~tt 16) H.Mori, Prog. Theor. Phys. 52 (1974) 1133. 17) ReJ eGlauber, 18) M.Suzuki andR.Ktibo, ]9) B. U.Felderhof, J .Math~ Phys. 4 Cl9(3) 294. J .Phys. Soc. Japan 24 (1968) 51. Fep. Mathe Phys. 1 (J97J) 2]5; 2 (1971) 151. B.U.Felderh()f and lVI.Suzuki, Physica 56 (1971) 1.3. -C54-
© Copyright 2025 Paperzz