DETERMINATION OF AVERAGE OCEAN DEPTHS FROM BATHYMETRIC DATA b y M. D i s h o n D ep artm en t o f A p p lied M athem atics, T he W eizm a n n In stitu te R ehovoth, Israel 1. Introduction T he problem of d eterm in in g average ocean depths for a region o f the w orld -ocean , or for all oceans togeth er, is en cou n tered in th eoretical ocean ograp h y (su ch as d eterm in in g th e ocean tid es th eo r etica lly on the b asis o f L a p l a c e ’ s tid al eq u a tio n s), w h ere n u m erical co m p u ta tio n s h ave to be carried out. In th ese ca se s it is u su a lly requ ired to rep resen t th e actual variable d ep th s by average v a lu es tak en over som e regu lar grid. It is the p u rpose o f th is p aper to describe a m eth od o f co m p u tin g su ch average d ep th s from b ath y m etric sou n d in gs m ade at irregu larly spaced station s in the ocean. T he m eth od is applied in order to d eterm in e average d ep th s for th e w orld oceans in a grid o f one degree. 2. Statem ent o f th e P roblem A rough in sp ectio n o f available b ath ym etric ch arts w ill illu str a te th e problem and its d ifficu lties. T he ch arts con tain d ep th s derived from so u n d in g s m ade at iso la ted poin ts, as w e ll as con tou r lin e s d ed uced from th e in d ivid u al sou n d in gs. T he coverage is by no m ean s u n ifo rm . A lon g th e p opu lated coasts, and in the N orth A tlan tic O cean at o n e extrem e, the coverage is rea so n a b ly d en se. In th e oth er extrem e, there are v a st region s o f the A rctic and of th e Southern H em isp h ere O ceans w h ere, excep t for p oin ts on sin g le track s, th ere are m an y on e-d egree sq u ares o f ocean area w h ich are co m p letely em p ty o f sou n d in gs. It seem s th a t th is prob lem has not yet been given proper atten tion in ocean ograp h ic literatu re. T he approach to th e so lu tio n o f th is p rob lem su ggested here, d raw s from an a n alogy in m eteorology, w h ere a sim ilar situ a tio n ex ists. T he m eteorological a n a logy referred to is k n o w n as th e p rocess o f “ ob jective an a ly sis ”. By th is, m eteo ro lo g ists u nd erstan d th e p rep aration and tr a n sfo r m ation of w id ely scattered elem en ts o f ob servation s, su ch a s p ressu re, tem perature, w in d s, etc. in to in p u t data at regular grid -p oin ts for u se in th e com p u tation o f w ea th er forecasts. F or a typ ical a n a ly sis o f th e N orthern H em isphere, there are m an y m ore reporting sta tio n s over la n d areas th an over the oceans, and the in com in g inform ation has to be transferred to a regular grid on w h ich the eq u ations, describing the behaviour of the atm osphere, are defined. Since u su a lly not m uch tim e is available from the tim e o f receipt o f the data to the tim e of release of the forecast, the m a th em a tical structure of the an a lysis has to be as sim p le as possible, aim in g to achievc the greatest am ount of accuracy w ith the least am ount o f com putation. 3. The Numerical Procedure In line w ith th is analogy, the follow in g num erical procedure for the com p u tation of average ocean depths has been developed. j-2 i —I j-l „x > j+2 J X X X X X ' y 1 * X X x x X X X XX X L+1 X X X L+2 1 --------1> X — < ' * ) <1 F i g . 1. — The Numerical Grid, x Observation points (mostly along tracks) o Grid points (where averages are required) Initial Step : Assignment of Starting Values h t at every Grid Point. A rectangular grid is su perim p osed on the ocean area under con sidera tion where d ep th -sou n d in gs are given at irregularly spaced observation p oin ts. An in itia l trial valu e h t, let us say zero, is assigned to every grid p oint (fig. 1). T hen th e com p u tation w ill go on in a 3-step repetitive cycle o f scans through the area. At the first step, an interpolated depth h int is calcu lated at every observation p oin t from values of the 4 surrounding grid points (fig. 2 ) : j ! A y(htj j i hi j) -)- A i(hi + i. j — hi j) + A i A /(/i; + i, j + i — hi + i. j — K j + i + K P d) T hen the difference is form ed betw een the interpolated and the observed depth at th is point : hc — h 0j)8 h^nf (2) H ere h„ht! and h lHt denote the observed and interpolated depth at the obser v ation point. At the second step, all grid-points are scanned su ccessively in a sy stem atic m anner, and a correction W - h, is com puted. \V is a H h i j A h i,j+i t+ l Fig. 2. — First Step of Iteration : Computation of Interpolated Depths at Observation Points. hint — h A -}- A * (hB — h A) — / + A j (/w, j + i A* A j h* , j ) ( ^ t + 1,/ + 1 + ^ « + 1, j A* (f it + : , / — h Difference : h c = h„it — h inl F ig . 3. — A Typical Weighting Function. Ra — dW = ---------------- Rs + da *, j) / i *i / ) w e ig h tin g factor w h ich has the value 1 at the considered grid-point, and goes dow n m on oton ically to zero at a radius of R from the grid-point. All observation points insid e the circle o f radius R are considered, and for every observation point a w eighted m ean is determ ined, w h ich is used to im prove the initial trial value, h t, — or the result of p reviou s scan — , by I (W h,.) ad din g the correction of ----- ^ ----- . Such a w eigh tin g fu n ction is sh ow n in fig. 3. Then, at the third step, all grid-points are scanned again, and a sm ooth in g operator is applied w ith the purpose of filterin g out sm all w ave len g th s of the order o f about 2 grid-lengths, w h ile leaving larger w ave len g th s (associated w ith the overall b ottom -form ation) su b stan tially unchan ged . (The d evelop m en t of such a sm ooth in g procedure is given by S h u m a n [1] ). T he operator actually used has the form : h< 1 , = ~8 + 16 [A* [ h j - l. ; h t + l. j 4" j - l 4 - ht i] + (3) i, j + hi l. ; + i ‘i + l. i — l + ht + i • j+ J -o N 4 -I F ig . 4 a" = [ - T [1 — cos (kd) ] kd = ----- d The increase of the selectivity of a smoothing operator q (expressing the ratio of smoothed to unsmoothed amplitudes, k is the wave number, d the mesh length of the grid. L the wave length, q the number of successive applications of the operator). The selectiv ity o f the operator w ith regard to w ave length can be increased by u sin g it rep etitiou sly, as sh ow n in fig. 4, w here the ratio o f th e a m p li tu d es before and after sm o o th in g is sh ow n. T h is 31-step iteration cycle is repeated u n til th e resu lts o f con secu tive iteration s do not differ at any grid-point by m ore th a n a predeterm ined arbitrary sm all con stan t. 4. Computations in a Trial Area To test th is m ethod, a trial area o f ocean has been ch o sen in the Southern P acific, in a region w here sou nd ings are scarce and concentrated m o stly along sh ip p in g track s. T he area is bounded in latitu de by the equator and the parallel of 60° South, and in longitud e by the m erid ian s 90° W est and 150° W est (fig. 5). From all available data on ly th ose given on U.S. N avy O ceanographic O ffice ch arts N os. 823 and 824 have been used as inp u t data, m ak ing a total of 1131 poin ts. T he output grid, in M ercator coordi nates, has about 4700 p oin ts. F ig . 5 . — Trial Area for Computation of Average Depths. A s a quick and con ven ien t visu al m ean s of d isp lay it is u sefu l to draw contour lines from th e averages obtained at the grid -p oints. T h is is sh ow n for th e region under con sid eration in fig. 6 . A k n ow n m apped large-scale feature of the ocean bottom m ay then be used for com p arison . In th e trial area under con sideration , w e have the P acific-A n tarctic R idge, d efin ed on U.S. N avy O ceanographic O ffice Chart of th e W orld No. 1262A by th e 2 000 fathom s con tou rs. T he agreem en t b etw een th e m apped and p lotted con tou rs is quite good (see fig. 7), con sid erin g the in com p leten ess o f th e in p u t data used. T he overall sm ooth in g effect is evid en t, and is even m ore im p ressive on a larger scale m ap o f con tou r lines o f 100 fath om s sp acin gs. F ig . 6. — C o n to u r lin e s o f d e p th f r o m n u m e r ic a l c o m p u ta tio n b y th e p ro c e d u r e d e s c rib e d in t h i s p a p e r , u s in g 1131 s o u n d in g s fro m H.O. C h a r ts 823 a n d 824. D e p th s in f a th o m s . 5. Average Depths of the World Oceans B y the m ethod described above averages of depth have been determ ined on a grid, in M ercator coordin ates t, superim posed on the w orld oceans, w h ere ■z = In tan O + . (4) H ere ¢) den otes geographical latitu de in radians, and t denotes Mercator la titu d e in radians. F ig . 7. — C o n to u r lin e s o f D e p th f r o m H.O. C h a r t 1262A , 1 0 th e d it i o n , J a n . 1961. D e p th s i n f a t h o m s . To obtain t in degrees, as given in tab le 2 and in fig. 8, w e m u st of course use the form ula 180 , - . x = ------- In tan ( — O + — ) . (5) ( v t ) IT As inp u t data, so u n d in gs at th e in tersection s of on e-degree geograph ical grid -lines have been ch osen from th e set o f th e GEBCO, of th e IHB, M onaco, or from U.S. N avy O ceanographic Office ch arts, w h erever a so u n d in g at an in tersection or near an in tersection w as available. F or a con sid erab le part o f in tersection s no inp u t data at all are at p resent available. A com p ilation o f the input data, w h ich w ere read m an u ally from the ch arts, is given in table 1, arranged b y m erid ian s. T he resu ltin g averages o f depths at gridp o in ts o f on e M ercator degree are given in table 2. (F o u r p a g e s o f T a b l e 2 a r e reproduced, h e r e u n d e r ) T able 2 A vera g e d e p th s o f w orld-oceans L a titu d e s a n d lo n gitu des in degrees, d e p th s in m e tr e s E = E ast, W = W est, N = North, S = South C = P oin t on con tin en t, P aren th eses ( ) = L ocation o f islan d or p en in su la P hi = G eographical latitude, Tau = M ercator latitude LONGITUDE PHI TAU 0 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 3103 3047 2964 2861 2740 2607 2465 2318 2170 2023 3073 2993 2883 2751 2600 2436 2265 2092 1921 1756 3011 2 910 27 78 26 20 2443 2253 2056 1859 1668 1486 2919 2800 2 649 2471 2273 2061 1844 1628 1419 1224 2796 2666 2501 2309 2095 1867 1634 1403 1182 976 2647 2509 2336 2135 1911 1673 1430 1189 959 748 70. 69. 6 9. 69. 68. 68. 68. 67. 67. 66. 19 85 50 15 79 43 06 68 30 91 100 99 98 97 96 95 94 93 92 91 N N N N N N N N N N 2 943 2986 3018 3039 3047 3042 3022 2986 2930 2854 3018 3039 3045 3037 3016 2981 2934 2872 2795 2704 3073 3069 3046 3006 2952 2885 2807 2717 2618 2508 3102 3072 30 19 2947 2859 2758 2648 2530 2406 2278 66. 66. 65. 65. 64. 64. 64. 63. 63. 62 . 51 11 70 29 87 44 00 56 11 66 90 89 88 87 86 85 84 83 82 81 N N N N N N N N N N 2756 2638 2499 2342 2168 1981 1782 1576 1366 1158 2596 2473 2335 2183 2018 1843 1659 1468 1273 1079 2389 2261 2124 1977 1824 1663 1496 1325 1150 976 2146 2012 1874 1735 1592 1448 1302 1153 1003 853 1878 1737 1600 1467 1337 1210 1085 962 839 716 1598 1451 1314 1187 1070 961 859 761 666 572 1318 1166 1029 909 805 714 635 563 496 431 1047 891 756 644 553 480 423 377 337 300 793 635 503 400 323 268 233 211 197 186 561 403 277 183 120 84 70 71 C C 62. 61. 61. 60. 60. 59. 59. 58. 58. 57. 20 73 25 76 27 77 26 75 23 70 80 79 78 77 76 75 74 73 72 71 N N N N N N N N N N 955 765 591 439 311 210 134 82 51 34 890 711 547 403 282 186 114 66 37 23 806 644 496 365 255 168 104 61 37 26 706 566 438 325 230 155 101 66 48 41 596 481 376 283 206 146 104 78 66 63 480 393 312 242 184 141 112 96 89 90 368 C C C C 140 124 118 117 120 C C C C C C C C C C C 149 153 C C 186 188 c c c c c c c 221 227 224 57. 56. 56. 55. 54. 54. 53. 53. 52. 51. 16 61 06 49 92 34 76 16 56 95 70 69 68 67 66 65 64 63 62 61 N N N N N N N N N N 18 17 16 12 4 0 0 0 0 0 24 26 29 29 27 18 10 6 7 15 41 45 50 52 51 39 30 24 25 33 65 70 73 74 72 57 45 36 34 42 93 96 97 94 87 77 54 40 33 32 123 123 118 109 96 79 55 36 24 C 153 147 136 119 97 73 50 23 C C 183 170 150 123 93 60 29 2 ( 2 1 2) ( 1 9 1) ( 1 6 0) C C 42 3 C 26 21 14 2 0 0 0 0 0 (0) C C C c C c c T able 2 A vera g e d e p th s o f w o rld-ocea n s L a titu d e s a n d lon gitu d es in d e g re e s , d e p th s in m e tr e s E = E ast, W = W est, N = N orth, S = S outh C = P o in t on con tin en t, P aren th eses ( ) = L ocation of islan d or p en in su la P h i = G eographical latitu de, T au = M ercator latitu d e LONGI TU D E PHI TAU 0 1E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 23 43 c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 51. 50. 50. 49. 48. 48. 47. 46. 46. 45. 33 70 06 41 76 09 42 74 05 35 60 59 58 57 56 55 54 53 52 51 N (0) N 0 N 0 N 0 N c N c N c N c N c N c 0 0 0 0 0 c c c c c c c c c c c c c c c c c c c c c c c c 44. 43. 43. 42. 41. 40. 40. 39. 38. 37. 65 93 21 47 73 98 22 45 68 89 50 49 48 47 46 45 44 43 42 41 N N N N N N N N N N c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 37. 36. 35. 34. 33. 33. 32. 31. 30. 29. 10 30 49 67 84 01 16 31 46 59 40 39 38 37 36 35 34 33 32 31 N N N N N N N N N N c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 28. 27. 26. 26. 25. 24. 23. 22. 72 84 95 05 15 24 33 41 30 29 28 27 26 25 24 23 N N N N N N N N c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 21. 48 20. 55 22 N 21 N T able 2 A v e r a g e d e p t hs o f w o r l d - o c e a n s L a t i t u d e s a n d l ong i t udes in degrees, de p t hs in m e t r e s E = E ast, W = W e s t, N = N o rth , S = South C = P o in t on continent, Paren th eses ( ) = Lo catio n o f islan d or peninsula P h i = G eograph ical latitude, T a u = M ercator latitude LONGITUDE PHI TA U 19. 61 20 N 18. 66 19 N 17. 71 18 N 16. 76 17 N 15. 80 16 N 14. 83 15 N 13. 86 14 N 12. 89 13 N 11. 91 12 N 10. 93 11 N 9. 95 10 N 8. 96 9 N 7. 97 8 N 6. 98 7 N 0 1 E 2 E 3E C C C C C C C C C C 4E C C 5 E 6 E C C C C C C C C C C C C c c c c c c c c c c C C C C c c c c c c c c 3130 3173 3269 3407 3579 3775 2973 3051 3177 3340 3532 2760 2752 2808 2917 3067 3251 2513 2 543 2632 2767 2939 3743 3962 4179 4386 4576 4746 4894 5020 5129 5225 3456 3673 3890 4100 4295 4474 4633 4774 4899 5011 3136 3347 3560 3768 3965 4148 4316 4468 4607 4735 4269 4409 5. 99 6 N 3428 3289 4. 99 5 N 34 97 3348 4. 00 4 N 3612 3456 3. 00 3 N 3762 3603 2. 00 2 N 3937 3778 C C c c c c c c C C C C 2953 c c c c c c c c c c c c C C c c 7 E 8 E 9 E c C C C C C C C C C C C C c c c c c c c c c c c c c c c c c c c c c c C C 2260 c 1735 1477 2 263 1975 1687 141 1 c c c c c 2553 C C C C C C C C C C C c c c c c c c c c C c C c C c c c 2 331 2023 1717 1427 2450 2126 1805 1504 2608 2270 1936 1622 1 N 4128 3974 0 4327 41 82 1s 45 2 4 43 92 2. 00 2 S 4 712 4595 3. 00 3 S 4 881 47 82 4. 00 4 S 5 028 4948 4. 99 5 S 5149 5089 5. 99 6 S 5 244 52 05 6. 98 7 S 5315 52 96 7. 97 8 S 5367 5367 8. 96 9 S 5409 54 27 3987 4204 4416 4616 4796 4854 5087 5197 5287 5365 9. 95 10 S 5446 5479 5435 5311 5115 4854 4540 10. 93 11 s 5480 55 27 5 497 5390 5209 4962 11. 91 12. 89 12 S 5407 5448 5423 5328 5167 4946 13 S 5 339 5373 5348 5261 51 14 4913 4667 4388 4091 3793 13. 86 14 S 53 05 5334 5308 5226 5088 4900 4670 4407 4128 3 8 47 3862 1. 00 . 00 1. 00 2794 2443 20 95 1768 2995 2632 2271 1930 3201 28 27 2454 2101 34 0 4 3021 2639 2 276 3598 3212 28 23 2452 2 628 3783 33 96 30 04 3 957 3572 3180 2803 4118 37 39 3350 2973 3898 35 14 3138 4048 3670 3 297 4189 3818 3448 4661 4320 3956 35 90 4675 4367 4039 37 10 14. 83 15 S 5280 5302 52 73 5191 50 58 4877 4655 44 03 4134 15. 80 16 S 52 47 5256 5218 5131 4997 4818 4602 4357 4095 3829 16. 76 17 S 5197 51 8 8 5135 5037 4897 4717 4 504 4263 4007 3744 17. 71 18 S 5135 5104 5033 4922 4772 4588 4373 4135 3880 3618 18. 66 19 S 5070 5019 4931 4806 4647 4457 4 238 3 998 3740 3475 T able 2 A v e r a g e de p t h s o f w o r l d - o c e a n s L a t i t u d e s a n d l ongi t udes in degr ees, dept hs in m e t r e s E = East, W = W e s t, N = N o rth , S = South C = P o in t on continent, Paren th eses ( ) = Location of islan d o r p en in su la P h i = G eograph ical latitude, T a u = M ercator latitude LO NGITUDE PHI TAU 0 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 19. 61 20 S 5007 4942 4842 4708 45 43 43 47 4124 3879 3615 3341 2 0 . 55 21 S 4946 48 75 4771 4635 4467 4270 4044 37 94 3523 32 3 7 21. 48 22 S 4888 48 17 4717 4585 4422 4227 4001 37 47 3470 3173 22. 41 23 S 4835 4771 4680 4558 4403 4215 3993 3739 34 56 3148 2 3 . 33 24 S 4791 47 40 4663 45 57 4415 4237 4 021 37 67 3477 3156 2 4 . 24 25 S 4707 46 74 4619 4535 4416 4259 4061 3822 3 544 32 32 2 5 . 15 26 S 4630 4616 4584 4524 4430 4 295 4117 3895 36 31 3330 26. 05 27 S 4562 45 68 4560 4525 4455 43 4 4 41 86 3983 3735 3447 26. 95 28 S 4505 4531 4545 4535 4490 4402 4267 4082 38 51 3577 2 7 . 84 29 S 4457 4502 4538 4552 45 31 4466 43 51 4186 3 972 3714 3849 2 8 . 72 30 S 4419 4480 4535 4570 4570 4527 44 32 4286 4090 2 9 . 59 31 S 4 387 4461 4530 4582 46 01 4576 4500 4 372 4194 3970 3 0 . 46 32 S 4 356 443 5 4511 4571 4 604 4598 4546 4447 4302 4116 3 1 . 31 33 S 4333 4415 4494 4562 4605 4614 45 82 4506 4387 4229 3 2 . 16 34 S 4 320 4 405 4490 4 564 4617 4640 4623 4565 4465 4326 3 3 . 01 35 S 4322 4 414 4506 4591 4657 4694 4693 4649 45 63 4437 33. 84 36 S 4339 4444 45 51 4653 4740 4798 4815 4788 4715 4597 34. 67 37 S 4 365 4491 46 22 4750 4863 4950 4997 4995 4939 482 8 4896 35. 49 38 S 4373 4503 4637 4769 4887 4980 5036 5043 4996 36. 30 39 S 4376 4506 4640 4773 4 894 49 92 5055 5072 5037 4951 4883 4984 5053 5080 5059 4989 5006 37. 10 40 S 4374 4500 4 632 4762 37. 89 41 S 4367 4488 4614 4739 4856 4 956 5029 5065 50 58 38. 68 42 S 43 58 44 72 4589 4 704 4813 4909 49 82 50 26 5032 4 998 39. 45 43 S 4351 4454 4558 4661 4757 4844 4913 4959 4976 4961 4 0 . 22 44 S 4 345 44 3 7 4525 4611 4691 4763 4823 4868 48 92 4893 40. 98 45 S 4343 4420 4 491 4 557 4617 4671 4719 4757 47 8 5 4798 41. 73 46 S 4339 4 402 4455 4501 4541 45 76 4608 4637 4662 4684 4 2 . 47 47 S 4328 4377 4415 4443 4465 4482 4499 4517 4538 4563 4 3 . 21 48 S 4304 4 343 4368 4383 4391 4394 43 98 4405 4420 4444 43. 93 49 S 42 64 4295 4312 4318 4317 4311 4306 4305 4 313 4 334 4 4 . 65 50 S 4205 4230 4243 4245 4239 4229 4219 4213 4217 4234 45. 35 51 S 4126 4148 4159 4160 4153 4143 4131 4 124 4125 4139 4 6 . 05 52 S 40 27 4048 4058 4060 4055 4 046 4037 4031 40 32 4044 4 6 . 74 53 S 3910 3 930 3941 3945 3 944 3939 3 9 33 3930 3934 3 945 47. 42 54 S 37 76 3796 3 809 3 817 3820 3821 3 8 21 3823 3830 3842 48. 09 55 S 3 628 3 649 3667 3 680 3690 3697 3704 37 12 3 722 3735 4 8 . 76 56 S 3470 3495 3518 3 538 3557 3573 3588 3603 3617 3633 49. 41 57 S 3 309 3 3 39 3369 3399 3427 3454 3479 3502 3 523 3543 50. 06 58 S 3 149 3186 3226 32 67 3307 3346 3383 34 16 3445 3472 50. 70 59 S 2999 3 0 45 3095 3149 3203 3256 3306 33 52 3393 3 428 U s in g the present com putations, a bathym etric m ap of the oceans in M ercator coordinates h as been constructed (fig. 8). T h e irre gu la r coastlines have been replaced b y straight sections w h ic h are m ultiples of the unit g rid length o f one degree. W it h a view to applications to n um erical analysis the coastline w a s chosen so that every grid-poin t in the ocean has at least one n eigh b or in each direction. In d ra w in g the coastline, the fo llo w in g com putational policy has been adopted. T h e large continental m asses, in clud in g A u stra lia and Greenland, h ave been regard ed as rea l b arriers. T h e rem aining islan ds and some peninsulas have been included, w h enever their extent is com parable w ith the basic one degree squ are o f the M ercator grid, but have been disregarded in c a rry in g out the com putations leadin g to the average depths at their posi tions. T h is w a s done fo r the reason that w h e n a la rg er grid-step than 1° w ill be used, som e or all o f the islands w ill not be recognizable in the coarser grid. A ccordin gly, these islan ds and peninsulas are sh ow n as lan dareas on the m ap (fig. 8 ) , but the com puted depths at corresponding g ridpoints have also been retained, and are given in table 2 (indicated by paren th eses). A t som e points o f the larger islan ds or near the continental coasts, the com putation yielded negative depth-values resulting fro m the rising trend o f the ocean bottom tow ard s the coast. W h e r e v e r this happened a value o f zero has been substituted in table 2 . T h e rad iu s R o f the w eigh tin g function W , described in section 3, has been chosen as 15 M ercator grid-units everywhere, except in the Atlantic Ocean, w h ere, due to the relative abundance o f input data, a value o f 12 units w a s deem ed sufficient. F o r the actual choice o f a p a rtic u la r w eigh tin g function W there exist m an y possibilities. O ne w o u ld like to account for k n o w n special features o f the ocean bottom in the vicinity of the point considered. T h is means that besides w eigh tin g w ith respect to distance only, a n gu la r w eigh tin g needs to be considered, and the function becom es tw o-dim ensional. The w eigh tin g fun ction itself, and p a rtic u la rly its m ax im u m radius R o f applicability, m ay v a ry fro m point to point. T h ese refinem ents w ill undoubtedly be valuable and w ill be used in m ore advanced stages o f the com putational program . A t present w e do not yet possess enough detailed structural inform ation o f the ocean bottom topograph y on a w o rld -w id e basis to w a rra n t the construction o f a m ore sophisticated w eigh tin g function than the one given in fig. 3. T o c a rry out the actual calculations o f the averages, the ocean area of fig. 8 h as been divided in 35 com putational squ are regions, i.e. each region is bou n ded b y tw o m eridians an d tw o p a ra lle ls o f latitudes. A bout 50 iterations w e re req u ired to obtain an average at every grid-point, accurate to tw o fraction al decim al units, as defined in section 3. T h e sm oothing operator (3 ) has been applied q ( — 5) times in each iteration. A s expected, slight discontinuities developed in areas w h ere the com putational regions jo in , alth o u g h some overlapp in g has been provided in choosing the regions. T o com pensate fo r this effect, the sets o f depth-values at the overlapping jo in ts w e re first averaged, and then a fu rth e r sm oothing operation w a s 180® (20* 90* 60“ 30* 0° 30° 60» 90* F ig . 8. — Bathymetric map of the world — oceans with contour lines of average depths from numerical computation by the procedure described in this paper. Depths in metres. 150° 120° 150* IftO carried out. T h e fin a l results o f these com putations are given in table 2 u p to 100“ M ercator latitude i N o rth an d 99° M ercator latitude z South, corresp on din g to abou t 70 geograph ical degrees N o rth and South. Most o f the A rctic an d A n tarctic regions are not covered. F ig. 8 contains contour lines o f depth b ased on the results given in table 2 . A ll com putations have been carried out on the CD C 1604-A com puter o f the W e iz m a n n Institute o f Science, Rehovoth, Israel. 6. Remarks on Smoothing A fin a l point to be m entioned concerns sm oothing. It m ay be a rgu ed that sm oothing in this case is m ore o f a convenience than a necessity. T h e actual bottom c on figu ration o f the oceans, even on a large scale, is quite rugged, w ith plenty o f m ou n tain ranges, ridges, valleys, basins and trenches. T h o u g h in a v e ra g in g itself the sm oothing effect is inherent, the pattern o f the averages m a y be quite irre gu la r. N o w , m ost o f the m athem atical app licatio n s fo r w h ose sake the averages have been com puted, and espe cially those w h ic h instigated this research, require a smooth field, p articu la rly if derivatives o f the depth-field are needed. These have little m eaning w h e n sh arp local v ariation s are preserved. It has also been fou n d that the com putation of the average depth is m ore stable, and convergence is reached m ore quickly, i f sm oothing is present. F o r both these reasons a sm oothing cycle h as been includ ed in the com putation scheme. T h e p a rticu lar sm oothing operator used preserves the overall average fo r the w o rld oceans as a w h o le and fo r bounded regions as w ell. 7. Conclusion In conclusion, it sh ould be pointed out that the bathym etric averages presen ted in this p a p er are based on sparse, irre g u la rly spaced, and po ssibly not too reliable input data. Nevertheless, the results obtained m ay serve as a tentative m odel-ocean fo r num erical oceanographic com putations. T h e y fo rm the first presentation o f its kind. Acknowledgements T h e auth or expresses his gratitude to P ro fe sso r C. L . P e k e r i s fo r advice an d help. M r. A m ir P n u e l i aided considerably in the later stages o f the w o rk , by speedin g up the p rogram m es an d by c a rryin g out the fin al com pilations o f the entire program m e. T h is research w a s supported b y the N ational Science F oun dation u nd er N S F G ran t — G 15310 and b y the O ffice of N a v a l R esearch under Contract N o n r-1823(00). References [1 ] F . G. S h u m a n : N u m e ric a l m ethods in w eath er prediction : II. Sm ooth ing and filtering. M o n t h l y W e a t h e r R e v i e w , Vol. 85, Novem ber 1957, 357-361
© Copyright 2026 Paperzz