Review homework Find the vertex. Solve the simple quadratic. 17) π¦ = π₯ 2 β 4π₯ + 7 1) π₯ 2 = 121 18) π¦ = β3π₯ 2 β 6π₯ β 4 2) (π₯ + 7)2 = 25 19) Given the function π¦ = |π₯|, describe the transformation. Convert into (π₯ β π)2 = π. a) π¦ = |3π₯| β 4 3) π₯ 2 + 4π₯ + 5 = 0 b) π¦ = 0.6|π₯ + 9| 4) π₯ 2 β 8π₯ + 13 = 0 Find the zeros by using the Quadratic Formula. 5) 2π₯ 2 = β10π₯ + 72 6) 6π₯ 2 + 3π₯ = 84 Convert into vertex form. 7) π¦ = π₯ 2 β 6π₯ + 12 8) π¦ = βπ₯ 2 + 2π₯ β 2 9) Given the parent function π(π₯), describe the transformation. a) π(π₯) β 2 b) π(π₯ β 2) c) 5π(π₯) d) π(0.4π₯) State how many and what type of solutions. 13) π¦ = π₯ 2 β 4π₯ β 5 14) π¦ = 4π₯ 2 + 8π₯ + 4 Given the parent function in the table, create a table for the new transformation. π(π₯) π₯ π(π₯) β2 4 β1 1 0 0 1 1 2 4 15) 3π(π₯) + 4 16) 4π(π₯ β 2) 20) Find and graph the key features. π¦ = π₯ 2 + 4π₯ + 3 x-ints: y-int: Vertex: Axis of Symmetry: Min or Max: ______ Opens up or down
© Copyright 2026 Paperzz