TMTH 111 Mid-term Formula

TMTH 111
MIDTERM FORMULA SHEET
CHAPTER 1: Numerical Computation
Distance = Rate × Time
% change
Amount = Rate × Base (where rate is in decimal form)
new value βˆ’ original value
Measured Value βˆ’ Known value
=
× 100 % error
× 100
original value
Known value
% efficiency
=
output
× 100
input
Amount of A
× 100
Total Amount of Mixture
% conc. of A
=
Metric Prefixes.
1012
109
106
103
10
10-1
10-2
10-3
10-6
10-9
10-12
tera
giga
mega
kilo
deca
deci
centi
milli
micro
nano
pico
CHAPTER 6: Geometry
NAME
FORMULA
Circle
Circumference = 2πœ‹πœ‹ or πœ‹πœ‹
2
Square
Rectangle
Parallelogram
Rhombus
Trapezoid
Area = πœ‹π‘Ÿ or
Hero’s
Formula
4
Perimeter = 4s
Area = s 2
Perimeter = 2(l + w)
Area = 𝑙 β‹… 𝑀
Perimeter = 2(a + b)
Area = 𝑏 β‹… β„Ž
Perimeter = 4s
Area = 𝑠 β‹… β„Ž
Perimeter = a + b + c + d
Area =
Triangle
πœ‹π‘‘ 2
Area =
(π‘Ž+𝑏)βˆ™β„Ž
π‘βˆ™β„Ž
2
2
Area = �𝑠(𝑠 βˆ’ π‘Ž)(𝑠 βˆ’ 𝑏)(𝑠 βˆ’ 𝑐) where 𝑠
=
π‘Ž+𝑏+𝑐
2
Compiled by: Humber College Math Department
Last revision: 06/2015
NAME
Cube
FORMULA
Rectangular
Parallelepiped
Volume = π‘Ž 3
Surface Area = 6π‘Ž 2
Volume = lwh
Any cylinder or prism
Volume = (area of base)β‹…(altitude)
Right cylinder or
prism
Sphere
Lateral Area = (perimeter of base) β‹… (altitude)
(not including bases)
4
Volume = πœ‹π‘Ÿ 3
3
Surface area = 4πœ‹π‘Ÿ2
Surface Area = 2(lw + hw + lh)
Any cone or pyramid
Volume =
Right circular cone or
regular pyramid
Frustum
β„Ž
3
●
(area of base)
Lateral area =
β„Ž
𝑠
●
2
(perimeter of base)
(A 1 + A 2 + �𝐴1 𝐴2 )
𝑠
Lateral area = ● (sum of base perimeters)
2
𝑠
= ● (𝑃1 + 𝑃2 )
2
Volume =
Frustum
3
●
CHAPTER 7: Right Triangles and Vectors
1 rev = 360° = 2πœ‹ radians
sin πœƒ =
csc πœƒ =
opp
hyp
1
1 radian = 57.3°
sec πœƒ =
sin πœƒ
adj
cos πœƒ =
𝑐 2 = π‘Ž2 + 𝑏 2
tan πœƒ =
hyp
1
cot πœƒ =
cos πœƒ
opp
adj
1
tan πœƒ
CHAPTER 15: Oblique Triangles and Vectors
Law of Sines:
Law of Cosines:
a
sin A
=
b
sin B
=
c
sin C
π‘Ž2 = 𝑏 2 + 𝑐 2 βˆ’ 2𝑏𝑏 β‹… 𝑐𝑐𝑐 𝐴
or
𝑐 2 = π‘Ž2 + 𝑏 2 βˆ’ 2π‘Žπ‘Ž β‹… 𝑐𝑐𝑐 𝐢
or
2
2
2
𝑏 = π‘Ž + 𝑐 βˆ’ 2π‘Žπ‘Ž β‹… 𝑐𝑐𝑐 𝐡
or
𝑐𝑐𝑐 𝐴 =
𝑐𝑐𝑐 𝐡 =
𝑐𝑐𝑐 𝐢 =
𝑏 2 +𝑐 2 βˆ’π‘Ž2
2𝑏𝑏
π‘Ž2 +𝑐 2 βˆ’ 𝑏 2
2π‘Žπ‘Ž
π‘Ž2 + 𝑏 2 βˆ’π‘ 2
2π‘Žπ‘Ž
Compiled by: Humber College Math Department
Last revision: 06/2015