Math Summer Pack Name: Date: Lesson 1.2 Writing Rational Numbers as Decimals Using long division, write each rational number as a terminating decimal. 1. 654 7 2. 15 16 3. 9 126 4. 24 35 Using long division, write each rational number as a repeating decimal with 2 decimal places. Identify the pattern of repeating digits using bar notation. © Marshall Cavendish International (Singapore) Private Limited. 5. 28 1 6. 8 9 15 7. 56 5 2 8. 6 11 Extra Practice Course 2A 3 (M)MIFEP_C2A_Ch01.indd 3 20/06/12 12:08 PM Name: Date: Write each rational number as a repeating decimal using bar notation. You may use a calculator. 9. 5 11 11. 456 123 10. 12. 9 13 166 91 Refer to the list of rational numbers below for questions 13 to 16. You may use a calculator. 2 11 90 63 171 13 , , , , 4 17 19 10 112 18 13. Write each rational number as a decimal with at most 4 decimal places. 15. Place each rational number on the same number line. 16. Which rational number is farthest from 0? © Marshall Cavendish International (Singapore) Private Limited. 14. Using your answers in question 13, list the numbers from least to greatest using the symbol . 4 Chapter 1 Lesson 1.2 (M)MIFEP_C2A_Ch01.indd 4 20/06/12 12:08 PM Answers 19. 2.5°C 6 4 Chapter 1 Lesson 1.1 1. 0 2 2 3°C 20. 3 4 40 0 1 21. 0.8°C 40 41 3 unit 4 39 2 5 38 47 2. 12 65 22. 1 2 3.5°C 7°C 38 37 66 21 3 4 23. 67 22 23 24. 13 0 1 47 12 11 12 8 7 6 unit 13 0 1 32 26. 33 50 49 49.9 12 units 5 4 © Marshall Cavendish International (Singapore) Private Limited. 25. 79 11 32.4 6 13 12 4. − 5 261 7 135 6 6 3. − 2 27. 4 0 4 12 5 12 67 67 67 , or 6.2 , 1 1 1 1 5 375 7. 8. 12 7 59 22 22 22 , or 9. 10.2 , 18 21 21 21 869 869 869 37 , , or 11. 12.2 3 12 12 12 1 251 13. 2 14. 100 699 27 27 27 , , or 15. 16. 2 200 200 200 200 138 138 138 33 33 33 17. 2 , 18. 2 , , or , or 25 25 25 25 25 25 5. 8 1 66 3 47 units 12 6 5 6 3 4 0 4 ºC 5 22 21 , , 3.12, 1.01, , 6.7 14 7 4 5 14 3.12 5 4 3 2 1 22 7 0 1 2 3 4 1.01 5 21 4 6 7 6.7 Lesson 1.2 1. 654 7 43.6 0.4375 2. 15 16 0.4375 16 7.0000 6 4 60 48 120 112 80 80 0 ) 43.6 15 654.0 60 54 45 90 90 0 ) Extra Practice Course 2A 87 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 87 02/07/12 9:04 PM Lesson 1.3 126 ) 1. ) 2. 3. 4. 1 121 5. 28 3.1 6. 8 15 15 9 ) ) 3 4 √10 21 is between 4 and 5. 4 5 √21 37 is between 6 and 7. 7 4 2 √14 3 6 √27 5 9 √68 9. 51 5 7.141… 7.141 is closer to 7.1 than to 7.2. So, 51 is closer to 7.1. 8 8. 2 68 is between 28 and 29. 0.1818 11 2.0000 1 1 90 88 20 11 90 88 2 56.83 56.833 6 341.000 30 41 36 50 48 20 18 20 18 2 10 is between 3 and 4. 7. 2 27 is between 25 and 26. 11 6 3 √8 3 √8 14 6. 2 is between 23 and 24. ) 7. 56 5 341 8. 2 0.18 6 2 6 √37 5. 2 8 is between 22 and 23. 8.06 8.066 15 121.000 120 1 00 9 0 1 00 90 10 3.11 9 28.00 27 10 9 10 9 1 8 is between 2 and 3. 7.1 √51 7.2 10. 2 279 5 216.703… 216.703 is closer to 216.7 than to 216.8. So, 2 279 is closer to 216.7. √279 16.8 16.7 11. 3 888 5 9.612… 9.612 is closer to 9.6 than to 9.7. 3 888 is closer to 9.6. So, 9.6 √888 12. 99 5 9.94987… 9.95 is closer to 9.9 than to 10.0. 99 is closer to 9.9. So, 9.7 3 9.0.45 10. 20.692307 11. 23.70731 12.1.824175 13. 22.6471, 4.7368, 6.3000, 21.5268, 4.7222 11 171 90 63 14. 2 4 13 112 17 19 10 18 15. 2 11 171 17 112 4 13 18 9.9 10.0 √99 13. 2 1999 5 244.71017… 244.71 is closer to 244.7 than to 244.8. So,2 1999 is closer to 244.7. 63 10 √1999 3 2 1 0 1 2 3 4 5 90 19 16. 63 10 88 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 88 6 7 44.8 © Marshall Cavendish International (Singapore) Private Limited. 9 3.6 3. 24 0.375 4. 35 0.375 3.6 24 9.000 35 126.0 72 105 180 210 168 210 120 0 120 0 44.7 14. 6655 5 81.57818… 81.58 is closer to 81.6 than to 81.5. So, 6655 is closer to 81.6. 81.5 √6655 81.6 02/07/12 9:04 PM Name: Date: Lesson 2.4 Operations with Integers Evaluate each expression. 1. 25 8 1 12 2.20 2 4 (26) 3. 3 (29) 1 (22) (7) 4.150 (25) 1 (238) 5. 248 4 (25) 2 17 6. 235 2 490 7 1 12 9. 90 (26 2 3) 1 45 10.(16 1 2)(3) 2 5(25 1 3) 11. 230 1 5(3 1 8) 2 45 12.25 [24 1 (21)] 2 9(3) 13. 36 6 2 (225 1 15)(4) 14. 242 1 70 (22 2 3) 1 84 (4 1 2) 15. 2200 1 32(23 1 7) 2 45(15 2 20) 16.480 (6 1 14) 2 7(4) 1 8(3 1 4) © Marshall Cavendish International (Singapore) Private Limited. 7. 82 2 (9 2 13) 9 8. 227 2 (4 1 4) 3 18 Chapter 2 Lesson 2.4 (M)MIFEP_C2A_Ch02.indd 18 20/06/12 12:09 PM Name: Date: Solve. Show your work. 17. Cecilia has an 8-inch by 12-inch sheet of rectangular paper. She cuts out identical 4-inch by 3-inch rectangles from two corners of the paper. She then cuts out identical right triangles from the other two corners of the paper. Using the diagram shown, find the area of the remaining paper. 4 in. 4 in. 8 in. 2 in. 12 in. © Marshall Cavendish International (Singapore) Private Limited. 18. Today, a tank contains 6,600 gallons of water. For the past 3 days, 210 gallons of water was pumped out of the tank each day. What was the volume of water in the tank 3 days ago? Extra Practice Course 2A 19 (M)MIFEP_C2A_Ch02.indd 19 20/06/12 12:09 PM 32. Total change in the stock’s value 5 22 7 5 2$14 The total change in the stock’s value is 2$14. Lesson 2.3 Lesson 2.4 1.7 (29) 5 263 2.12 (28) 5 296 3. 23 115 233 4. 25 6 5 230 5. 26 (28) 5 48 6. 27 (215) 5 105 7. 230 (0) 5 0 8.0 (219) 5 0 9.4 (26) (10) 5 224 10 5 2240 10.7 8 (29) 5 56 (29) 5 2504 11. 211(5)(24) 5 255 (24) 5 220 12. 22(221)(3) 5 42 3 5 126 13.6(214)(217) 5 284 (217) 5 1,428 14. 24(228)(29) 5 112 (29) 5 21,008 15. 23(212)(210) 5 36 (210) 5 2360 16. 28(0)(227) 5 0 17. 250(26)(0) 5 0 18. 29(28)(2)(3) 5 72 2 3 5 144 3 5 432 19. 25(7)(24)(25) 5 235 (24) (25) 5 140 (25) 5 2700 20. 210(23)(26)(22) 5 30 (26) (22) 5 2180 (22) 5 360 21.357 (27) 5 251 22.560 (216) 5 235 23. 2720 12 5 260 24. 2550 11 5 250 25. 2189 (29) 5 21 26. 2112 (24) 5 28 27.0 (220) 5 0 28.0 (25) 5 0 29. Change in altitude per minute 5 22,250 15 5 2150 ft/min The change in altitude per minute is 2150 ft per/min. 30. Distance 5 22 40 5 280 ft He is 80 feet below sea level after 40 minutes. 31. Average change in sales income per month 5 $9,000,000 3 5 $3,000,000 The average change in sales income is $3,000,000 per month. 1. 25 8 1 12 2.20 2 4 26 5 240 1 12 5 20 2 (224) 5 228 5 20 1 24 5 44 3.3 (29) 1 (22) 7 4.150 (25) 1 (238) 5 227 1 (214)5 230 1 (238) 5 241 5 268 5. 248 4 (25) 2 17 5 248 (220) 2 17 5 2.4 2 17 5 214.6 6. 235 2 490 7 1 12 5 235 2 70 1 12 5 2105 1 12 5 293 7.82 2 (9 2 13) 9 5 82 2 (24) 9 5 82 2 (236) 5 82 1 36 5 118 8. 227 2 (4 1 4) 3 5 227 2 8 3 5 227 2 24 5 251 9.90 (26 2 3) 1 45 5 90 (29) 1 45 5 210 1 45 5 35 10.(16 1 2)(3) 2 5(25 1 3) 5 (18)(3) 2 5(22) 5 54 2 (210) 5 54 1 10 5 64 11. 230 1 5(3 1 8) 2 45 5 230 1 5(11) 2 45 5 230 1 55 2 45 5 275 1 55 5 220 12.25 [24 1 (21)] 2 9(3) 5 25 (25) 2 9(3) 5 25 (25) 2 27 5 25 2 27 5 232 13.36 6 2 (225 1 15)(4) 5 36 6 2 (210)(4) 5 36 6 2 (240) 5 6 2 (240) 5 6 1 40 5 46 © Marshall Cavendish International (Singapore) Private Limited. 25.480 2 570 5 480 1 (2570) 5 290 Simon’s final score was 290 points. 92 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 92 02/07/12 9:04 PM 14. 242 1 70 (22 2 3) 1 84 (4 1 2) 5 242 1 70 (25) 1 84 6 5 242 2 14 1 14 5 242 1 0 5 242 15. 2200 1 32 (23 1 7) 2 45(15 2 20) 5 2200 1 32(4) 2 45 (25) 5 2200 1 128 2 (2225) 5 2200 1 128 1 225 5 272 1 225 5 153 16.480 (6 1 14) 2 7 (4) 1 8 (3 1 4) 5 480 20 2 7 4 1 8 7 5 480 20 2 28 1 56 5 24 2 28 1 56 5 24 1 56 5 52 17. Area of remaining paper: Area of original paper 2 Area of two cut-out triangles 2 Area of two cut-out rectangles 5 12 8 2 2 1 442243 2 5 96 2 16 2 24 5 56 in2 The area of the remaining paper is 56 square inches. 18. Volume of water pumped out over 3 days 5 3 210 5 630 gal Water volume 3 days ago 5 6,600 1 630 5 7,230 gal The volume of water in the tank 3 days ago was 7,230 gallons. Lesson 2.5 8 3 © Marshall Cavendish International (Singapore) Private Limited. 1. 2. 1 8 4 1 3 4 3 4 43 32 3 12 12 32 3 12 29 12 5 2 12 7 4 4 7 15 9 15 9 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 93 43 7 5 15 3 95 12 35 45 45 12 35 45 23 45 3. 4. 7 4 43 7 15 5 15 53 7 12 15 15 7 12 15 5 15 1 3 5 1 5 1 3 8 8 3 1 8 5 3 83 38 15 8 24 24 15 8 24 23 24 2 2 5 5 5. 3 9 3 9 23 5 33 9 6 5 9 9 65 9 11 9 2 1 9 1 2 1 2 6. 6 3 6 3 1 22 6 32 1 4 6 6 1 4 6 5 6 1 2 1 3 2 7. 5 15 5 3 15 3 2 15 15 3 2 15 5 15 1 3 Extra Practice Course 2A 93 02/07/12 9:04 PM Name: Date: Lesson 2.5 Operations with Rational Numbers Evaluate each expression. Give your answer in simplest form. 8 3 1. 1 2. 4 7 4 9 15 1 5 3. 7 4 4. 3 8 15 5 5. 5 2 2 1 6. 9 3 3 6 1 3 7. 1 2 8. 7 15 14 9. 1 3 2 4 3 5 2 10. 4 8 5 11. 2 3 1 5 4 3 12. 1 3 2 3 5 9 14. 5 1 4 6 3 9 3 5 5 13. 2 4 8 6 © Marshall Cavendish International (Singapore) Private Limited. 5 20 Chapter 2 Lesson 2.5 (M)MIFEP_C2A_Ch02.indd 20 20/06/12 12:09 PM Name: Date: Evaluate each product. Give your answer in simplest form. 15. 3 5 4 17. 12 14 3 1 25 7 19. 2 2 3 3 3 4 16. 2 1 8 4 18. 1 20. 27 8 2 2 27 5 2 2 1 15 3 Evaluate each quotient. Give your answer in simplest form. 1 4 © Marshall Cavendish International (Singapore) Private Limited. 21. 3 8 22. 4 2 35 5 5 1 23. 18 6 2 1 24. 1 3 3 3 25. 2 3 1 3 8 4 26. 27. 29. 2 3 16 28. 4 5 7 20 30. 10 5 13 7 8 3 4 2 2 5 1 1 5 Extra Practice Course 2A 21 (M)MIFEP_C2A_Ch02.indd 21 20/06/12 12:09 PM Name: Date: Solve. Show your work. 31. A restaurant used 8 5 pounds of rice on Monday and 5 1 pounds of rice 6 6 on Tuesday. How many more pounds of rice was used on Monday than on Tuesday? 32. Janet has 9 1 2 feet of cloth. She needs to cut it into lengths of feet. 3 3 How many complete lengths can she cut? 33. A recipe calls for 2 1 cups of walnuts. Only 5 cup of walnuts are on hand. 6 2 How many more cups of walnuts does a chef need for the recipe? 34. The sum of two rational numbers is 8 1 . If one of the numbers is 5 2 , 4 3 35. Parcel P weighs 4 1 pounds, Parcel Q weighs 3 2 pounds and Parcel R weighs 6 5 2 4 pounds. Find the average weight of the three parcels. 5 © Marshall Cavendish International (Singapore) Private Limited. find the other number. 22 Chapter 2 Lesson 2.5 (M)MIFEP_C2A_Ch02.indd 22 20/06/12 12:09 PM 14. 242 1 70 (22 2 3) 1 84 (4 1 2) 5 242 1 70 (25) 1 84 6 5 242 2 14 1 14 5 242 1 0 5 242 15. 2200 1 32 (23 1 7) 2 45(15 2 20) 5 2200 1 32(4) 2 45 (25) 5 2200 1 128 2 (2225) 5 2200 1 128 1 225 5 272 1 225 5 153 16.480 (6 1 14) 2 7 (4) 1 8 (3 1 4) 5 480 20 2 7 4 1 8 7 5 480 20 2 28 1 56 5 24 2 28 1 56 5 24 1 56 5 52 17. Area of remaining paper: Area of original paper 2 Area of two cut-out triangles 2 Area of two cut-out rectangles 5 12 8 2 2 1 442243 2 5 96 2 16 2 24 5 56 in2 The area of the remaining paper is 56 square inches. 18. Volume of water pumped out over 3 days 5 3 210 5 630 gal Water volume 3 days ago 5 6,600 1 630 5 7,230 gal The volume of water in the tank 3 days ago was 7,230 gallons. Lesson 2.5 8 3 © Marshall Cavendish International (Singapore) Private Limited. 1. 2. 1 8 4 1 3 4 3 4 43 32 3 12 12 32 3 12 29 12 5 2 12 7 4 4 7 15 9 15 9 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 93 43 7 5 15 3 95 12 35 45 45 12 35 45 23 45 3. 4. 7 4 43 7 15 5 15 53 7 12 15 15 7 12 15 5 15 1 3 5 1 5 1 3 8 8 3 1 8 5 3 83 38 15 8 24 24 15 8 24 23 24 2 2 5 5 5. 3 9 3 9 23 5 33 9 6 5 9 9 65 9 11 9 2 1 9 1 2 1 2 6. 6 3 6 3 1 22 6 32 1 4 6 6 1 4 6 5 6 1 2 1 3 2 7. 5 15 5 3 15 3 2 15 15 3 2 15 5 15 1 3 Extra Practice Course 2A 93 02/07/12 9:04 PM 5 3 5 5 3 5 6 4 8 6 4 8 5 4 36 53 64 46 83 20 18 15 24 24 24 20 18 15 24 23 24 9. −1 2 1 3 3 7 14 7 2 14 −2 3 14 14 2 3 14 5 14 14. 4 5 1 4 5 1 6 3 9 9 6 3 42 53 1 6 92 63 36 8 15 6 18 18 18 8 15 6 18 29 18 11 1 18 1 2 3 −3 1 4 2 4 22 −3 2 4 4 3 2 4 1 4 10. 2 3 5 2 3 5 5 4 8 5 4 8 28 3 10 55 58 4 10 85 16 30 25 40 40 40 16 30 25 40 11 1 40 3 4 15. 5 16 1 8 9 8 16. 2 4 27 4 27 1 1 2 3 1 2 3 11. 3 5 4 3 5 4 1 20 2 12 3 15 3 20 5 12 4 15 20 24 45 60 60 60 20 + 24 − 45 60 1 60 1 3 2 −2 1 3 12. 9 3 5 9 3 5 1 15 2 5 39 95 3 15 59 10 15 27 45 45 45 10 15 27 45 32 45 1 3 5 5 12 4 12 4 5 3 5 5 3 5 6 4 8 6 4 8 5 4 36 53 64 46 83 20 18 15 24 24 24 20 18 15 24 23 24 94 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 94 1 4 17. 2 27 3 2 3 14 3 14 10 1 25 7 25 7 2 2 14 10 25 7 1 5 4 5 8 2 35 12 18. 1 2 27 5 27 5 7 13. 9 8 35 12 4 27 5 1 9 28 9 1 3 9 2 3 8 15 19. 2 3 3 4 3 2 8 15 1 4 5 © Marshall Cavendish International (Singapore) Private Limited. 8. 3 41 10 02/07/12 9:04 PM 27. 2 3 2 16) 16 3 ( 2 2 2 5 1 20. 15 3 15 3 2 5 3 1 4 2 9 1 8 1 28. 2 4 3 2 3 7 8 3 4 2 4 2 35 5 35 5 4 1 2 35 7 7 4 8 3 3 6 5 3 5 2 1 5 10 24. 1 3 3 3 3 3 © Marshall Cavendish International (Singapore) Private Limited. 5 3 3 3 11 11 25. 2 1 4 8 4 8 1 1 2 26. 10 10 5 13 5 13 13 10 5 11 8 . 4 11 11 8 1 5 1 15 4 7 44 1 7 30. 2 2 5 12 6 5 5 1 15 2 4 111 12 5 5 6 2 12 5 1 1 5 61 2 31. Amount of rice used on Monday 2 Amount of rice used on Tuesday: 5 6 8 5 2 10 13 26 4 20 16 7 2 2 7 1 2 8 3 1 1 3 10 2 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 95 5 3 10 3 1 1 29. 4 5 4 7 5 20 7 20 4 20 5 7 74 7 6 1 1 6 1 5 1 18 23. 6 18 6 5 1 1 2 1 18 7 3 8 4 2 7 2 3 1 24 5 42 1 2 1 3 16 8 3 1 8 8 4 3 22. 1 15 3 21. 1 1 53 31 6 6 6 53 31 6 22 6 Extra Practice Course 2A 95 2 3 lb 3 02/07/12 9:04 PM 1 2 2 5 4 3 6 1 53 31 6 6 6 53 31 6 22 6 2 3 lb 3 2 3 pounds more rice was used on Monday 3 than on Tuesday. 32. Number of complete lengths she can cut: 2 3 9 147 3 10 147 1 10 3 Average weight 1 29 3 3 3 1 49 29 She can cut 29 complete lengths. 33. Number of cups: 1 2 5 5 5 6 2 6 53 5 23 6 15 5 6 6 15 5 6 10 6 2 1 c 3 2 The chef needs 1 more cups of walnuts. 3 34. The other number: 1 2 33 17 8 5 4 3 4 3 33 3 17 4 43 3 4 99 68 12 12 99 68 12 31 12 7 2 12 The other number is 2 1 2 2 5 7 . 12 35. Total weight 4 3 6 96 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 96 4 5 9 17 34 2 5 5 95 17 2 34 2 25 52 52 45 34 68 10 10 10 45 34 68 10 147 lb 10 147 1 10 3 1 49 10 9 4 lb 10 2 9 17 34 2 5 5 95 17 2 34 2 25 52 52 45 34 68 10 10 10 45 34 68 10 147 lb 10 The average weight of the three parcels is 4 9 pounds. 10 Lesson 2.6 1.|7.9| 2 |23.15| 5 7.9 2 3.15 5 4.75 The sum is positive, because 7.9 has a greater absolute value. 23.15 1 7.9 5 4.75 2.|25.3| 2 |0.072| 5 5.3 2 0.072 5 5.228 Use a negative sign, because 25.3 has a greater absolute value. 0.072 1 (25.3) 5 25.228 3.|241.36| 1 |28.2| 5 41.36 1 8.2 5 49.56 Use the common sign, a negative sign, for the sum. 241.36 1 (28.2) 5 249.56 4.8.22 2 (20.355) 5 8.22 1 0.355 5 8.575 5.|217.203| 1 |20.86| 5 17.203 1 0.86 5 18.063 Use the common sign, a negative sign, for the sum. 217.203 2 0.86 5 218.063 6. 229.5 2 (29.34) 5 229.5 1 9.34 |229.5| 2 |9.34| 5 29.5 2 9.34 5 20.16 Use a negative sign, because 29.5 has a greater absolute value. 229.5 2 (29.34) 5 220.16 7.0.4 (25.7) 5 22.28 8. 22.7 3.1 5 28.37 9. 24.36 (21.8) 5 7.848 10.3.04 (26.3) 5 219.152 11. 236.9 4.5 5 28.2 © Marshall Cavendish International (Singapore) Private Limited. 5 6 8 5 4 5 02/07/12 9:04 PM Name: Date: Lesson 2.6 Operations with Decimals Evaluate each sum or difference. 1. 23.15 1 7.9 2.0.072 1 (25.3) 3. 241.36 1 (28.2) 4.8.22 2 (20.355) 5. 217.203 2 0.86 6. 229.5 2 (29.34) Evaluate each product. 7. 0.4 (25.7) 8. 22.7 3.1 9. 24.36 (21.8) 10.3.04 (26.3) © Marshall Cavendish International (Singapore) Private Limited. Evaluate each quotient. 11. 236.9 4.5 12.159.12 (23.4) 13. 249.14 (26.3) 14.12.376 0.52 Evaluate each expression. 15. 20.48 1 (20.1) 1 (22.3) 16. 23.59 1 16.7 1 (2150.06) 17. 49.03 1 (27.8) 2 (221.05) 18.601.03 2 467.9 1 (28.12) 19. 21.4 2 6.2 1 4.2 0.3 2 2.6 20.(39.3 1 6) 3 1 0.8 4 Extra Practice Course 2A 23 (M)MIFEP_C2A_Ch02.indd 23 20/06/12 12:09 PM Name: Date: Solve. Show your work. 21. On Sunday, the balance in Christina’s savings account was $315.12. On Monday, she makes withdrawals of $78.95 and $143.80. On Tuesday, she deposits $63.79. What is her balance after she makes the deposit? 22. The table shows the activity in George’s savings account. Date Deposit Withdrawal Balance January 31 2 2 $148.20 February 5 $35.65 $182.30 $1.55 February 18 $120.83 $78.32 ? What is the balance in George’s account on February 18? 24. In 2010, a company reported a net income loss of $23,800,000. In 2011, the company reported a net income gain of $10,400,000. How much more did the company earn in 2011 than in 2010? 25. Fiona has only $10 to pay the fees for three art projects. The fees of the projects are $2.50, $6.75, and $2.80. How much more money does she need? 26. In Fairbanks, Alaska, the average temperature in January is 29.7°F. The average temperature in July is 62.4°F. On average, how many degrees colder is Fairbanks in January than in July? © Marshall Cavendish International (Singapore) Private Limited. 23. The highest temperature recorded was 118.4ºF in Athens in 1977. The lowest temperature recorded in Ust Shchugor was 191ºF lower than that of the highest temperature recorded. What is the lowest temperature recorded? 24 Chapter 2 Lesson 2.6 (M)MIFEP_C2A_Ch02.indd 24 20/06/12 12:09 PM Name: Date: 27. A buyer purchased 6 baseball hats for $76.50. The hats will be sold in his retail store for a profit. If he plans to price each hat to make a 40% profit, what should be the selling price of each hat? 28. What is the discount price of a skateboard that costs $155.80 if it is on sale for 20% off? 29. The table shows the temperatures for the first 5 days of January in Lansing, Michigan. Find the average temperature for these 5 days. January © Marshall Cavendish International (Singapore) Private Limited. Temperature (°C) 1 2 3 4 5 25.2 26.7 29.1 210.3 28.6 30. Wendy has $50. She wants to buy a book that costs $26.50 and a bag that costs $19.50. The sales tax in her state is 6%. Does Wendy have enough money to buy the book and the bag? If so, how much money does she have left? If not, how much more money does she need? Extra Practice Course 2A 25 (M)MIFEP_C2A_Ch02.indd 25 20/06/12 12:09 PM 1 2 2 5 4 3 6 1 53 31 6 6 6 53 31 6 22 6 2 3 lb 3 2 3 pounds more rice was used on Monday 3 than on Tuesday. 32. Number of complete lengths she can cut: 2 3 9 147 3 10 147 1 10 3 Average weight 1 29 3 3 3 1 49 29 She can cut 29 complete lengths. 33. Number of cups: 1 2 5 5 5 6 2 6 53 5 23 6 15 5 6 6 15 5 6 10 6 2 1 c 3 2 The chef needs 1 more cups of walnuts. 3 34. The other number: 1 2 33 17 8 5 4 3 4 3 33 3 17 4 43 3 4 99 68 12 12 99 68 12 31 12 7 2 12 The other number is 2 1 2 2 5 7 . 12 35. Total weight 4 3 6 96 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 96 4 5 9 17 34 2 5 5 95 17 2 34 2 25 52 52 45 34 68 10 10 10 45 34 68 10 147 lb 10 147 1 10 3 1 49 10 9 4 lb 10 2 9 17 34 2 5 5 95 17 2 34 2 25 52 52 45 34 68 10 10 10 45 34 68 10 147 lb 10 The average weight of the three parcels is 4 9 pounds. 10 Lesson 2.6 1.|7.9| 2 |23.15| 5 7.9 2 3.15 5 4.75 The sum is positive, because 7.9 has a greater absolute value. 23.15 1 7.9 5 4.75 2.|25.3| 2 |0.072| 5 5.3 2 0.072 5 5.228 Use a negative sign, because 25.3 has a greater absolute value. 0.072 1 (25.3) 5 25.228 3.|241.36| 1 |28.2| 5 41.36 1 8.2 5 49.56 Use the common sign, a negative sign, for the sum. 241.36 1 (28.2) 5 249.56 4.8.22 2 (20.355) 5 8.22 1 0.355 5 8.575 5.|217.203| 1 |20.86| 5 17.203 1 0.86 5 18.063 Use the common sign, a negative sign, for the sum. 217.203 2 0.86 5 218.063 6. 229.5 2 (29.34) 5 229.5 1 9.34 |229.5| 2 |9.34| 5 29.5 2 9.34 5 20.16 Use a negative sign, because 29.5 has a greater absolute value. 229.5 2 (29.34) 5 220.16 7.0.4 (25.7) 5 22.28 8. 22.7 3.1 5 28.37 9. 24.36 (21.8) 5 7.848 10.3.04 (26.3) 5 219.152 11. 236.9 4.5 5 28.2 © Marshall Cavendish International (Singapore) Private Limited. 5 6 8 5 4 5 02/07/12 9:04 PM © Marshall Cavendish International (Singapore) Private Limited. 12.159.12 (23.4) 5 246.8 13. 249.14 (26.3) 5 7.8 14.12.376 0.52 5 23.8 15. 20.48 1 (20.1) 1 (22.3) 5 20.58 1 (22.3) 5 22.88 16. 23.59 1 16.7 1 (2150.06) 5 13.11 1 (2150.06) 5 2136.95 17.49.03 1 (27.8) 2 (221.05) 5 49.03 2 7.8 1 21.05 5 49.03 1 21.05 2 7.8 5 70.08 2 7.8 5 62.28 18.601.03 2 467.9 1 (28.12) 5 133.13 2 8.12 5 125.01 19.21.4 2 6.2 1 4.2 0.3 2 2.6 5 21.4 2 6.2 1 1.26 2 2.6 5 15.2 1 1.26 2 2.6 5 16.46 2 2.6 5 13.86 20.(39.3 1 6) 3 1 0.8 4 5 45.3 3 1 0.8 4 5 15.1 1 0.8 4 5 15.1 1 3.2 5 18.3 21. Her balance 5 $315.12 2 Withdrawals 1 Deposits 5 $315.12 2 $78.95 2 $143.80 1 $63.79 5 $236.17 2 $143.80 1 $63.79 5 $92.37 1 $63.79 5 $156.16 After the deposit, her balance is $156.16. 22. George’s balance: 5 $1.55 1 $120.83 2 $78.32 5 $122.38 2 $78.32 5 $44.06 Date February 18 Deposit Withdrawal Balance $120.83 $78.32 $44.06 The balance in George’s account on February 18 is $44.06. 23.118.4 2 191 5 272.6°F The lowest temperature recorded was 272.6°F. 24.Difference 5 $10,400,000 2 (2$23,800,000) 5 $34,200,000 The company earned $34,200,000 more in 2011 than in 2010. 25. Total fees 5 $2.50 1 $6.75 1 $2.80 5 $12.05 $12.05 2 $10 5 $2.05 She needs $2.05 more. 26. Difference in temperature 5 Temperature in July 2 Temperature in January 5 62.4 2 (29.7) 5 62.4 1 9.7 5 72.1°F Fairbanks is 72.1°F colder in January than in July. 27. Cost price of a hat 5 $76.50 6 5 $12.75 40% Profit 5 0.4 $12.75 5 $5.10 Selling Price 5 Cost Price 1 Profit 5 $12.75 1 $5.10 5 $17.85 The selling price of each hat should be $17.85. 28. Original Price 5 $155.80 20% discount 5 0.2 $155.80 5 $31.16 Discount price 5 $155.80 2 $31.16 5 $124.64 The discount price is $124.64. 29. Average temperature 5 Sum of temperatures 5 5.2 (6.7) (9.1) (10.3) (8.6 ) 5 39.9 5 5 27.98°C The average temperature for these 5 days is 27.98°C. 30. Total cost of the book: $26.50 1 6% Sales tax 5 $26.50 1 0.06 $26.50 5 $26.50 1 $1.59 5 $28.09 Total cost of the bag: $19.50 1 6% sales tax 5 $19.50 1 0.06 $19.50 5 $19.50 1 $1.17 5 $20.67 Total cost 5 $28.09 1 $20.67 5 $48.76 Amount she has left 5 $50 2 $48.76 5 $1.24 She has $1.24 left. Extra Practice Course 2A 97 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 97 02/07/12 9:04 PM Name: Date: Lesson 3.4 Expanding Algebraic Expressions 1. 1 1 (8x 1 16) 2. (3p 1 12) 4 3 3. 1 1 (14k 2 10) 4. (8a 2 24) 2 8 5. 1 1 (4p 1 1) 6. (2a 1 5) 2 7 7. 1 3 (3b 2 2) 8. (2k 2 15) 5 5 9. 2(6x 1 0.1) 10.5(0.3y 1 2) 11. 0.3(5x 1 3) 12.0.4(2h 1 7) 13. 0.6(m 2 4) 14.0.5(p 2 3) 15. 0.2(1.2d 1 0.3) 16.1.5(0.4x 2 1.3) © Marshall Cavendish International (Singapore) Private Limited. Expand each expression. 40 Chapter 3 Lesson 3.4 MIF_ExtraPractice C2_Ch03.indd 40 08/12/11 11:47 AM Name: Date: Expand each expression with a negative factor. 17. 23(x 1 2) 18. 25(2x 1 3) 19. 22(3a 1 7b) 20. 27(4k 2 h) 1 21. 6 p 3 2 1 1 22. 2 8x 2 4 3 23. 23(4k 1 1.2) 24. 24(0.3m 1 7) 25. 25(q 2 0.6) 26. 20.2(0.6y 2 2) © Marshall Cavendish International (Singapore) Private Limited. Expand and simplify each expression. 27. 2(3y 1 2) 1 5 28.4(3a 1 1) 2 2 29. 3(x 1 8) 1 5x 30.7(b 1 4) 2 3b 31. 3 1 a 1 2 1 5 4 1 1 32. 6 a 2 3 2 a 12 2 Extra Practice Course 2A 41 MIF_ExtraPractice C2_Ch03.indd 41 08/12/11 11:47 AM Name: Date: 33. 0.4(x 1 3) 1 0.8x 34.0.3(y 1 5) 2 0.1y 35. 23(5m 1 1) 2 m 36.12 2 4(n 2 2) 37. 20.6(r 1 4) 1 2.5r 38. 2(1.4x 1 5) 1 1.7x 39. 15y 1 4(8y 1 x) 40.9a 1 7(2a 2 b) 41. 6g 1 8(v 2 g) 42.12p 1 10(p 2 2q) 43. 7(2a 1 b) 1 2(3a 1 b) 44.4(2m 2 n) 1 8(3n 2 m) 45. 5(3d 1 e) 2 4(d 2 4e) 46.6(4q 2 p) 2 (2q 2 5p) 47. 23(x 1 2y) 1 4(3x 2 6y) 48. 28(y 1 3t) 2 4(2y 2 t) © Marshall Cavendish International (Singapore) Private Limited. Expand and simplify each expression with two variables. 42 Chapter 3 Lesson 3.4 (M)MIFEP_C2A_Ch03.indd 42 20/06/12 12:12 PM Name: Date: Write an expression for the missing dimension of each shaded figure and a multiplication expression for its area. Then expand and simplify the multiplication expression. 49. 12 (x 3) ? 14 50. 8 2x ? © Marshall Cavendish International (Singapore) Private Limited. 16 Write an expression for the area of the figure. Expand and simplify. 51. 10 2x 3y 6y Extra Practice Course 2A 43 (M)MIFEP_C2A_Ch03.indd 43 22/06/12 1:32 PM 1 1 (14k 2 10) 5 [14k 1 (210)] 2 2 1 1 5 (14k) 1 (210) 2 2 33. 3 x 1 x 1 y 5 y 4 x 4 y 7 6 6 3. 7 6 4 2 x y 7 3 34. 3 p 1 p 5 q 1 q 3 p 2 p 5 q 3 q 4 2 9 3 4 4 1 2 p q 4 9 35. 6.4m 1 2.3n 2 5.7m 2 0.7n 5 (6.4m 2 5.7m) 1 (2.3n 2 0.7n) 5 0.7m 1 1.6n 36. 6.9a 2 4.9b 2 7.8a 2 0.4b 5 (6.9a 2 7.8a) 1 (24.9b 2 0.4b) 5 20.9a 2 5.3b 37. 8 x 4 y 2 x 1 y 9 5 3 2 13 x y 9 10 4 1 8 3 5 7k 1 (25) 5 7k 2 5 1 [8a 1 (224)] 8 1 1 5 (8a) 1 (224) 8 8 4. (8a 2 24) 5 1 2 5 a 1 (23) 5a23 1 2 1 2 5. (4p 1 1) 5 (4p) 1 (1) 5 2p 1 1 2 1 1 1 (2a 1 5) 5 (2a) 1 (5) 7 7 7 5 2 5 a1 7 7 6. 1 5 1 5 1 1 5 (3b) 1 (22) 5 5 3 2 5 b1 2 5 5 7. (3b 2 2) 5 [3b 1 (22)] 38. 8 a 7 b 2 a 5 b 5 9 2 8 2 4 1 x x y y 9 3 5 2 8 6 8 5 x x y y 9 9 10 10 2 13 x y 10 9 9 8 3 5 b2 2 5 8 2 7 5 a a b b 5 3 4 8 14 24 10 5 a a b b 8 15 15 8 8. (2k 2 15) 5 [2k 1 (215)] 9 14 a b 8 15 5 (2k) 1 (215) 5 k 1 (29) 5 k29 14 9 a b 15 8 39. Perimeter 5 2 4.6x 1 2 2.8x 5 9.2x 1 5.6x 5 14.8x units 3 5 2 2 40. Perimeter 5 2x x x 5 6x units Lesson 3.4 1. 1 (8x 16) 1 (8x ) 1 (16) 4 4 2x 4 4 2. 1 (3p 12) 1 (3p ) 1 (12) 3 3 p 4 3 5 3 3 5 5 3 5 6 3 5 5 6 5 9.2(6x 1 0.1) 5 2(6x) 1 2(0.1) 5 12x 1 0.2 10.5(0.3y 1 2) 5 5(0.3y) 1 5(2) 5 1.5y 1 10 11.0.3(5x 1 3) 5 0.3(5x) 1 0.3(3) 5 1.5x 1 0.9 12.0.4(2h 1 7) 5 0.4(2h) 1 0.4(7) 5 0.8h 1 2.8 13.0.6(m 2 4) 5 0.6[m 1 (24)] 5 0.6(m) 1 0.6(24) 5 0.6m 1 (22.4) 5 0.6m 2 2.4 14.0.5(p 2 3) 5 0.5[p 1 (23)] 5 0.5(p) 1 0.5(23) 5 0.5p 1 (21.5) 5 0.5p 2 1.5 © Marshall Cavendish International (Singapore) Private Limited. 7 104 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 104 02/07/12 9:05 PM 15.0.2(1.2d 1 0.3) 5 0.2(1.2d ) 1 0.2(0.3) 5 0.24d 1 0.06 16.1.5(0.4x 2 1.3) 5 1.5[0.4x 1 (21.3)] 5 1.5(0.4x) 1 1.5(21.3) 5 0.6x 1 (21.95) 5 0.6x 2 1.95 17. 23(x 1 2) 5 23(x) 1 (23)(2) 5 23x 1 (26) 5 23x 2 6 18. 25(2x 1 3) 5 25(2x) 1 (25)(3) 5 210x 1 (215) 5 210x 2 15 19. 22(3a 1 7b) 5 22(3a) 1 (22)(7b) 5 26a 1 (214b) 5 26a 2 14b 20. 27(4k 2 h) 5 27(4k) 1 (27)(2h) 5 228k 1 7h 1 1 21. 6 p 3 6 p 1 (26)(3) 2 2 5 23p 1 (218) 5 23p 2 18 1 1 1 1 22. 8x (8x ) 4 4 4 3 1 2x 1 3 © Marshall Cavendish International (Singapore) Private Limited. 12 23. 23(4k 1 1.2) 5 23(4k) 1 (23)(1.2) 5 212k 1 (23.6) 5 212k 2 3.6 24. 24(0.3m 1 7) 5 24(0.3m) 1 (24)(7) 5 21.2m 1 (228) 5 21.2m 2 28 25. 25(q 2 0.6) 5 25(q) 1 (25)(20.6) 5 25q 1 3 26. 20.2(0.6y 2 2) 5 20.2(0.6y) 1 (20.2)(22) 5 20.12y 1 0.4 27.2(3y 1 2) 1 5 5 2(3y) 1 2(2) 1 5 5 6y 1 4 1 5 5 6y 1 9 28.4(3a 1 1) 2 2 5 4(3a) 1 4(1) 2 2 5 12a 1 4 2 2 5 12a 1 2 29.3(x 1 8) 1 5x 5 3(x) 1 3(8) 1 5x 5 3x 1 24 1 5x 5 (3x 1 5x) 1 24 5 8x 1 24 30.7(b 1 4) 2 3b 5 7(b) 1 7(4) 2 3b 5 7b 1 28 2 3b 5 (7b 2 3b) 1 28 5 4b 1 28 1 1 31. 3 a 2 5 3 a 3(2) 5 4 4 3 a65 4 3 a 11 4 1 1 1 1 32. 6 a 3 a 6 a 6(3) a 2 12 12 2 6 1 a (18) a 2 12 6 1 a a (18) 12 2 1 1 a a (18) 2 2 5 218 33.0.4(x 1 3) 1 0.8x 5 0.4(x) 1 0.4(3) 1 0.8x 5 0.4x 1 1.2 1 0.8x 5 (0.4x 1 0.8x) 1 1.2 5 1.2x 1 1.2 34.0.3(y 1 5) 2 0.1y 5 0.3(y) 1 0.3(5) 2 0.1y 5 0.3y 1 1.5 2 0.1y 5 (0.3y 2 0.1y) 1 1.5 5 0.2y 1 1.5 35. 23(5m 1 1) 2 m 5 23(5m) 1 (23)(1) 2 m 5 215m 1 (23) 2 m 5 (215m 2 m) 1 (23) 5 216m 1 (23) 5 216m 2 3 36.12 2 4(n 2 2) 5 12 1 (24)(n) 1 (24)(22) 5 12 1 (24n) 1 8 5 (12 1 8) 1 (24n) 5 20 1 (24n) 5 20 2 4n 37. 20.6(r 1 4) 1 2.5r 5 20.6(r) 1 (20.6)(4) 1 2.5r 5 20.6r 1 (22.4) 1 2.5r 5 (20.6r 1 2.5r) 1 (22.4) 5 1.9r 1 (22.4) 5 1.9r 2 2.4 38. 2(1.4x 1 5) 1 1.7x 5 (21)(1.4x) 1 (21)(5) 1 1.7x 5 21.4x 1 (25) 1 1.7x 5 (21.4x 1 1.7x) 1 (25) 5 0.3x 1 (25) 5 0.3x 2 5 39.15y 1 4(8y 1 x) 5 15y 1 4(8y) 1 4(x) 5 15y 1 32y 1 4x 5 47y 1 4x 9a 1 7(2a) 1 7(2b) 40.9a 1 7(2a 2 b) 5 5 9a 1 14a 1 (27b) 5 23a 1 (27b) 5 23a 2 7b Extra Practice Course 2A 105 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 105 02/07/12 9:05 PM 50. Length of missing dimension: (16 2 2x) units Area 5 1 8 (16 2 2x) 2 5 4 (16 2 2x) 5 4(16) 1 (4)(22x) 5 64 1 (28x) 5 (64 2 8x) units2 51.Area 5 10(2x 2 3y) 1 1 10 6y 2 5 10(2x) 1 10(23y) 1 30y 5 10(2x) 1 (230y) 1 30y 5 20x 2 30y 1 30y 5 20x units2 Lesson 3.5 1.3x 1 15 5 3(x) 1 3(5) 5 3(x 1 5) 2.8a 1 8 5 8(a) 1 8(1) 5 8(a 1 1) 3.4x 2 28 5 4x 1 (228) 5 4(x) 1 4(27) 5 4(x 2 7) 4.5x 2 15 5 5x 1 (215) 5 5(x) 1 5(23) 5 5(x 2 3) 5.6a 1 6b 5 6(a) 1 6(b) 5 6(a 1 b) 6.2x 1 10y 5 2(x) 1 2(5y) 5 2(x 1 5y) 7.21p 1 7q 5 7(3p) 1 7(q) 5 7(3p 1 q) 8.16w 1 80m 5 16(w) 1 16(5m) 5 16(w 1 5m) 9.3j 2 18k 5 3j 1 (218k) 5 3(j) 1 3(26k) 5 3(j 2 6k) 10.12t 2 48u 5 12t 1 (248u) 5 12(t) 1 12(24u) 5 12(t 2 4u) 11.25a 2 5p 5 25a 1 (25p) 5 5(5a) 1 5(2p) 5 5(5a 2 p) 12.8h 2 56f 5 8h 1 (256f ) 5 8(h) 1 8(27f ) 5 8(h 2 7f) 13.16x 2 10y 5 16x 1 (210y) 5 2(8x) 1 2(25y) 5 2(8x 2 5y) 14.24a 2 6b 5 24a 1 (26b) 5 6(4a) 1 6(2b) 5 6(4a 2 b) © Marshall Cavendish International (Singapore) Private Limited. 41.6g 1 8(v 2 g) 5 6g 1 8(v) 1 8(2g) 5 6g 1 8v 1 (28g) 5 [6g 1 (28g)] 1 8v 5 (6g 2 8g) 1 8v 5 22g 1 8v 42.12p 1 10(p 2 2q) 5 12p 1 10(p) 1 10(22q) 5 12p 1 10p 1 (220q) 5 22p 1 (220q) 5 22p 2 20q 43.7(2a 1 b) 1 2(3a 1 b) 5 7(2a) 1 7(b) 1 2(3a) 1 2(b) 5 14a 1 7b 1 6a 1 2b 5 (14a 1 6a) 1 (7b 1 2b) 5 20a 1 9b 44.4(2m 2 n) 1 8(3n 2 m) 5 4(2m) 1 4(2n) 1 8(3n) 1 8(2m) 5 8m 1 (24n) 1 24n 1 (28m) 5 [8m 1 (28m)] 1 [(24n) 1 24n] 5 (8m 2 8m) 1 (24n 1 24n) 5 20n 45.5(3d 1 e) 2 4(d 2 4e) 5 5(3d) 1 5(e) 1 (24)(d) 1 (24)(24e) 5 15d 1 5e 1 (24d) 1 16e 5 [15d 1 (24d)] 1 (5e 1 16e) 5 (15d 2 4d) 1 (5e 1 16e) 5 11d 1 21e 46.6(4q 2 p) 2 (2q 2 5p) 5 6(4q) 1 6(2p) 1 (21)(2q) 1 (21)(25p) 5 24q 1 (26p) 1 (22q) 1 5p 5 [24q 1 (22q)] 1 [(26p) 1 5p] 5 (24q 2 2q) 1 (26p 1 5p) 5 22q 2 p 47. 23(x 1 2y) 1 4(3x 2 6y) 5 23(x) 1 (23)(2y) 1 4(3x) 1 4(26y) 5 23x 1 (26y) 1 12x 1 (224y) 5 (23x 1 12x) 1 [(26y) 1 (224y)] 5 (23x 1 12x) 1 (26y 2 24y) 5 9x 1 (230y) 5 9x 2 30y 48. 28(y 1 3t) 2 4(2y 2 t) 5 28(y) 1 (28)(3t) 1 (24)(2y) 1 (24)(2t) 5 28y 1 (224t) 1 (28y) 1 4t 5 [28y 1 (28y)] 1 [(224t) 1 4t] 5 (28y 2 8y) 1 (224t 1 4t) 5 216y 2 20t 49. Length of missing dimension: 14 2 (x 2 3) 5 14 1 (21)(x) 1 (21)(23) 5 14 1 (2x) 1 3 5 (14 1 3) 1 (2x) 5 17 1 (2x) 5 (17 2 x) units Area 5 12 (17 2 x) 5 12(17) 1 12(2x) 5 204 1 (212x) 5 (204 2 12x) units2 106 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 106 02/07/12 9:05 PM Name: Date: Lesson 3.5 Factoring Algebraic Expressions 1. 3x 1 15 2.8a 1 8 3. 4x 2 28 4.5x 2 15 5. 6a 1 6b 6.2x 1 10y 7. 21p 1 7q 8.16w 1 80m 9. 3j 2 18k 10.12t 2 48u 11. 25a 2 5p 12.8h 2 56f 13. 16x 2 10y 14.24a 2 6b 15. 35c 2 15d 16.14y 2 30e 17. 23 2 p 18. 2y 2 8 19. 24d 2 5 20. 25y 2 16 © Marshall Cavendish International (Singapore) Private Limited. Factor each expression with two terms. 44 Chapter 3 Lesson 3.5 MIF_ExtraPractice C2_Ch03.indd 44 08/12/11 11:47 AM Name: Date: Factor each expression with negative terms. 21. 22a 2 4 22. 23x 2 24 23. 27k 2 35 24. 29u 2 81 25. 22 2 6n 26. 24 2 12p 27. 224x 2 18y 28. 235m 2 20n 29. 228w 2 7q 30. 248y 2 16x © Marshall Cavendish International (Singapore) Private Limited. Factor each expression with three terms. 31. 3x 1 3y 1 9 32.4a 1 2b 1 6 33. 15p 1 5q 1 10 34.18d 1 9e 1 12 35. 4s 2 8t 2 20 36.7a 2 14b 2 28 37. 16a 2 12b 2 6 38.33g 2 11h 2 66 39. 9 1 18m 2 12n 40. 35 2 5w 1 25k Extra Practice Course 2A 45 (M)MIFEP_C2A_Ch03.indd 45 20/06/12 12:12 PM 50. Length of missing dimension: (16 2 2x) units Area 5 1 8 (16 2 2x) 2 5 4 (16 2 2x) 5 4(16) 1 (4)(22x) 5 64 1 (28x) 5 (64 2 8x) units2 51.Area 5 10(2x 2 3y) 1 1 10 6y 2 5 10(2x) 1 10(23y) 1 30y 5 10(2x) 1 (230y) 1 30y 5 20x 2 30y 1 30y 5 20x units2 Lesson 3.5 1.3x 1 15 5 3(x) 1 3(5) 5 3(x 1 5) 2.8a 1 8 5 8(a) 1 8(1) 5 8(a 1 1) 3.4x 2 28 5 4x 1 (228) 5 4(x) 1 4(27) 5 4(x 2 7) 4.5x 2 15 5 5x 1 (215) 5 5(x) 1 5(23) 5 5(x 2 3) 5.6a 1 6b 5 6(a) 1 6(b) 5 6(a 1 b) 6.2x 1 10y 5 2(x) 1 2(5y) 5 2(x 1 5y) 7.21p 1 7q 5 7(3p) 1 7(q) 5 7(3p 1 q) 8.16w 1 80m 5 16(w) 1 16(5m) 5 16(w 1 5m) 9.3j 2 18k 5 3j 1 (218k) 5 3(j) 1 3(26k) 5 3(j 2 6k) 10.12t 2 48u 5 12t 1 (248u) 5 12(t) 1 12(24u) 5 12(t 2 4u) 11.25a 2 5p 5 25a 1 (25p) 5 5(5a) 1 5(2p) 5 5(5a 2 p) 12.8h 2 56f 5 8h 1 (256f ) 5 8(h) 1 8(27f ) 5 8(h 2 7f) 13.16x 2 10y 5 16x 1 (210y) 5 2(8x) 1 2(25y) 5 2(8x 2 5y) 14.24a 2 6b 5 24a 1 (26b) 5 6(4a) 1 6(2b) 5 6(4a 2 b) © Marshall Cavendish International (Singapore) Private Limited. 41.6g 1 8(v 2 g) 5 6g 1 8(v) 1 8(2g) 5 6g 1 8v 1 (28g) 5 [6g 1 (28g)] 1 8v 5 (6g 2 8g) 1 8v 5 22g 1 8v 42.12p 1 10(p 2 2q) 5 12p 1 10(p) 1 10(22q) 5 12p 1 10p 1 (220q) 5 22p 1 (220q) 5 22p 2 20q 43.7(2a 1 b) 1 2(3a 1 b) 5 7(2a) 1 7(b) 1 2(3a) 1 2(b) 5 14a 1 7b 1 6a 1 2b 5 (14a 1 6a) 1 (7b 1 2b) 5 20a 1 9b 44.4(2m 2 n) 1 8(3n 2 m) 5 4(2m) 1 4(2n) 1 8(3n) 1 8(2m) 5 8m 1 (24n) 1 24n 1 (28m) 5 [8m 1 (28m)] 1 [(24n) 1 24n] 5 (8m 2 8m) 1 (24n 1 24n) 5 20n 45.5(3d 1 e) 2 4(d 2 4e) 5 5(3d) 1 5(e) 1 (24)(d) 1 (24)(24e) 5 15d 1 5e 1 (24d) 1 16e 5 [15d 1 (24d)] 1 (5e 1 16e) 5 (15d 2 4d) 1 (5e 1 16e) 5 11d 1 21e 46.6(4q 2 p) 2 (2q 2 5p) 5 6(4q) 1 6(2p) 1 (21)(2q) 1 (21)(25p) 5 24q 1 (26p) 1 (22q) 1 5p 5 [24q 1 (22q)] 1 [(26p) 1 5p] 5 (24q 2 2q) 1 (26p 1 5p) 5 22q 2 p 47. 23(x 1 2y) 1 4(3x 2 6y) 5 23(x) 1 (23)(2y) 1 4(3x) 1 4(26y) 5 23x 1 (26y) 1 12x 1 (224y) 5 (23x 1 12x) 1 [(26y) 1 (224y)] 5 (23x 1 12x) 1 (26y 2 24y) 5 9x 1 (230y) 5 9x 2 30y 48. 28(y 1 3t) 2 4(2y 2 t) 5 28(y) 1 (28)(3t) 1 (24)(2y) 1 (24)(2t) 5 28y 1 (224t) 1 (28y) 1 4t 5 [28y 1 (28y)] 1 [(224t) 1 4t] 5 (28y 2 8y) 1 (224t 1 4t) 5 216y 2 20t 49. Length of missing dimension: 14 2 (x 2 3) 5 14 1 (21)(x) 1 (21)(23) 5 14 1 (2x) 1 3 5 (14 1 3) 1 (2x) 5 17 1 (2x) 5 (17 2 x) units Area 5 12 (17 2 x) 5 12(17) 1 12(2x) 5 204 1 (212x) 5 (204 2 12x) units2 106 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 106 02/07/12 9:05 PM © Marshall Cavendish International (Singapore) Private Limited. 15.35c 2 15d 5 35c 1 (215d ) 5 5(7c) 1 5(23d ) 5 5(7c 2 3d ) 16.14y 2 30e 5 14y 1 (230e) 5 2(7y) 1 2(215e) 5 2(7y 2 15e) 17. 23 2 p 5 23 1 (2p) 5 (21)(3) 1 (21)(p) 5 (21)(3 1 p) 5 2(3 1 p) 18. 2y 2 8 5 2y 1 (28) 5 (21)(y) 1 (21)(8) 5 (21)(y 1 8) 5 2(y 1 8) 19. 24d 2 5 5 24d 1 (25) 5 (21)(4d ) 1 (21)(5) 5 (21)(4d 1 5) 5 2(4d 1 5) 20. 25y 2 16 5 25y 1 (216) 5 (21)(5y) 1 (21)(16) 5 (21)(5y 1 16) 5 2(5y 1 16) 21. 22a 2 4 5 22a 1 (24) 5 (22)(a) 1 (22)(2) 5 22(a 1 2) 22. 23x 2 24 5 23x 1 (224) 5 (23)(x) 1 (23)(8) 5 23(x 1 8) 23. 27k 2 35 5 27k 1 (235) 5 (27)(k) 1 (27)(5) 5 27(k 1 5) 24. 29u 2 81 5 29u 1 (281) 5 (29)(u) 1 (29)(9) 5 29(u 1 9) 25. 22 2 6n 5 22 1 (26n) 5 (22)(1) 1 (22)(3n) 5 22(1 1 3n) 26. 24 2 12p 5 24 1 (212p) 5 (24)(1) 1 (24)(3p) 5 24(1 1 3p) 27. 224x 2 18y 5 224x 1 (218y) 5 (26)(4x) 1 (26)(3y) 5 26(4x 1 3y) 28. 235m 2 20n 5 235m 1 (220n) 5 (25)(7m) 1 (25)(4n) 5 25(7m 1 4n) 29. 228w 2 7q 5 228w 1 (27q) 5 (27)(4w) 1 (27)(q) 5 27(4w 1 q) 30. 248y 2 16x 5 248y 1 (216x) 5 (216)(3y) 1 (216)(x) 5 216(3y 1 x) 31.3x 1 3y 1 9 5 3(x) 1 3(y) 1 3(3) 5 3(x 1 y 1 3) 32.4a 1 2b 1 6 5 2(2a) 1 2(b) 1 2(3) 5 2(2a 1 b 1 3) 33.15p 1 5q 1 10 5 5(3p) 1 5(q) 1 5(2) 5 5(3p 1 q 1 2) 34.18d 1 9e 1 12 5 3(6d) 1 3(3e) 1 3(4) 5 3(6d 1 3e 1 4) 35.4s 2 8t 2 20 5 4s 1 (28t) 1 (220) 5 4(s) 1 4(22t) 1 4(25) 5 4[s 1 (22t) 1 (25)] 5 4(s 2 2t 2 5) 36.7a 2 14b 2 28 5 7a 1 (214b) 1 (228) 5 7(a) 1 7(22b) 1 7(24) 5 7[a 1 (22b) 1 (24)] 5 7(a 2 2b 2 4) 37.16a 2 12b 2 6 5 16a 1 (212b) 1 (26) 5 2(8a) 1 2(26b) 1 2(23) 5 2[8a 1 (26b) 1 (23)] 5 2(8a 2 6b 2 3) 38.33g 2 11h 2 66 5 33g 1 (211h) 1 (266) 5 11(3g) 1 11(2h) 1 11(26) 5 11[3g 1 (2h) 1 (26)] 5 11(3g 2 h 2 6) 39.9 1 18m 2 12n 5 9 1 18m 1 (212n) 5 3(3) 1 3(6m) 1 3(24n) 5 3[3 1 6m 1 (24n)] 5 3(3 1 6m 2 4n) 40.35 2 5w 1 25k 5 35 1 (25w) 1 25k 5 5(7) 1 5(2w) 1 5(5k) 5 5[7 1 (2w) 1 5k] 5 5(7 2 w 1 5k) Lesson 3.6 1. t s 2 3 2. 15 b 20 23 3. 5r 7 35r 15 15 7r 3 4. 1.2 w 1.2 w 1.2 12 12 u u 5 1.2w 1 5. u 10 9 27 (6 x ) 10 x 10 14 7 6. 20 1 w 1 w 100 2 10 21p 7. 7 (5p 3) 10 2 Extra Practice Course 2A 107 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 107 02/07/12 9:05 PM Name: Date: Lesson 3.6 Writing Algebraic Expressions Translate each verbal description into an algebraic expression. Simplify the expression when you can. 1. Sum of one-half t and one-third s 2. Twenty subtracted from 15 b 23 3. Product of 5r and 7 divided by 15 4. 120% of the sum of w and one-twelfth u 5. Nine-fourteenths of 6x reduced by 10 7. Seven-tenths of the product of 5p and 3 8. Sum of x, three-fourths x, and 90% of z 9. Four times the difference of one-half x subtracted from three-eighths y © Marshall Cavendish International (Singapore) Private Limited. 6. 20% of one-half w 10. 60% of the difference of five-eighteenths v subtracted from four-sixths w 46 Chapter 3 Lesson 3.6 (M)MIFEP_C2A_Ch03.indd 46 20/06/12 12:12 PM Name: Date: Solve. You may use a diagram, model, or table. 3 11. The length of a picture frame is (8u 2 12) inches. Its width is of its length. 4 Express the width of the picture frame in terms of u. 12. If 6 tablespoons are equivalent to 1 fluid ounce, how many fluid ounces are in (10t 2 4) tablespoons? © Marshall Cavendish International (Singapore) Private Limited. 13. 11 notebooks were added to w notebooks. 7 friends then shared the notebooks equally. Express the number of notebooks each person received in terms of w. 14. A pear costs $0.40 and an apple costs $0.25. What is the total cost of p pears and q apples? 15. The ratio of the number of pencils to pens is 5 : 7. There are q pens. Express the number of pencils in terms of q. Extra Practice Course 2A 47 (M)MIFEP_C2A_Ch03.indd 47 20/06/12 12:12 PM Name: Date: 16. When 5 adults joined a group of y diners, the ratio of the number of adults to children in the restaurant became 3 : 5. Express the number of children in terms of y. 17. Freddy paid w dollars for a camera and $120 for an additional camera lens. If the sales tax is 8%, how much did Freddy pay for the camera and lens, including the sales tax? 18. Emily has 5u game cards. John has 8 fewer game cards than Emily. Find 13 19. A train traveled at 140 miles per hour for 2 1 x hours, and (2x 2 3) miles per 14 hour for the next 3 hours. a) Express the total distance traveled by the train in terms of x. b)If x 5 3, what is the total distance traveled by the train? © Marshall Cavendish International (Singapore) Private Limited. the average number of game cards that Emily and John have in all in terms of u. 48 Chapter 3 Lesson 3.6 (M)MIFEP_C2A_Ch03.indd 48 20/06/12 12:12 PM © Marshall Cavendish International (Singapore) Private Limited. 15.35c 2 15d 5 35c 1 (215d ) 5 5(7c) 1 5(23d ) 5 5(7c 2 3d ) 16.14y 2 30e 5 14y 1 (230e) 5 2(7y) 1 2(215e) 5 2(7y 2 15e) 17. 23 2 p 5 23 1 (2p) 5 (21)(3) 1 (21)(p) 5 (21)(3 1 p) 5 2(3 1 p) 18. 2y 2 8 5 2y 1 (28) 5 (21)(y) 1 (21)(8) 5 (21)(y 1 8) 5 2(y 1 8) 19. 24d 2 5 5 24d 1 (25) 5 (21)(4d ) 1 (21)(5) 5 (21)(4d 1 5) 5 2(4d 1 5) 20. 25y 2 16 5 25y 1 (216) 5 (21)(5y) 1 (21)(16) 5 (21)(5y 1 16) 5 2(5y 1 16) 21. 22a 2 4 5 22a 1 (24) 5 (22)(a) 1 (22)(2) 5 22(a 1 2) 22. 23x 2 24 5 23x 1 (224) 5 (23)(x) 1 (23)(8) 5 23(x 1 8) 23. 27k 2 35 5 27k 1 (235) 5 (27)(k) 1 (27)(5) 5 27(k 1 5) 24. 29u 2 81 5 29u 1 (281) 5 (29)(u) 1 (29)(9) 5 29(u 1 9) 25. 22 2 6n 5 22 1 (26n) 5 (22)(1) 1 (22)(3n) 5 22(1 1 3n) 26. 24 2 12p 5 24 1 (212p) 5 (24)(1) 1 (24)(3p) 5 24(1 1 3p) 27. 224x 2 18y 5 224x 1 (218y) 5 (26)(4x) 1 (26)(3y) 5 26(4x 1 3y) 28. 235m 2 20n 5 235m 1 (220n) 5 (25)(7m) 1 (25)(4n) 5 25(7m 1 4n) 29. 228w 2 7q 5 228w 1 (27q) 5 (27)(4w) 1 (27)(q) 5 27(4w 1 q) 30. 248y 2 16x 5 248y 1 (216x) 5 (216)(3y) 1 (216)(x) 5 216(3y 1 x) 31.3x 1 3y 1 9 5 3(x) 1 3(y) 1 3(3) 5 3(x 1 y 1 3) 32.4a 1 2b 1 6 5 2(2a) 1 2(b) 1 2(3) 5 2(2a 1 b 1 3) 33.15p 1 5q 1 10 5 5(3p) 1 5(q) 1 5(2) 5 5(3p 1 q 1 2) 34.18d 1 9e 1 12 5 3(6d) 1 3(3e) 1 3(4) 5 3(6d 1 3e 1 4) 35.4s 2 8t 2 20 5 4s 1 (28t) 1 (220) 5 4(s) 1 4(22t) 1 4(25) 5 4[s 1 (22t) 1 (25)] 5 4(s 2 2t 2 5) 36.7a 2 14b 2 28 5 7a 1 (214b) 1 (228) 5 7(a) 1 7(22b) 1 7(24) 5 7[a 1 (22b) 1 (24)] 5 7(a 2 2b 2 4) 37.16a 2 12b 2 6 5 16a 1 (212b) 1 (26) 5 2(8a) 1 2(26b) 1 2(23) 5 2[8a 1 (26b) 1 (23)] 5 2(8a 2 6b 2 3) 38.33g 2 11h 2 66 5 33g 1 (211h) 1 (266) 5 11(3g) 1 11(2h) 1 11(26) 5 11[3g 1 (2h) 1 (26)] 5 11(3g 2 h 2 6) 39.9 1 18m 2 12n 5 9 1 18m 1 (212n) 5 3(3) 1 3(6m) 1 3(24n) 5 3[3 1 6m 1 (24n)] 5 3(3 1 6m 2 4n) 40.35 2 5w 1 25k 5 35 1 (25w) 1 25k 5 5(7) 1 5(2w) 1 5(5k) 5 5[7 1 (2w) 1 5k] 5 5(7 2 w 1 5k) Lesson 3.6 1. t s 2 3 2. 15 b 20 23 3. 5r 7 35r 15 15 7r 3 4. 1.2 w 1.2 w 1.2 12 12 u u 5 1.2w 1 5. u 10 9 27 (6 x ) 10 x 10 14 7 6. 20 1 w 1 w 100 2 10 21p 7. 7 (5p 3) 10 2 Extra Practice Course 2A 107 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 107 02/07/12 9:05 PM 7 x 0.9z 4 3 1 3 1 9. 4 y x 4 y 4 x 8 2 8 2 3 y (2x ) 2 3 y 2x 2 10. 60 4 w 5 v 60 4 w 60 5 v 100 6 18 100 6 100 18 1 2 w v 6 5 2 17. Cost of camera and lens before tax: w 1 120 dollars Cost of camera and lens including tax: 1.08(w 1 120) 5 1.08 w 1 1.08 120 5 (1.08w 1 129.6) dollars Freddy paid (1.08w 1 129.6) dollars for the camera and lens. 8 18. Number of cards John has: 5u 13 1 w v 5 6 Total number of cards that Emily and John have: 5u 2 8 8 1 5u 5 (5u 1 5u) 2 13 13 8 5 10u 2 13 Average number of cards: 1 8 1 1 8 10u (10u ) 2 13 2 2 13 4 5u 13 3 3 3 11.Width: (8u 2 12) 5 (8u) 1 (212) 4 4 4 5 6u 1 (29) 5 (6u 2 9) in. The width of the picture frame is (6u 2 9) inches. Emily and John have an average of 4 5u game cards. 13 1 6 1 (10t 2 4) tablespoons 5 (10t 2 4) fl oz 6 1 1 5 10t 2 4 6 6 12. 1 tablespoon 5 fl oz 5 2 t fl oz 3 3 5 2 t fluid ounces are in (10t 2 4) 3 3 tablespoons. 11 w 13. Each person received 7 notebooks. 14. The total cost of p pears and p apples is 0.4p 1 0.25q. 5 15. Number of pencils: q 7 5 There are q pencils. 7 16. Number of diners after 5 adults joined: y 1 5 5 8 Number of children: ( y 5) The number of children is ( y 5) . 5 8 5u 4 13 19.a) Total distance traveled: 140 2 1 x 1 3(2x 2 3) 14 5 140 29 x 1 3(2x) 1 3(23) 14 5 290x 1 6x 1 (29) 5 290x 1 6x 2 9 5 (296x 2 9) mi The total distance traveled by the train is (296x 2 9) miles. b)When x 5 3, total distance traveled: 296x 2 9 5 296 3 2 9 5 879 mi The total distance traveled by the train is 879 miles. Lesson 3.7 1. Difference in length: (12.5x 1 17) 2 (5x 1 0.4w) 5 12.5x 1 17 1 (21)(5x) 1 (21)(0.4w) 5 12.5x 1 (21)(5x) 1 17 1 (21)(0.4w) 5 12.5x 2 5x 1 17 2 0.4w 5 (7.5x 1 17 2 0.4w) cm The difference in the length of the two ropes is (7.5x 1 17 2 0.4w) centimeters. © Marshall Cavendish International (Singapore) Private Limited. 3 4 3 8. x x 0.9z x x 0.9z 4 4 4 108 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 108 02/07/12 9:05 PM Name: Date: Lesson 3.7 Real-World Problems: Algebraic Reasoning Solve each question using algebraic reasoning. 1. Jeremy has two ropes. The longer rope is (12.5x 1 17) centimeters long, and the shorter rope is (5x 1 0.4w) centimeters long. Find the difference in length of the two ropes. 2. The radius of a circle is (7n 2 21) inches. Find the circumference of the circle in terms of n. Use 22 as an approximation for π. 7 © Marshall Cavendish International (Singapore) Private Limited. 3. The average daily sales at a bookstore was (7.6k 1 2.2) dollars over a 4-day promotion. Find the total sales during the promotion. 4. The ratio of the number of red ribbons to yellow ribbons is 17 to 6. If the number of red ribbons is 2m 1 5, how many ribbons are yellow? 5. During summer vacation, 36% of c children went to Europe, 24 children to Asia, and the rest of the children went to South America. How many children went to South America? Extra Practice Course 2A 49 (M)MIFEP_C2A_Ch03.indd 49 20/06/12 12:12 PM Name: Date: 6. The hourly rates for a parking garage are as follows: First hour $4.00 Each additional hour thereafter $3.20 Robyn parked her car in the garage for y hours. How much was her parking fee? 7. A cylinder contains (4.5x 1 2y 2 6) milliliters of liquid. How many milliliters of liquid must be added to the cylinder to make a total of (6.9x 2 3y 1 3) milliliters? 8. Among the 50 children at a book fair, b of them are boys. 30% of the girls at the book fair are younger than twelve years old while 40% of the boys are at least twelve years old. How many children at the book fair are younger than twelve years old? 9. When 2 of the koi was given away, there were still b koi and k goldfish left in 5 10. The ratio of the mass of Bottle A to Bottle B to Bottle C is 7 : 5 : 11. The total mass of Bottle A and Bottle C is (2x 2 9) kilograms. a) Express the mass of Bottle B in terms of x. b)If x 5 15, find the mass of Bottle B. © Marshall Cavendish International (Singapore) Private Limited. the pond. How many koi and goldfish were there initially? 50 Chapter 3 Lesson 3.7 (M)MIFEP_C2A_Ch03.indd 50 20/06/12 12:12 PM 7 x 0.9z 4 3 1 3 1 9. 4 y x 4 y 4 x 8 2 8 2 3 y (2x ) 2 3 y 2x 2 10. 60 4 w 5 v 60 4 w 60 5 v 100 6 18 100 6 100 18 1 2 w v 6 5 2 17. Cost of camera and lens before tax: w 1 120 dollars Cost of camera and lens including tax: 1.08(w 1 120) 5 1.08 w 1 1.08 120 5 (1.08w 1 129.6) dollars Freddy paid (1.08w 1 129.6) dollars for the camera and lens. 8 18. Number of cards John has: 5u 13 1 w v 5 6 Total number of cards that Emily and John have: 5u 2 8 8 1 5u 5 (5u 1 5u) 2 13 13 8 5 10u 2 13 Average number of cards: 1 8 1 1 8 10u (10u ) 2 13 2 2 13 4 5u 13 3 3 3 11.Width: (8u 2 12) 5 (8u) 1 (212) 4 4 4 5 6u 1 (29) 5 (6u 2 9) in. The width of the picture frame is (6u 2 9) inches. Emily and John have an average of 4 5u game cards. 13 1 6 1 (10t 2 4) tablespoons 5 (10t 2 4) fl oz 6 1 1 5 10t 2 4 6 6 12. 1 tablespoon 5 fl oz 5 2 t fl oz 3 3 5 2 t fluid ounces are in (10t 2 4) 3 3 tablespoons. 11 w 13. Each person received 7 notebooks. 14. The total cost of p pears and p apples is 0.4p 1 0.25q. 5 15. Number of pencils: q 7 5 There are q pencils. 7 16. Number of diners after 5 adults joined: y 1 5 5 8 Number of children: ( y 5) The number of children is ( y 5) . 5 8 5u 4 13 19.a) Total distance traveled: 140 2 1 x 1 3(2x 2 3) 14 5 140 29 x 1 3(2x) 1 3(23) 14 5 290x 1 6x 1 (29) 5 290x 1 6x 2 9 5 (296x 2 9) mi The total distance traveled by the train is (296x 2 9) miles. b)When x 5 3, total distance traveled: 296x 2 9 5 296 3 2 9 5 879 mi The total distance traveled by the train is 879 miles. Lesson 3.7 1. Difference in length: (12.5x 1 17) 2 (5x 1 0.4w) 5 12.5x 1 17 1 (21)(5x) 1 (21)(0.4w) 5 12.5x 1 (21)(5x) 1 17 1 (21)(0.4w) 5 12.5x 2 5x 1 17 2 0.4w 5 (7.5x 1 17 2 0.4w) cm The difference in the length of the two ropes is (7.5x 1 17 2 0.4w) centimeters. © Marshall Cavendish International (Singapore) Private Limited. 3 4 3 8. x x 0.9z x x 0.9z 4 4 4 108 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 108 02/07/12 9:05 PM 2.Circumference 5 2 r 22 2 (7n 21) 7 44 (7n 21) 7 44 44 (7n ) (21) 7 7 44n (132) ( 44n 132) in. The circumference of the circle is (44n 2 132) inches. 3.Total sales: 4 (7.6k 1 2.2) 5 4(7.6k) 1 4(2.2) 5 (30.4k 1 8.8) dollars The total sales during the promotion was (30.4k 1 8.8) dollars. 4.Number of yellow ribbons: © Marshall Cavendish International (Singapore) Private Limited. There are 6 17 12 17 (2m) 6 17 13 m 1 17 ( 5) 6 17 6 17 12 17 (2m 5) (2m) 6 17 13 ( 5) m 1 8.Number of girls: 50 2 b Number of girls younger than 12 years old: 0.3(50 2 b) 5 0.3(50) 1 0.3(2b) 5 15 2 0.3b Number of boys younger than 12 years old: (1 2 0.4)b 5 0.6b Number of children younger than 12 years old: (15 2 0.3b) 1 0.6b 5 15 2 0.3b 1 0.6b 5 15 1 0.3b (15 1 0.3b) children are younger than 3 12 years old. b 3 53 9.Number of koi initially: bb 353 5 bb 53 533 Number of fish initially: bbb k 355 3 5 b b 5 3533 There were bbb kk koi and goldfish initially. 5355 b 5 5 10.a) Mass of Bottle B: (2x 9) kg 17 18 b)When x 5 15, mass of Bottle B: 5 18 (2 x 9 ) yellow ribbons. 5.Number of children who went to South America: c 2 0.36c 2 24 5 0.64c 2 24 (0.64c 2 24) children went to South America. 6.Parking fee: 4 (1) 1 3.2(y 2 1) 5 4 1 3.2y 1 3.2(21) 5 4 1 3.2(21) + 3.2y 5 4 2 3.2 1 3.2y 5 (0.8 1 3.2y) dollars Her parking fee was (0.8 1 3.2y) dollars. 7.Additional amount of liquid required: 5 (6.9x 2 3y 1 3) 2 (4.5x 1 2y 2 6) 5 6.9x 2 3y 1 3 1 (21)(4.5x) 1 (21)(2y) 1 (21)(26) 5 6.9x 1 (21)(4.5x) 2 3y 1 (21)(2y) 1 3 1 (21)(26) 5 6.9x 2 4.5x 2 3y 2 2y 1 3 1 6 5 (2.4x 2 5y 1 9) mL (2.4x 2 5y 1 9) milliliters of liquid must be added. 5 18 5 18 5 18 35 6 (2 15 9) (30 9) (21) kg The mass of Bottle B when x 5 15 is 35 6 kilograms. Brain@Work 1.Second number: 5 52 2 x x 12 12 3 3 16 16 5 2 5 ) 5 x2 x (5(12 16 163 3 1616 12) 5 15 15 x5 24 24 x 4 4 5 15 15 x5 24 x 4 24 4 8 5 8 15 First number: x 3 5 24 5 4 1 65 3 8 15 x8 3 5 24 x 5 4 3 1 3 x1 9 x 63 3 1 x 9 3 Extra Practice Course 2A 109 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 109 02/07/12 9:05 PM Name: Date: Lesson 4.2 Solving Algebraic Equations © Marshall Cavendish International (Singapore) Private Limited. Solve each equation with variables on the same side. 1. 5x 1 3 5 7 2.4y 2 7 5 5 3. 9p 1 5 5 213 4.23 5 6x 2 1 5. 2 x 5 1 3 6. 7 y 31 5 5 7. 5 p 9 3 8 4 8 8. 5 3 2 x 6 4 3 9. 5.7 1 0.3y 5 6.9 10.4.2 1 2.5a 5 9.2 11. 3.2y 2 7 5 9 12.5.5p 2 6.8 5 15.2 13. 3.8x 1 5.2x 2 6.7 5 11.3 14.7.8y 2 4.9 2 5.4y 5 2.3 Extra Practice Course 2A 53 (M)MIFEP_C2A_Ch04.indd 53 20/06/12 12:10 PM Name: Date: Solve each equation with variables on both sides. 15. 5a 1 3 5 2a 1 9 16.21b 1 9 5 15b 1 3 17. 5x 2 11 5 12x 1 10 18.9y 2 5 5 15y 2 17 19. 4 2 p 4 p 5 3 20. 11 m 1 m 2m 21. 1 1 5 3 a a 3 4 6 2 3 1 1 22. 5 m 4 m 4 24.13.7b 2 3 5 3 2 4.3b © Marshall Cavendish International (Singapore) Private Limited. 23. 2a 2 9.3 5 0.8a 1 5.1 4 54 Chapter 4 Lesson 4.2 MIF_ExtraPractice C2_Ch04.indd 54 08/12/11 11:48 AM Name: Date: Solve each equation involving parentheses. 25. 4(3x 2 2) 5 16 26.24y 5 8(12 2y) 27. 3(4x 2 1) 2 7x 5 17 28.5(2 2 3y) 2 9y 5 4(3 2 2y) 29. 3 3 (5a 3) 4 8 2 1 30. 13 © Marshall Cavendish International (Singapore) Private Limited. 31. 5 x 4 ( x 8) 2 4 1 (m 1) m 1 5 5 32.6(3.2y 2 1) 5 3.6 33. 1.8(5a 1 3) 1 5.6 5 29 34.0.4(2x 2 3) 5 0.2x 35. 0.5(2m 2 3) 2 0.8m 5 2.7 36.0.8(4p 1 5) 5 4(0.5p 2 2) Extra Practice Course 2A 55 MIF_ExtraPractice C2_Ch04.indd 55 08/12/11 11:48 AM Then check to see if 10 is the solution of the © Marshall Cavendish International (Singapore) Private Limited. 2 equation x 2 3 5 1. 5 2 2 If x 5 10, x 2 3 5 10 2 3 5 5 5423 51 Because the equations have same solution, they are equivalent equations. 10. 23x 1 4 5 1 and x 5 21 If x 5 21, 23x 1 4 5 23 (21) 1 4 5 7 ( 1) Because the equations have different solutions, they are not equivalent equations. 11. 8x 5 16 8x 4 8 5 16 4 8 x52 So, 8x 5 16 and b) are equivalent equations. 12. x1356 x13235623 x 5 3 x 2 5 3 2 2x 5 6 So, x 1 3 5 6 and c) are equivalent equations. 13. 2x 1 13 5 9 2x 1 13 2 13 5 9 2 13 2x 5 24 2x 4 2 5 24 4 2 x 5 22 1 1 x 5 1 1 (22) 1 1 x 5 21 So, 2x 1 13 5 9 and e) are equivalent equations. 14. 4 2 5x 5 21 4 2 5x 2 4 5 21 2 4 25x 5 25 25x 4 (25) 5 25 4 (25) x51 So, 4 2 5x 5 21 and a) are equivalent equations. 15. 1 x 2 2 5 0 3 1 x 2 2 1 2 5 0 1 2 3 1 x 5 2 3 1 x 9 5 2 9 3 3x 5 18 3x 2 4 5 18 2 4 3x 2 4 5 14 Lesson 4.2 1. 5x 1 3 5x 1 3 2 3 5x 5x 4 5 5 5 5 5 x 5 7 723 4 445 4 5 2. 4y 2 7 5 5 4y 2 7 1 7 5 5 1 7 4y 5 12 4y 4 4 5 12 4 4 y53 3. 9p 1 5 5 213 9p 1 5 2 5 5 213 2 5 9p 5 218 9p 4 9 5 218 4 9 p 5 22 4. 23 5 6x 2 1 23 1 1 5 6x 2 1 1 1 24 5 6x 24 4 6 5 6x 4 6 4 5 x 2 3 5. x 2 5 5 1 2 x 2 5 1 5 5 1 1 5 3 2 x 5 6 3 2 2 2 x 4 5 6 4 3 3 3 3 x56 2 x59 7 1 5 5 7 1 15 y 5 2 5 5 5 7 14 y 5 5 5 6. y 5 3 2 7y 5 14 y 5 14 4 7 y 5 2 5 9 3 8 4 8 5 18 3 p 8 8 8 5 15 p 8 8 7. p 5p 5 15 5p 4 5 5 15 4 5 p53 1 3 So, x 2 2 5 0 and d) are equivalent equations. Extra Practice Course 2A 111 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 111 02/07/12 9:05 PM 9 3 x 6 4 9 3 3 3 x 6 4 4 4 9 4 x 6 3 2 5 x 9. 5.7 1 0.3y 5 6.9 5.7 1 0.3y 2 5.7 5 6.9 2 5.7 0.3y 5 1.2 0.3y 4 0.3 5 1.2 4 0.3 y54 10. 4.2 1 2.5a 5 9.2 4.2 1 2.5a 2 4.2 5 9.2 2 4.2 2.5a 5 5 2.5a 4 2.5 5 5 4 2.5 a52 11. 3.2y 2 7 5 9 3.2y 2 7 1 7 5 9 1 7 3.2y 5 16 3.2y 4 3.2 5 16 4 3.2 y 5 5 12. 5.5p 2 6.8 5 15.2 5.5p 2 6.8 1 6.8 5 15.2 1 6.8 5.5p 5 22 5.5p 4 5.5 5 22 4 5.5 p54 13.3.8x 1 5.2x 2 6.7 5 11.3 9x 2 6.7 5 11.3 9x 2 6.7 1 6.7 5 11.3 1 6.7 9x 5 18 9x 4 9 5 18 4 9 x52 14.7.8y 2 4.9 2 5.4y 5 2.3 7.8y 2 5.4y 2 4.9 5 2.3 2.4y 2 4.9 5 2.3 2.4y 2 4.9 1 4.9 5 2.3 1 4.9 2.4y 5 7.2 2.4y 4 2.4 5 7.2 4 2.4 y 5 3 15. 5a 1 3 5 2a 1 9 5a 1 3 2 2a 5 2a 1 9 2 2a 3a 1 3 5 9 3a 1 3 2 3 5 9 2 3 3a 5 6 3a 4 3 5 6 4 3 a52 16. 21b 1 9 5 15b 1 3 21b 1 9 2 15b 5 15b 1 3 2 15b 6b 1 9 5 3 6b 1 9 2 9 5 3 2 9 6b 5 26 6b 4 6 5 26 4 6 b 5 21 17. 5x 2 11 5 12x 1 10 5x 2 11 2 5x 5 12x 1 10 2 5x 211 5 7x 1 10 211 2 10 5 7x 1 10 2 10 221 5 7x 221 4 7 5 7x 4 7 23 5 x 18. 9y 2 5 5 15y 2 17 9y 2 5 2 9y 5 15y 2 17 2 9y 25 5 6y 2 17 25 1 17 5 6y 2 17 1 17 12 5 6y 12 4 6 5 6y 4 6 25y 4 2 p4 p 5 3 4 2 2 2 p 4 p p p 5 3 3 3 19. 12 10 p p4 0 15 15 2 p40 15 2 p24145014 15 2 p 4 15 2 2 2 p 4 15 15 15 15 p 5 4 2 p 5 30 20. 11 1 m 5 11 1 m 5 11 1 m 5 11 1 m 2 m 5 11 5 11 5 1 m 2 2m 4 1 8 m2 m 4 4 7 2 m 4 7 2 m2m 4 7 4 2 m2 m 4 4 11 2 m 4 © Marshall Cavendish International (Singapore) Private Limited. 5 3 2 x 6 4 3 5 2 3x 2 2 6 3 4 3 3 5 4 3 x 4 6 6 8. 11 11 11 11 4 5 2 m 4 4 4 4 11 2 4 5m 11 24 5 m 112 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 112 02/07/12 9:05 PM 1 1 5 3 a 3 4 6 2 1 1 1 5 3 1 a a a a 3 4 3 6 2 3 1 5 2 3 a a 6 6 2 4 1 3 3 a 6 2 4 1 3 1 3 3 a 2 2 2 4 2 1 6 1 a 4 4 2 5 1 a 2 4 5 1 1 1 a 2 2 4 2 5 2 5 a 4 5 a 2 3 1 1 22. m 1 5 m 2 5 4 4 3 3 3 1 1 m1 2 m5m2 2 m 5 5 5 4 4 1 2 m 1 4 5 4 1 1 2 1 1 m 4 4 5 4 4 2 2 m 4 5 1 2 2 m 2 2 5 5 5 1 5 m 2 2 5 m 4 © Marshall Cavendish International (Singapore) Private Limited. 21. a 23. 2a 2 9.3 5 0.8a 1 5.1 2a 2 9.3 2 0.8a 5 0.8a 1 5.1 2 0.8a 1.2a 2 9.3 5 5.1 1.2a 2 9.3 1 9.3 5 5.1 1 9.3 1.2a 5 14.4 1.2a 4 1.2 5 14.4 4 1.2 a 5 12 24. 13.7b 2 3 5 3 2 4.3b 13.7b 2 3 1 4.3b 5 3 2 4.3b 1 4.3b 18b 2 3 5 3 18b 2 3 1 3 5 3 1 3 18b 5 6 18b 4 18 5 6 4 18 1 b 25. 4(3x 2 2) 5 16 1 1 4(3x 2 2) 5 16 4 4 3x 2 2 5 4 3x 2 2 1 2 5 4 1 2 3x 5 6 3x 4 3 5 6 4 3 x52 26. 24y 5 8(12 2y) 1 1 24y 5 8(12 2y) 8 8 3y 3y 1 2y 5y 5y 4 5 5 5 5 5 y 1 2 2y 1 2 2y 1 2y 1 145 1 5 27. 3(4x 2 1) 27x 5 17 3 4x 2 3 1 2 7x 5 17 12x 2 3 2 7x 5 17 5x 2 3 5 17 5x 2 3 1 3 5 17 1 3 5x 5 20 5x 4 5 5 20 4 5 x 5 4 28. 5(2 2 3y) 2 9y 5 4(3 2 2y) 5 2 2 5 3y 2 9y 5 4 3 2 4 2y 10 2 15y 2 9y 5 12 2 8y 10 2 24y 5 12 2 8y 10 2 24y 1 24y 5 12 2 8y 1 24y 10 5 12 1 16y 10 2 12 5 12 1 16y 2 12 22 5 16y 22 4 16 5 16y 4 16 1 y 8 3 3 29. (5a 2 3) 5 4 8 3 3 8 (5a 2 3) 5 8 4 8 6(5a 2 3) 6 5a 2 6 3 30a 2 18 30a 2 18 1 18 30a 30a 4 30 5 5 5 5 5 5 a 3 3 3 3 1 18 21 21 4 30 7 10 3 Extra Practice Course 2A 113 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 113 02/07/12 9:05 PM 4(m 2 1) 2 m 4 m 2 4 1 2 m 4m 2 4 2 m 3m 2 4 3m 2 4 1 4 3m 3m 4 3 m 5 5 5 5 5 5 5 5 5 5 5 5 514 9 943 3 2 1 13 31. x (x 2 8) 5 5 4 2 2 13 1 20 x ( x 8) 5 20 2 5 4 20 2 1 x 2 20 (x 2 8) 5 130 5 4 8x 2 5(x 2 8) 5 130 8x 2 5 x 2 5 (28) 5 130 8x 2 5x 1 40 5 130 3x 1 40 5 130 3x 1 40 2 40 5 130 2 40 3x 5 90 3x 4 3 5 90 4 3 x 5 30 32. 6(3.2y 2 1) 5 3.6 6 3.2y 2 6 1 5 3.6 19.2y 2 6 5 3.6 19.2y 2 6 1 6 5 3.6 1 6 19.2y 5 9.6 19.2y 4 19.2 5 9.6 4 19.2 y 5 0.5 33. 1.8(5a 1 3) 1 5.6 5 29 1.8 5a 1 1.8 3 1 5.6 5 29 9a 1 5.4 1 5.6 5 29 9a 1 11 5 29 9a 1 11 2 11 5 29 2 11 9a 5 18 9a 4 9 5 18 4 9 a52 34. 0.4(2x 2 3) 5 0.2x 0.4 2x 2 0.4 3 5 0.2x 0.8x 2 1.2 5 0.2x 0.8x 2 1.2 2 0.2x 5 0.2x 2 0.2x 0.6x 2 1.2 5 0 0.6x 2 1.2 1 1.2 5 0 1 1.2 0.6x 5 1.2 0.6x 4 0.6 5 1.2 4 0.6 x52 35. 0.5(2m 2 3) 2 0.8m 5 2.7 0.5 2m 2 0.5 3 2 0.8m 5 2.7 m 2 1.5 2 0.8m 5 2.7 0.2m 2 1.5 5 2.7 0.2m 2 1.5 1 1.5 5 2.7 1 1.5 0.2m 5 4.2 0.2m 4 0.2 5 4.2 4 0.2 m 5 21 36. 0.8(4p 1 5) 5 4(0.5p 2 2) 0.8 4p 1 0.8 5 5 4 0.5p 2 4 2 3.2p 1 4 5 2p 2 8 3.2p 1 4 22p 5 2p 2 8 2 2p 1.2p 1 4 5 28 1.2p 1 4 2 4 5 28 2 4 1.2p 5 212 1.2p 4 1.2 5 212 4 1.2 p 5 210 Lesson 4.3 1.Let x represent the amount of money, in dollars, Amy had initially. Because Amy had $139 after Sam gave her $27, x 1 27 5 139 x 1 27 2 27 5 139 2 27 x 5 112 Amy had $112 initially. 2. Let the two facing page numbers be x and (x 1 1). Because the sum of the two facing page numbers is 145, x 1 (x 1 1) 5 145 x 1 x 1 1 5 145 2x 1 1 5 145 2x 1 1 2 1 5 145 2 1 2x 5 144 2x 4 2 5 144 4 2 x 5 72 If x 5 72, x 1 1 5 72 1 1 5 73 The two page numbers are 72 and 73. © Marshall Cavendish International (Singapore) Private Limited. 4 1 m51 5 5 4 1 5 (m 1) m 5 5 1 5 5 4 1 5 (m 2 1) 2 5 m 5 5 5 5 30. (m 2 1) 2 114 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 114 02/07/12 9:05 PM Name: Date: Lesson 4.3 Real-World Problems: Algebraic Equations Solve. Show your work. 1. Amy had x dollars. After Sam gave her $27, she had $139. How much money did she have initially? 2. The sum of two facing page numbers in a book is 145. What are the two page numbers? 3. Jackson’s age was 2 of the age he will be 20 years from now 7 years ago. 5 How old is Jackson now? 5. Adrianne is planning to bake some chocolate, strawberry, and raisin muffins for a party. She was asked to bake half as many chocolate muffins as raisin muffins and three times as many strawberry muffins as chocolate muffins. If she only had enough ingredients to bake 480 muffins, how many raisin muffins did she bake? © Marshall Cavendish International (Singapore) Private Limited. 4. The perimeter of an isosceles triangle is 32.7 inches. If the length of its base is 9.5 inches, find the length of each of the other two sides. 56 Chapter 4 Lesson 4.3 (M)MIFEP_C2A_Ch04.indd 56 20/06/12 12:10 PM Name: Date: 6. Mr. Sidney rented a car for a day. The rental fee consists of a flat rate of $19.99 plus $0.21 per additional mile. For how many miles did Mr. Sidney drive the car if he paid $52.54 for the car rental? 7. A food manufacturer donates money to schools based on the number of its product labels the school collects. The students at one school collected 2,100 product labels in three months. The number of labels collected in the first two months was three times the number of labels collected in the third month. How many product labels were collected in the third month? 8. Find the length of the sides of triangle ABC if its perimeter is 33 inches. B 2x in. 2(x 3) in. A © Marshall Cavendish International (Singapore) Private Limited. C 3(x 2) in. 9. On a 3-week vacation to Paris, Martha’s expenses on food, gifts, and accommodations was $80 less than three times her airfare. If the total expenses for the trip was $2,660, how much was her airfare? 10. Mark cycles from home to school at a speed of 16 kilometers per hour. He cycles back on the same route at a speed of 15 kilometers per hour. The total time taken for the journey is 7 3 hours. Given that the distance from 4 his home to school is d kilometers, and that distance 5 speed time, write and solve an equation to find the total distance traveled by him. Extra Practice Course 2A 57 (M)MIFEP_C2A_Ch04.indd 57 20/06/12 12:11 PM 4(m 2 1) 2 m 4 m 2 4 1 2 m 4m 2 4 2 m 3m 2 4 3m 2 4 1 4 3m 3m 4 3 m 5 5 5 5 5 5 5 5 5 5 5 5 514 9 943 3 2 1 13 31. x (x 2 8) 5 5 4 2 2 13 1 20 x ( x 8) 5 20 2 5 4 20 2 1 x 2 20 (x 2 8) 5 130 5 4 8x 2 5(x 2 8) 5 130 8x 2 5 x 2 5 (28) 5 130 8x 2 5x 1 40 5 130 3x 1 40 5 130 3x 1 40 2 40 5 130 2 40 3x 5 90 3x 4 3 5 90 4 3 x 5 30 32. 6(3.2y 2 1) 5 3.6 6 3.2y 2 6 1 5 3.6 19.2y 2 6 5 3.6 19.2y 2 6 1 6 5 3.6 1 6 19.2y 5 9.6 19.2y 4 19.2 5 9.6 4 19.2 y 5 0.5 33. 1.8(5a 1 3) 1 5.6 5 29 1.8 5a 1 1.8 3 1 5.6 5 29 9a 1 5.4 1 5.6 5 29 9a 1 11 5 29 9a 1 11 2 11 5 29 2 11 9a 5 18 9a 4 9 5 18 4 9 a52 34. 0.4(2x 2 3) 5 0.2x 0.4 2x 2 0.4 3 5 0.2x 0.8x 2 1.2 5 0.2x 0.8x 2 1.2 2 0.2x 5 0.2x 2 0.2x 0.6x 2 1.2 5 0 0.6x 2 1.2 1 1.2 5 0 1 1.2 0.6x 5 1.2 0.6x 4 0.6 5 1.2 4 0.6 x52 35. 0.5(2m 2 3) 2 0.8m 5 2.7 0.5 2m 2 0.5 3 2 0.8m 5 2.7 m 2 1.5 2 0.8m 5 2.7 0.2m 2 1.5 5 2.7 0.2m 2 1.5 1 1.5 5 2.7 1 1.5 0.2m 5 4.2 0.2m 4 0.2 5 4.2 4 0.2 m 5 21 36. 0.8(4p 1 5) 5 4(0.5p 2 2) 0.8 4p 1 0.8 5 5 4 0.5p 2 4 2 3.2p 1 4 5 2p 2 8 3.2p 1 4 22p 5 2p 2 8 2 2p 1.2p 1 4 5 28 1.2p 1 4 2 4 5 28 2 4 1.2p 5 212 1.2p 4 1.2 5 212 4 1.2 p 5 210 Lesson 4.3 1.Let x represent the amount of money, in dollars, Amy had initially. Because Amy had $139 after Sam gave her $27, x 1 27 5 139 x 1 27 2 27 5 139 2 27 x 5 112 Amy had $112 initially. 2. Let the two facing page numbers be x and (x 1 1). Because the sum of the two facing page numbers is 145, x 1 (x 1 1) 5 145 x 1 x 1 1 5 145 2x 1 1 5 145 2x 1 1 2 1 5 145 2 1 2x 5 144 2x 4 2 5 144 4 2 x 5 72 If x 5 72, x 1 1 5 72 1 1 5 73 The two page numbers are 72 and 73. © Marshall Cavendish International (Singapore) Private Limited. 4 1 m51 5 5 4 1 5 (m 1) m 5 5 1 5 5 4 1 5 (m 2 1) 2 5 m 5 5 5 5 30. (m 2 1) 2 114 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 114 02/07/12 9:05 PM 3. Let Jackson’s age now be x years old. 2 Because 7 years ago, Jackson’s age was of 5 the age he will be in 20 years from now, 2 (x 1 20) 5 2 5(x 2 7) 5 5 ( x 20) 5 x275 5(x 2 7) 5 2(x 1 20) 5 x 2 5 7 5 2 x 1 2 20 5x 2 35 5 2x 1 40 5x 2 35 2 2x 5 2x 1 40 2 2x 3x 2 35 5 40 3x 2 35 1 35 5 40 1 35 3x 5 75 3x 4 3 5 75 4 3 x 5 25 Jackson is 25 years old now. 4. Let the length of each of the other two sides of the isosceles triangle be l inches. Because the base is 9.5 inches and the perimeter of the isosceles triangle is 32.7 inches, l 1 l 1 9.5 5 32.7 2l 1 9.5 5 32.7 2l 1 9.5 2 9.5 5 32.7 2 9.5 2l 5 23.2 2l 4 2 5 23.2 4 2 l 5 11.6 in. The length of each of the other two sides is 11.6 inches. 5.Let r represent the number of raisin muffins. © Marshall Cavendish International (Singapore) Private Limited. 1 r. 2 3 The number of strawberry muffins is r . 2 The number of chocolate muffins is If she only had enough ingredients to bake 480 muffins, 1 3 r 1 r 1 r 5 480 2 2 3r 5 480 3r 4 3 5 480 4 3 r 5 160 She baked 160 raisin muffins. 6. Let the number of miles Mr. Sidney drove be d miles. Because he paid a total of $52.54, 19.99 1 0.21d 5 52.54 19.99 1 0.21d 2 19.99 5 52.54 2 19.99 0.21d 5 32.55 0.21d 4 0.21 5 32.55 4 0.21 d 5 155 Mr. Sidney drove the car for 155 miles. 7. Let the number of product labels collected in the third month be n. Then the number of product labels collected in the first two months is 3n each. Because the total number of product labels collected in three months is 2,100, 3n 1 3n 1 n 5 2,100 7n 5 2,100 7n 4 7 5 2,100 4 7 n 5 300 300 product labels were collected in the third month. 8. Because the perimeter of the triangle is 33 inches, 2x 1 2(x 1 3) 1 3(x 1 2) 5 33 2x 1 2 x 1 2 3 1 3 x 1 3 2 5 33 2x 1 2x 1 6 1 3x 1 6 5 33 7x 1 12 5 33 7x 1 12 2 12 5 33 2 12 7x 5 21 7x 4 7 5 21 4 7 x53 If x 5 3, 2x 5 2 3 56 The length of AB is 6 inches. If x 5 3, 2(x 1 3) 5 2(3 1 3) 526 5 12 The length of BC is 12 inches. If x 5 3, 3(x 1 2) 5 3(3 1 2) 535 5 15 The length of AC is 15 inches. 9. Let the airfare be m dollars. Then the expenses on food, gifts, and accommodation was (3m 2 80) dollars. Because the total expenses for the trip was $2,660, m 1 (3m 2 80) 5 2,660 m 1 3m 2 80 5 2,660 4m 2 80 5 2,660 4m 2 80 1 80 5 2,660 1 80 4m 5 2,740 4m 4 4 5 2,740 4 4 m 5 685 Her airfare was $685. Extra Practice Course 2A 115 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 115 02/07/12 9:05 PM 10.Distance 5 Speed Time So, Time 5 Distance 4 Speed Because the total time taken for the journey 3p 4 3 ≤ 22 4 3 5 3 2 p ≤x 23 6 4 is 7 3 hours, 4 31 d d 240 5 240 4 16 15 240 d d 1 240 5 1,860 15 16 15d 1 16d 5 1,860 31d 5 1,860 31d 4 31 5 1,860 4 31 d 5 60 km Total distance traveled 5 d 1 d 5 2d km If d 5 60, d 5 2 60 5 120 km The total distance traveled by him is 120 kilometers. Lesson 4.4 1. 27 1 y 10 27 1 y 2 27 10 2 27 y 217 18 17 16 2. 4x 1 5 ≥ 29 4x 1 5 2 5 ≥ 29 2 5 4x ≥ 24 4x 4 4 ≥ 24 4 4 x≥6 5 3. 6y 6y 1 1 6y 6 11 21 6y 46 y 7 7 721 6 646 1 0 1 2 4. 3p 1 1 ≤ 21 3p 1 1 2 1 ≤ 21 2 1 3p ≤ 22 1 2 1 3 3 5. 9 ≥ 12 2 x 9 1 x ≥ 12 2 x 1 x 9 1 x ≥ 12 9 1 x 2 9 ≥ 12 2 9 x≥3 2 3 4 6. 3 2 5x 13 3 2 5x 2 3 13 2 3 25x 10 25x 4 (25) 10 4 (25) x 22 3 2 1 55 11 11 xx << 66 22 33 55 11 11 11 11 xx << 66 22 22 33 22 55 22 33 xx< < 66 66 66 55 55 xx< < 66 66 55 66 55 66 x x << 66 55 66 55 7. x1 0 1 2 7 1 33 x ≥ 8 4 44 7 1 7 3 7 x ≥ 8 4 8 4 8 1 1 6 6 77 x ≥≥ 44 88 88 1 1x 2 1≥ 1 x ≥ 4 4 8 8 1 1 x (24) ≤ (24) 8 4 x ≤≤ 1 2 8. 0 1 2 © Marshall Cavendish International (Singapore) Private Limited. d d 3 7 16 15 4 d d 31 16 15 4 1 116 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 116 02/07/12 9:05 PM Name: Date: Lesson 4.4 Solving Algebraic Inequalities Solve each inequality using the four operations. Then graph each solution set on a number line. 1. 27 1 y 10 2.4x 1 5 29 3. 6y 1 1 7 4.3p 1 1 21 5. 9 6.3 2 5x 13 7 1 2 x 8 4 3 4 7. 5 1 1 x2 6 2 3 8. 9. 4 1 y 2 3 5 5 10.3x 1 3 7 1 x Solve each inequality using the four operations. 11. 8 2 x 10 2 2x 12.11 1 x 7 1 5x © Marshall Cavendish International (Singapore) Private Limited. 12 2 x 58 Chapter 4 Lesson 4.4 MIF_ExtraPractice C2_Ch04.indd 58 08/12/11 11:48 AM Name: Date: 13. 0.3x 2 7 11 1 0.2x 14.2.8x 1 7 15. 11.3 2 0.5x 12 2 0.4x 16. 3 3 x 4 4 5 4 x 3 x 4 7 7 18. 2 5 1 x x 1 3 6 3 17. © Marshall Cavendish International (Singapore) Private Limited. 4.8x 1 9 1 x 12.4 2 19. 3(y 1 2) 18 20.6(2y 2 1) 3.6 21. 2(9 2 x) 16 2 x 22.2(2y 2 3) 2 4 y22 23. 1 (a − 1) 2(a − 1) 24.7(2a 2 3) 25. 2(2y 2 3) 4 1 3(y 2 2) 26.8 1 5(z 2 4) 2(z 1 7) 6 5 2 2(3a 2 1) Extra Practice Course 2A 59 (M)MIFEP_C2A_Ch04.indd 59 20/06/12 12:11 PM 10.Distance 5 Speed Time So, Time 5 Distance 4 Speed Because the total time taken for the journey 3p 4 3 ≤ 22 4 3 5 3 2 p ≤x 23 6 4 is 7 3 hours, 4 31 d d 240 5 240 4 16 15 240 d d 1 240 5 1,860 15 16 15d 1 16d 5 1,860 31d 5 1,860 31d 4 31 5 1,860 4 31 d 5 60 km Total distance traveled 5 d 1 d 5 2d km If d 5 60, d 5 2 60 5 120 km The total distance traveled by him is 120 kilometers. Lesson 4.4 1. 27 1 y 10 27 1 y 2 27 10 2 27 y 217 18 17 16 2. 4x 1 5 ≥ 29 4x 1 5 2 5 ≥ 29 2 5 4x ≥ 24 4x 4 4 ≥ 24 4 4 x≥6 5 3. 6y 6y 1 1 6y 6 11 21 6y 46 y 7 7 721 6 646 1 0 1 2 4. 3p 1 1 ≤ 21 3p 1 1 2 1 ≤ 21 2 1 3p ≤ 22 1 2 1 3 3 5. 9 ≥ 12 2 x 9 1 x ≥ 12 2 x 1 x 9 1 x ≥ 12 9 1 x 2 9 ≥ 12 2 9 x≥3 2 3 4 6. 3 2 5x 13 3 2 5x 2 3 13 2 3 25x 10 25x 4 (25) 10 4 (25) x 22 3 2 1 55 11 11 xx << 66 22 33 55 11 11 11 11 xx << 66 22 22 33 22 55 22 33 xx< < 66 66 66 55 55 xx< < 66 66 55 66 55 66 x x << 66 55 66 55 7. x1 0 1 2 7 1 33 x ≥ 8 4 44 7 1 7 3 7 x ≥ 8 4 8 4 8 1 1 6 6 77 x ≥≥ 44 88 88 1 1x 2 1≥ 1 x ≥ 4 4 8 8 1 1 x (24) ≤ (24) 8 4 x ≤≤ 1 2 8. 0 1 2 © Marshall Cavendish International (Singapore) Private Limited. d d 3 7 16 15 4 d d 31 16 15 4 1 116 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 116 02/07/12 9:05 PM 4 1 9. y 3 5 5 4 1 1 1 y 3 5 5 5 5 4 1 y 3 5 5 4 16 y 5 5 4 5 16 5 y 5 4 5 4 y>4 © Marshall Cavendish International (Singapore) Private Limited. 3 10. 3x 3x 1 3 3x 2x 4 5 1371x 2371x23 3x 4 1 x 2x41x2x 2x 4 42442 x2 2 1 3 11. 8 2 x 10 2 2x 8 2 x 1 2x 10 2 2x 1 2x 8 1 x 10 8 1 x 2 8 10 2 8 x2 12. 11 1 x ≤ 7 1 5x 11 1 x 2 x ≤ 7 1 5x 2 x 11 ≤ 7 1 4x 11 2 7 ≤ 7 1 4x 2 7 4 ≤ 4x 4 4 4 ≤ 4x 4 4 1≤x 13. 0.3x 2 7 11 1 0.2x 0.3x 2 7 1 7 11 1 0.2x 1 7 0.3x 18 1 0.2x 0.3x 2 0.2x 18 1 0.2x 2 0.2x 0.1x 18 0.1x 4 0.1 18 4 0.1 x 180 14. 2.8x 1 7 ≥ 4.8x 1 9 2.8x 1 7 2 7 ≥ 4.8x 1 9 2 7 2.8x ≥ 4.8x 1 2 2.8x 2 2.8x ≥ 4.8x 1 2 2 2.8x 0 ≥ 2x 1 2 0 2 2 ≥ 2x 1 2 2 2 22 ≥ 2x 22 4 2 ≥ 2x 4 2 21 ≥ x 15. 11.3 2 0.5x 12 2 0.4x 11.3 2 0.5x 1 0.4x 12 2 0.4x 1 0.4x 11.3 2 0.1x 12 11.3 2 0.1x 2 11.3 12 2 11.3 2 0.1x 0.7 2 0.1x 4 (20.1) 0.7 4 (20.1) x 27 1 3 3 x 1 ≥ x 1 12.4 2 4 4 3 3 1 3 3 x 1 2 ≥ x 1 12.4 2 4 4 2 4 4 2 3 1 3 x ≥ x 1 12 2 5 4 2 4 16. 1 62 33 3 x≥ x 2 2 5 44 4 3 1 62 3 20 4 x ≥ 20 x 2 5 4 62 3 1 15x ≥ 20 x 1 20 2 20 5 4 2 15x ≥ 10x 1 248 2 15 15x ≥ 10x 1 233 15x 2 10x ≥ 10x 1 233 2 10x 5x ≥ 233 5x 4 5 ≥ 233 4 5 x ≥ 46.6 4 5 x13 x14 7 7 4 4 4 5 x132 x x142 x 7 7 7 7 1 3 x14 7 1 324 x1424 7 1 21 x 7 1 21 7 x 7 7 17. 27 x 5 1 2 x 1 6 3 3 1 5 2 6 x 6 x 1 3 6 3 5 1 2 6 x 6 6 x 61 6 3 3 18. x 5x 1 2 4x 1 6 5x 1 2 2 4x 4x 1 6 2 4x x 1 2 6 x1222622 x4 Extra Practice Course 2A 117 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 117 02/07/12 9:06 PM 1 1 3( y 2) ≤ 18 3 3 y 1 2 ≤ 6 y 1 2 2 2 ≤ 6 2 2 y ≤ 4 20. 6(2y 2 1) 3.6 1 1 ? 6(2y 2 1) ? 3.6 6 6 2y 2 1 0.6 2y 2 1 1 1 0.6 1 1 2y 1.6 2y 4 2 1.6 4 2 y 0.8 21. 2(9 2 x) ≤ 16 2 x 2 ? 9 2 2 ? x ≤ 16 2 x 18 2 2x ≤ 16 2 x 18 2 2x 1 2x ≤ 16 2 x 1 2x 18 ≤ 16 1 x 18 2 16 ≤ 16 1 x 2 16 2 ≤ x 22. 2(2y 2 3) 2 4 ≥ y 2 2 2 ? 2y 2 2 ? 3 2 4 ≥ y 2 2 4y 2 6 2 4 ≥ y 2 2 4y 2 10 ≥ y 2 2 4y 2 10 2 y ≥ y 2 2 2 y 3y 2 10 ≥ 22 3y 2 10 1 10 ≥ 22 1 10 3y ≥ 8 3y 4 3 ≥ 8 4 3 y≥ 8 3 23. 1 (a 2 1) 2(a 2 1) 6 6 ? 1 (a 2 1) 6 ? 2(a 2 1) 6 a 2 1 12(a 2 1) a 2 1 12 ? a 2 12 ? 1 a 2 1 12a 2 12 a 2 1 2 a 12a 2 12 2 a 21 11a 2 12 21 1 12 11a 2 12 1 12 11 11a 11 4 11 11a 4 11 1a 24. 7(2a 2 3) ≤ 5 2 2(3a 2 1) 7 ? 2a 2 7 ? 3 ≤ 5 2 2 ? 3a 2 2 ? (21) 14a 2 21 ≤ 5 2 6a 1 2 14a 2 21 ≤ 7 2 6a 14a 2 21 1 6a ≤ 7 2 6a 1 6a 20a 2 21 ≤ 7 20a 2 21 1 21 ≤ 7 1 21 20a ≤ 28 20a 4 20 ≤ 28 4 20 a ≤ 1.4 25. 2(2y 2 3) 4 1 3(y 2 2) 2 ? 2y 1 2 ? (23) 4 1 3 ? y 1 3 ? (22) 4y 2 6 4 1 3y 2 6 4y 2 6 3y 2 2 4y 2 6 2 3y 3y 2 2 2 3y y 2 6 22 y 2 6 1 6 22 1 6 y 4 26.8 1 5(z 2 4) 2(z 1 7) 8 1 5 ? z 2 5 ? 4 2 ? z 1 2 ? 7 8 1 5z 2 20 2z 1 14 212 1 5z 2z 1 14 212 1 5z 2 2z 2z 1 14 2 2z 212 1 3z 14 212 1 3z 1 12 14 1 12 3z 26 3z ? 1 26 ? 1 3 3 26 z 3 Lesson 4.5 1.Let x be the score he gets on the next quiz. Average ≥ 80 1 ? (70 1 75 1 83 1 80 1 x) ≥ 80 5 1 ? (308 1 x) ≥ 80 5 1 5 ? ? (308 1 x) ≥ 5 ? 80 5 308 1 x ≥ 400 308 1 x 2 308 ≥ 400 2 308 x ≥ 92 He must get at least 92 on the next quiz. © Marshall Cavendish International (Singapore) Private Limited. 19. 3(y 1 2) ≤ 18 118 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 118 02/07/12 9:06 PM Name: Date: Lesson 4.5 Real-World Problems: Algebraic Inequalities Solve. Show your work. 1. Reuben has scores of 70, 75, 83, and 80 on four Spanish quizzes. What score must he get on the next quiz to achieve an average of at least 80? 2. Howard is saving to buy a mountain bike that costs $245, excluding tax. He has already saved $28. What is the least amount of money Howard must save each week so that at the end of the 9th week, he has enough money to buy the bike? Round your answer to the nearest dollar. 4. To raise money for a children’s charity, a company is selling hot air balloon rides. The cost of going on a balloon ride is a flat rate of $50 plus $15 per hour of flight time. If Mrs. Beckham plans to donate at most $85, find the number of hours she can spend in the balloon ride. Round your answer to the nearest hour. 5. East High School’s student council plans to buy some stools and chairs for a new student center. They need to buy 25 more chairs than stools. The chairs cost $32 each and the stools cost $28 each. If the budget is $2,620, how many chairs can they buy? © Marshall Cavendish International (Singapore) Private Limited. 3. When Jane uses her calling card overseas, the cost of a phone call is $0.75 for the first three minutes and $0.12 for each additional minute, thereafter. If Jane plans to spend at most $3.60 to make a call, find the greatest possible length of talk time. Round your answer to the nearest whole number. 60 Chapter 4 Lesson 4.5 (M)MIFEP_C2A_Ch04.indd 60 20/06/12 12:11 PM 1 1 3( y 2) ≤ 18 3 3 y 1 2 ≤ 6 y 1 2 2 2 ≤ 6 2 2 y ≤ 4 20. 6(2y 2 1) 3.6 1 1 ? 6(2y 2 1) ? 3.6 6 6 2y 2 1 0.6 2y 2 1 1 1 0.6 1 1 2y 1.6 2y 4 2 1.6 4 2 y 0.8 21. 2(9 2 x) ≤ 16 2 x 2 ? 9 2 2 ? x ≤ 16 2 x 18 2 2x ≤ 16 2 x 18 2 2x 1 2x ≤ 16 2 x 1 2x 18 ≤ 16 1 x 18 2 16 ≤ 16 1 x 2 16 2 ≤ x 22. 2(2y 2 3) 2 4 ≥ y 2 2 2 ? 2y 2 2 ? 3 2 4 ≥ y 2 2 4y 2 6 2 4 ≥ y 2 2 4y 2 10 ≥ y 2 2 4y 2 10 2 y ≥ y 2 2 2 y 3y 2 10 ≥ 22 3y 2 10 1 10 ≥ 22 1 10 3y ≥ 8 3y 4 3 ≥ 8 4 3 y≥ 8 3 23. 1 (a 2 1) 2(a 2 1) 6 6 ? 1 (a 2 1) 6 ? 2(a 2 1) 6 a 2 1 12(a 2 1) a 2 1 12 ? a 2 12 ? 1 a 2 1 12a 2 12 a 2 1 2 a 12a 2 12 2 a 21 11a 2 12 21 1 12 11a 2 12 1 12 11 11a 11 4 11 11a 4 11 1a 24. 7(2a 2 3) ≤ 5 2 2(3a 2 1) 7 ? 2a 2 7 ? 3 ≤ 5 2 2 ? 3a 2 2 ? (21) 14a 2 21 ≤ 5 2 6a 1 2 14a 2 21 ≤ 7 2 6a 14a 2 21 1 6a ≤ 7 2 6a 1 6a 20a 2 21 ≤ 7 20a 2 21 1 21 ≤ 7 1 21 20a ≤ 28 20a 4 20 ≤ 28 4 20 a ≤ 1.4 25. 2(2y 2 3) 4 1 3(y 2 2) 2 ? 2y 1 2 ? (23) 4 1 3 ? y 1 3 ? (22) 4y 2 6 4 1 3y 2 6 4y 2 6 3y 2 2 4y 2 6 2 3y 3y 2 2 2 3y y 2 6 22 y 2 6 1 6 22 1 6 y 4 26.8 1 5(z 2 4) 2(z 1 7) 8 1 5 ? z 2 5 ? 4 2 ? z 1 2 ? 7 8 1 5z 2 20 2z 1 14 212 1 5z 2z 1 14 212 1 5z 2 2z 2z 1 14 2 2z 212 1 3z 14 212 1 3z 1 12 14 1 12 3z 26 3z ? 1 26 ? 1 3 3 26 z 3 Lesson 4.5 1.Let x be the score he gets on the next quiz. Average ≥ 80 1 ? (70 1 75 1 83 1 80 1 x) ≥ 80 5 1 ? (308 1 x) ≥ 80 5 1 5 ? ? (308 1 x) ≥ 5 ? 80 5 308 1 x ≥ 400 308 1 x 2 308 ≥ 400 2 308 x ≥ 92 He must get at least 92 on the next quiz. © Marshall Cavendish International (Singapore) Private Limited. 19. 3(y 1 2) ≤ 18 118 Answers (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 118 02/07/12 9:06 PM 2. Let Howard‘s weekly savings be x dollars. Total savings≥ 245 28 1 9x ≥ 245 28 1 9x 2 28≥ 245 2 28 9x ≥ 217 9x 4 9 ≥ 217 4 9 x ≥ 24 1 9 He must save at least $25 each week. 3. Let the length of talk time after the first three minutes be t. Total call charges ≤ 3.60 0.75 1 0.12t ≤ 3.60 0.75 1 0.12t 2 0.75 ≤ 3.60 2 0.75 0.12t ≤ 2.85 0.12t 4 0.12≤ 2.85 4 0.12 t ≤ 23.75 The greatest possible length of talk time after the first three minutes is 23 minutes. Therefore, the greatest possible length of talk time is 26 minutes. 4.Let h be the number of hours. Because she plans to donate at most $85, 50 1 15h ≤ 85 50 1 15h 2 50 ≤ 85 2 50 15h ≤ 35 15h 4 15≤ 35 4 15 1 h ≤ 2 3 © Marshall Cavendish International (Singapore) Private Limited. She can spend at most 2 hours in the balloon ride. 5. Let the number of chairs be m. The number of stools is (m 2 25). Total cost ≤ 2,620 32m 1 28(m 2 25)≤ 2,620 32m 1 28 ? m 2 28 ? 25 ≤ 2,620 32m 1 28m 2 700≤ 2,620 60m 2 700≤ 2,620 60m 2 700 1 700≤ 2,620 1 700 60m ≤ 3,320 60m 4 60≤ 3,320 4 60 1. Let an integer be x. 1 3 They can buy at most 55 chairs. 3 4 x 1 15. The other integer is Because the sum of the integers is greater than 49, 3 x 1 x 15 49 4 3 x 1 15 49 4 7 3 47 x 1 x 1 15 49 4 4 x 1 7 4 x 1 15 49 7 4 x 1 15 2 15 49 2 15 7 4 x 34 7 4 4 7 x ? 34 ? 4 7 136 7 3 x 19 7 x The smallest integer x can be is 20. If x 5 20, m ≤ 55 Brain@Work 3 4 x 1 15 5 3 4 ? 20 1 15 5 30 The least values for these two integers are 20 and 30. 2. Let the number of hours be d. For Plan A to be a better option, Rental for Plan A Rental for Plan B 210 1 10d 120 1 25d 210 1 10d 2 10d 120 1 25d 2 10d 210 120 1 15d 210 2 120 120 1 15d 2 120 90 15d 90 4 15 15d 4 15 6 d Josie would have to rent the photo booth for more than 6 hours for Plan A to be a better option. 3. Let the number of adults be x. The number of children is 3x. Box office receipts ≤ 3,190 8.50x 1 5.50 ? (3x) ≤ 3,190 8.50x 1 16.50x ≤ 3,190 25x ≤ 3,190 25x 4 25 ≤ 3,190 4 25 x ≤ 127.6 The greatest number of adult tickets sold was 127. Extra Practice Course 2A 119 (M)MIFEP_C2A_Ch01-Ch05_Ans.indd 119 02/07/12 9:06 PM Name: Date: CHAPTER 5 Direct and Inverse Proportion Solve. Show your work. Distance (x miles) Distance (y kilometers) 20 30 50 32.2 48.3 80.5 a) Find the constant of proportionality. What does this value represent in this situation? b) Write the direct proportion equation. c) How many kilometers are there in 70 miles? 2. An average person can text 40 characters in 30 seconds. Given that the number of characters is directly proportional to the amount of time taken to text, how long would it take an average person to text 30 characters? 20 © Marshall Cavendish International (Singapore) Private Limited. 1. The table shows the relationship between distance in kilometers and distance in miles. The distance in kilometers is directly proportional to the distance in miles. Chapter 5 Direct and Inverse Proportion (M)MIFEn_C2_C05.indd 20 6/15/12 10:47 AM Name: Date: 3. A television network claims that for every 100 minutes of television programming, there are 26 minutes of commercials. If this same rate holds true for all television programs, how many minutes of commercials would you expect for a one hour television program? 4. Some U.S. nickel coins contain 3 ounces of copper per ounce of nickel. How many pounds of nickel coins do you need to obtain 15 pounds of copper? © Marshall Cavendish International (Singapore) Private Limited. 5. An astronaut who weighs 162 pounds on Earth weighs 27 pounds on the moon. If an astronaut weighs 114 pounds on Earth, how much would the astronaut weigh on the moon? 6. Peter has just returned from the Philippines and wants to exchange his remaining Philippine pesos for U.S. dollars. If the exchange rate that day is 43.35 pesos per U.S. dollar, how many U.S. dollars would he get for his remaining 1,500 Philippine pesos? Round your answer to the nearest dollar. Enrichment Course 2 (M)MIFEn_C2_C05.indd 21 21 6/15/12 10:47 AM Name: Date: 7. To sew a garment, a seamstress uses 5.7 centimeters of thread for every 7.6 centimeters of fabric. a) If the seamstress uses 4.2 centimeters of thread, how much fabric is involved? b) If the seamstress is working with 21.2 centimeters of fabric, how many centimeters of thread is needed? 9. The time it takes for a car to travel a particular distance is inversely proportional to the speed of a car. If a car is traveling at a speed of 50 miles per hour, it takes 1.25 seconds to pass between two hash marks on the road. 22 a) If it takes a car 1.5 seconds to pass between the two hash marks, what is the speed of the car? Round your answer to the nearest tenth. b) How long does it take for a car traveling at 65 miles per hour to pass between the two hash marks? Round your answer to the nearest second. © Marshall Cavendish International (Singapore) Private Limited. 8. A computer salesperson earns a 20% commission from his sales. A laptop is priced at $1,944. The salesperson gives a 5% discount off the price of the laptop to a buyer. How much commission does the salesperson earn after the discount? Chapter 5 Direct and Inverse Proportion (M)MIFEn_C2_C05.indd 22 6/15/12 10:47 AM Name: Date: 10. It takes 5 painters 6 days to paint a hallway in a school. The number of days needed to paint a hallway, d, is inversely proportional to the number of painters painting the school hallway, n. a) Find the constant of proportionality. b) Write an inverse proportion equation relating d and n. c) How many days would it take for 3 painters to complete the same work? d) How many painters would it take to paint the same hallway in 2 days? © Marshall Cavendish International (Singapore) Private Limited. 11. A school district budgets $750 per year for student academic achievement awards. The amount spent per award, c, is inversely proportional to the number of awards to be given, n. a) Write an inverse proportion equation relating c and n. b) What is the greatest possible cost of each award if the school district intends to give out 80 awards in one year? c) What is the greatest possible number of awards to be given in one year if each award costs $12.50? Enrichment Course 2 (M)MIFEn_C2_C05.indd 23 23 6/15/12 10:47 AM Name: Date: 12. 24 a) Write a direct proportion equation relating m and n. b) If Josh only has enough money to buy 3.7 gallons of gas, how far can he travel before refueling? c) Last year, Josh drove his car a total of 11,500 miles. How many gallons of gas did he use last year? Round your answer to the nearest whole number. © Marshall Cavendish International (Singapore) Private Limited. Josh’s car can travel 364 miles on one tank of gas. His car’s fuel tank holds 14 gallons of gas. The number of miles traveled, m, is directly proportional to the number of gallons of gas used, n. Chapter 5 Direct and Inverse Proportion (M)MIFEn_C2_C05.indd 24 6/15/12 10:47 AM Name: Date: 13. © Marshall Cavendish International (Singapore) Private Limited. The number of rectangular tiles, N, required to cover a playroom floor is inversely proportional to the area, A , of each tile in square feet. The entire playroom floor can be covered using 120 tiles, each measuring 24 inches by 12 inches. a) Find the constant of proportionality. b) Write an inverse proportion equation relating N and A. c) How many 12-inch by 12-inch tiles are needed to cover the same playroom floor? d) If the value of A is doubled, what happens to the value of N? Enrichment Course 2 (M)MIFEn_C2_C05.indd 25 25 6/15/12 10:47 AM 0.2 y 8 33.8 0.2 0.2 y 169 There are 169 nickels in the piggy bank. 16. Brain@Work 4(x 2) 2 2x 4x 8 2 2x 4x 8 2x 2 2x 2x 2x 8 2 2x 8 8 2 8 2x 6 6 2 x 2 2 x3 9 2(y 3) 3(y 2) 1 9 2y 6 3y 6 1 9y1 9yy1y 91y 911y1 8y z 3 1 2 z 3 1 2 1 2 z 3 z 3 z 3 3 z 5 2 5 2 4 2 2 2 3 6 1 2 Given that the sum of the numbers on each side of the figure is 15, the figure will look like this: 3 5 4 7 2 8 1 6 Chapter 5 y kx 1. a) y k x 32.2 20 1.61 The value represents the number of kilometers in 1 mile. b) y 1.61x c) When x 70, y 1.61 70 y 112.7 There are 112.7 kilometers in 70 miles. 2. Let y be the amount of time taken to text 30 characters. 30 40 y 30 40y 30 30 40y 900 40y 900 40 40 y 22.5 It takes an average person 22.5 seconds to text 30 characters. 3. Let y be the number of minutes of commercials. 1 h 60 min 26 100 y 60 100y 60 26 100y 1,560 100 y 100 © Marshall Cavendish International (Singapore) Private Limited. Total number of campers x 2x 3x 3 35 105 There are 105 campers at the summer camp. 15. Brain@Work Let y represent the number of nickels in the piggy bank. So, there are (250 y ) quarters in the piggy bank. 0.05 y 0.25(250 y ) 28.7 0.05 y 62.5 0.25 y 28.7 0.2 y 62.5 62.5 28.7 62.5 0.2 y 33.8 1,560 100 y 15.6 66 Answers (M)MIFEn_C2_ANS.indd 66 6/15/12 10:40 AM There will be an expected 15.6 minutes of commercials for a one hour program. 4. 1 oz 0.0625 lb 3 oz 0.0625 3 0.1875 lb Let x be the amount of nickel coins needed in pounds. 0.0625 0.1875 0.1875 15 7.6 0.9375 0.1875 27 5 100 162 162 x 19 The astronaut will weigh 19 pounds on the moon. 6. Let x be the amount of money he receives, in U.S. dollars. 1 43.35 x 1, 500 100x © Marshall Cavendish International (Singapore) Private Limited. 43.35 7.6 5.7 b) x 5.7 31.92 5.7 x 5.6 There is 5.6 centimeters of fabric involved. 36,936 100 10. a) 62.5 1.5 x 41.7 The speed of the car is 41.7 miles per hour. When x 65, 65 y 62.5 65y 62.5 65 y 62.5 65 4.2 5.7x 4.2 7.6 5.7x 31.92 5.7x 100 1.5 43.35 20 1.5x 1,500 x 35 Peter would get 35 U.S. dollars. 7. a) Let x be the amount of fabric involved. x 369.36 The commission earned is $369.36. 9. a) Let x represent the speed of the car. Let y represent time taken. x y 50 1.25 xy 62.5 When y 1.5, x 1.5 62.5 1.5x 62.5 43.35x 1,500 1 43.35x 1,500 43.35 x 7.6 100x 1,846.80 20 100x 36,936 100 3,078 120.84 $1,944 $97.20 x 114 $1,944 $97.20 $1,846.80 Let x represent the commission earned. 162x 114 27 162x 3,078 162 x y 21.2 y 15.9 15.9 centimeters of thread is needed. 8. To find the price of the laptop during the sale: 1,846.80 x 7.6y 21.2 5.7 7.6y 120.84 7.6 y x5 The amount of nickel coins needed is 5 pounds. 5. Let x be the astronaut’s weight on the moon. 162 5.7 7.6 x 0.1875x 15 0.0625 0.1875x 0.9375 0.1875 x Let y be the amount of thread she needs. b) 65 y1 It will take the car 1 second to pass between the two hash marks. Constant of proportionality: d n 5 6 30 b) The equation is dn 30 or d c) When n 3, 30 30 n 30 d 10 n 3 It would take 3 painters 10 days to complete the same work. Enrichment Course 2 (M)MIFEn_C2_ANS.indd 67 . 67 6/15/12 10:40 AM When d 2, c) 30 2 n 2n 30 2n 2 30 2 n 15 15 painters would be needed. 11. a) b) 750 The equation is cn 750 or c n . When n 80, c c) 750 d) 9.375 80 240 240 If A 20, N 20 12 12.50 750 n 12.5n 750 12.5 Chapter 6 750 1. mAOC mCOB 180 12.5 n 60 The greatest possible number of awards is 60. 12. Brain@Work a) Constant of proportionality: m n b) c) 364 14 26 The equation is m 26n. When n 3.7, m 26 3.7 96.2 Josh can travel 96.2 miles before refueling. When m 11,500, 11,500 26n 26n 26 11, 500 26 n 442 Josh used 442 gallons of gas last year. 13. Brain@Work 12 in. 1 ft 24 in. 2 ft a) Area of one tile (24 in. by 12 in.): 2 1 2 ft2 Constant of proportionality: N A 120 2 240 b) 68 The equation is NA 240 or N 240 tiles, measuring 12 inches by 12 inches, would be needed. The value of N will be halved. To check: If A 10, N 10 24 The greatest cost is $9.37 per award. When c 12.50, 12.5n The constant of proportionality represents the area of the playroom floor. The area of the playroom floor is 240 square feet. Area of one tile (12 in. by 12 in.): 1 1 1 ft2 When A 1, N 1 240 N 240 240 A . [Adj. s on a st. line] 3y 2y 180 5y 180 5y 180 5 5 y 36 mEOD mDOB 90 [Comp. s] z y 90 z 36 36 90 36 z 54 2. mAOM mBAO [Alt. int. s] 30 mCOM mDCO [Alt. int. s] 26 30 26 p 360 [s at a point] 56 p 360 56 p 56 360 56 p 304 3. mGHJ mEFK [Corr. s] 40 mGJF mJGH mGHJ [Ext. of triangle] 2x x 40 2x x x 40 x x 40 © Marshall Cavendish International (Singapore) Private Limited. d) Answers (M)MIFEn_C2_ANS.indd 68 6/15/12 10:40 AM
© Copyright 2026 Paperzz