Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa Eric W. Lemmona… Physical and Chemical Properties Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80303 Richard T Jacobsen and Steven G. Penoncello Center for Applied Thermodynamic Studies, College of Engineering, University of Idaho, Moscow, Idaho 83844 Daniel G. Friend Physical and Chemical Properties Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80303 Received June 28, 1999; revised manuscript received December 2, 1999 A thermodynamic property formulation for standard dry air based upon available experimental p – – T, heat capacity, speed of sound, and vapor–liquid equilibrium data is presented. This formulation is valid for liquid, vapor, and supercritical air at temperatures from the solidification point on the bubble-point curve 共59.75 K兲 to 2000 K at pressures up to 2000 MPa. In the absence of reliable experimental data for air above 873 K and 70 MPa, air properties were predicted from nitrogen data in this region. These values were included in the determination of the formulation to extend the range of validity. Experimental shock tube measurements on air give an indication of the extrapolation behavior of the equation of state up to temperatures and pressures of 5000 K and 28 GPa. The available measurements of thermodynamic properties of air are summarized and analyzed. Separate ancillary equations for the calculation of dew and bubble-point pressures and densities of air are presented. In the range from the solidification point to 873 K at pressures to 70 MPa, the estimated uncertainty of density values calculated with the equation of state is 0.1%. The estimated uncertainty of calculated speed of sound values is 0.2% and that for calculated heat capacities is 1%. At temperatures above 873 K and 70 MPa, the estimated uncertainty of calculated density values is 0.5% increasing to 1.0% at 2000 K and 2000 MPa. In addition to the equation of state for standard air, a mixture model explicit in Helmholtz energy has been developed which is capable of calculating the thermodynamic properties of mixtures containing nitrogen, argon, and oxygen. This model is valid for temperatures from the solidification point on the bubble-point curve to 1000 K at pressures up to 100 MPa over all compositions. The Helmholtz energy of the mixture is the sum of the ideal gas contribution, the real gas contribution, and the contribution from mixing. The contribution from mixing is given by a single generalized equation which is applied to all mixtures used in this work. The independent variables are the reduced density and reduced temperature. The model may be used to calculate the thermodynamic properties of mixtures at various compositions including dew and bubble-point properties and critical points. It incorporates the most accurate published equation of state for each pure fluid. The mixture model may be used to calculate the properties of mixtures generally within the experimental accuracies of the available measured properties. The estimated uncertainty of calculated properties is 0.1% in density, 0.2% in the speed of sound, and 1% in heat capacities. Calculated dew and bubble-point pressures are generally accurate to within 1%. © 2000 American Institute of Physics. 关S0047-2689共00兲00103-3兴 Key words: air, argon, density, equation of state, mixtures, nitrogen, oxygen, pressure, thermodynamic properties, vapor–liquid equilibrium. a兲 Electronic mail: [email protected] ©2000 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. This copyright is assigned to the American Institute of Physics. 0047-2689Õ2000Õ29„3…Õ331Õ55Õ$37.00 331 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 332 Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1. Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2. Prior Thermodynamic Property Formulations for Air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Experimental Data. . . . . . . . . . . . . . . . . . . . . . . . . . 3. Vapor–Liquid Equilibria for Air. . . . . . . . . . . . . . . 3.1. Ancillary Equations. . . . . . . . . . . . . . . . . . . . . . 3.2. Freezing Liquid Line. . . . . . . . . . . . . . . . . . . . 4. Equation of State for Air. . . . . . . . . . . . . . . . . . . . . 4.1. Effects of Dissociation. . . . . . . . . . . . . . . . . . . 4.2. Calculation of Air Properties from Experimental Data for Nitrogen. . . . . . . . . . . . 4.3. Fitting Procedures. . . . . . . . . . . . . . . . . . . . . . . 4.4. Ideal Gas Heat Capacity. . . . . . . . . . . . . . . . . . 4.5. Ideal Gas Helmholtz Energy. . . . . . . . . . . . . . 4.6. Equation of State for Air. . . . . . . . . . . . . . . . . 4.7. Calculation of Thermodynamic Properties.... 4.8. Hugoniot Curve. . . . . . . . . . . . . . . . . . . . . . . . . 5. Mixture Model for the Nitrogen–Argon–Oxygen System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1. Mixture Model. . . . . . . . . . . . . . . . . . . . . . . . . 5.2. Vapor–Liquid Equilibrium 共VLE兲 Properties.. 5.3. Critical Locus. . . . . . . . . . . . . . . . . . . . . . . . . . 6. Comparisons of Calculated Properties to Experimental Data. . . . . . . . . . . . . . . . . . . . . . . . . . 6.1. Comparisons of the Ancillary Equations for Air with Experimental Data. . . . . . . . . . . . . . . 6.2. Comparisons of the Equation of State for Air and the Mixture Model with Experimental and Calculated Data for Air. . . 6.3. Comparisons of the Mixture Model with Experimental Single Phase Data. . . . . . . . . . . 6.4. Comparisons of the Mixture Model with Experimental VLE Data. . . . . . . . . . . . . . . . . . 7. Estimated Uncertainty of Calculated Properties. . . 7.1. Characteristic Curves of Air. . . . . . . . . . . . . . . 7.2. Uncertainty of the Equation of State for Air and of the Mixture Model. . . . . . . . . . . . . . . . 8. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. Appendix—Tables of Properties of Air. . . . . . . . . 9.1 Representative Tables of Thermodynamic Properties of Air. . . . . . . . . . . . . . . . . . . . . . . . 1. 2. 3. 4. 5. 6. 7. List of Tables Summary of measured compositions of air. . . . . . . Composition of air using nitrogen, argon, oxygen, and carbon dioxide as constituents. . . . . . Composition of air using nitrogen, argon, and oxygen as constituents. . . . . . . . . . . . . . . . . . . . . . . Summary of prior formulations for the thermodynamic properties of air. . . . . . . . . . . . . . . Summary and statistical analysis of saturation data for air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary and statistical analysis of experimental data for air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Second virial coefficients derived from the J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 336 337 337 337 342 342 343 343 343 344 344 345 345 346 347 348 349 349 350 351 352 352 354 355 356 357 357 359 360 362 362 336 336 337 337 338 339 experimental p – – T data of Romberg 共1971兲. . . 8. Summary and statistical analysis of data for mixtures of nitrogen, argon, and oxygen. . . . . . . . 9. Maxcondentherm, maxcondenbar, and critical point for air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10. Coefficients for the dew and bubble-point pressure and density equations for air. . . . . . . . . . . 11. Averaged molar composition of standard air at specified temperatures. . . . . . . . . . . . . . . . . . . . . . . 12. Coefficients for the ideal gas expressions. . . . . . . . 13. Coefficients and exponents for the equation of state for air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14. Pure fluid equations of state used in the mixture model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15. Parameters of the mixture model. . . . . . . . . . . . . . . 16. Different types of VLE calculations. . . . . . . . . . . . 17. Regions of stated uncertainty of the mixture model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1. Thermodynamic properties of air on the dew and bubble lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A2. Thermodynamic properties of air. . . . . . . . . . . . . . List of Figures 1. Low temperature p – – T data for air. Solid lines represent the dew and bubble-point curves for air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. High temperature p – – T data for air. . . . . . . . . . 3. Isochoric and isobaric heat capacities and speed of sound data for air. Solid lines represent the dew and bubble-point curves for air. . . . . . . . . . . . 4. Derivation of second virial coefficient data from the p – – T data of Romberg 共1971兲. . . . . . . . . . . 5. Derivation of second virial coefficient data from the p – – T data of Michels et al. 共1954a兲 共1954b兲. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Critical region phase boundaries for air. . . . . . . . . 7. Calculated Hugoniot curve for air.. . . . . . . . . . . . . 8. Critical lines for nitrogen–argon, nitrogen– oxygen, and argon–oxygen binary mixtures. . . . . . 9. Comparisons of dew and bubble-point properties calculated with the ancillary equations to experimental and calculated data for air.. . . . . . . . 10. Comparisons of densities calculated with the equation of state to experimental data for air.. . . . 11. Comparisons of pressures calculated with the equation of state to experimental data for air in the critical region.. . . . . . . . . . . . . . . . . . . . . . . . 12. Comparisons of isochoric heat capacities calculated with the equation of state to experimental data for air.. . . . . . . . . . . . . . . . . . . . . 13. Comparisons of isobaric heat capacities calculated with the equation of state to experimental data for air.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14. Comparisons of speeds of sound calculated with the equation of state to experimental data for air... 15. Comparisons of second virial coefficients calculated with the equation of state to 340 341 342 342 343 345 346 349 350 351 360 363 366 338 338 340 340 340 342 348 351 352 353 354 354 355 356 THERMODYNAMIC PROPERTIES OF AIR experimental data for air.. . . . . . . . . . . . . . . . . . . . . 16. Comparisons of critical region phase boundaries calculated with the equation of state to predicted data for air.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. Comparisons of densities calculated with the equation of state to calculated p – – T data estimated from nitrogen data. . . . . . . . . . . . . . . . . . 18. Comparisons of densities calculated with the mixture model to experimental data for the nitrogen–argon binary mixture.. . . . . . . . . . . . . . . . 19. Comparisons of densities calculated with the mixture model to experimental data for the nitrogen–oxygen and argon–oxygen binary mixtures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20. Comparisons of bubble-point pressures calculated with the mixture model to experimental data for the nitrogen–argon binary mixture.. . . . . . . . . . . . . Symbol A a B Bs C cp cv f F g h k KT kT M N n p R s T u v V w X x y Z ␣  s ␦ ␥ 356 356 357 357 357 358 333 21. Comparisons of bubble-point pressures calculated with the mixture model to experimental data for the nitrogen–oxygen binary mixture.. . . . . . . . . . . 22. Comparisons of bubble-point pressures calculated with the mixture model to experimental data for the argon–oxygen binary mixture.. . . . . . . . . . . . . 23. Comparisons of bubble-point pressures calculated with the mixture model to experimental data for the nitrogen–argon–oxygen ternary mixture. . . . . 24. Isochoric heat capacity versus temperature diagram for air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25. Isobaric heat capacity versus temperature diagram for air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26. Speed of sound versus temperature diagram for air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27. Pressure versus density diagram for air.. . . . . . . . . 28. Characteristic curves for air. . . . . . . . . . . . . . . . . . . List of Symbols Physical quantity Helmholtz energy Molar Helmholtz energy Second virial coefficient Adiabatic bulk modulus Third virial coefficient Isobaric heat capacity Isochoric heat capacity Fugacity Mixture coefficient Gibbs energy Enthalpy Isentropic expansion coefficient Isothermal bulk modulus Isothermal expansion coefficient Molar mass Coefficients of equations Number of moles Presssure Universal gas constant (8.314 510⫾0.000 070) Entropy Temperature Internal energy Molar volume Total volume Speed of sound Mixture composition array Mole fraction 共liquid mole fraction for VLE calculations兲 Vapor mole fraction for VLE calculations Compressibility factor Reduced Helmholtz energy Volume expansivity Adiabatic compressibility Reduced density, ␦ ⫽ / c or ␦ ⫽ / j Heat capacity ratio 358 358 359 359 359 359 359 360 Unit J J/mol dm3/mol MPa 共dm3/mol兲2 J/共mol•K兲 J/共mol•K兲 MPa J/mol J/mol MPa g/mol mol MPa J/共mol•K兲 J/共mol•K兲 K J/mol dm3/mol dm3 m/s 1/K 1/MPa J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 334 J Isothermal compressibility Chemical potential Joule–Thomson coefficient Density Reduced temperature, ⫽T c /T or ⫽T j /T Acentric factor Mixture coefficient for reduced density Mixture coefficient for reduced temperature Constant in melting line equation Superscripts 0 E f idmix r ⬘ ⬙ i j nbp nbpl nbpv o p r red s tp tpl tpv Ideal gas property Excess-like property Freezing property Ideal solution property Residual property Liquid phase property Vapor phase property Subscripts 0 c calc exp Reference state property Critical point property Calculated point property Experimental value 1/MPa J/mol K/MPa mol/dm3 dm3/mol K Property of a component in the mixture Maxcondentherm property Normal boiling point property Normal boiling point liquid property Normal boiling point vapor property Initial state point for shock tube calculations Maxcondenbar property Reduced property Reducing property Solidification point property Triple point property Triple point liquid property Triple point vapor property Fixed Points for Air Symbol Quantity Valueb Tj Maxcondentherm temperature 132.6312 K Maxcondentherm pressure 3.78502 MPa pj j Maxcondentherm density 10.4477 mol/dm3 Maxcondenbar temperature 132.6035 K Tp Maxcondenbar pressure 3.7891 MPa pp p Maxcondenbar density 11.0948 mol/dm3 Critical temperature 132.5306 K Tc Critical pressure 3.7860 MPa pc c Critical density 11.8308 mol/dm3 Solidification point temperature 59.75 K Ts Solidification point pressure 0.005265 MPa ps s Solidification point density 33.067 mol/dm3 a T nbp Normal boiling point temperature 78.903 K nbpl Normal boiling point density 共liquid兲a 30.216 mol/dm3 Molar mass 28.9586⫾0.0002 g/mol M Reference temperature 298.15 K T0 Reference pressure 0.101 325 MPa p0 Reference enthalpy at T 0 8649.34 J/mol h 00 Reference entropy at T 0 and p 0 194.0 J/共mol•K兲 s 00 a Normal boiling point properties are calculated on the bubble-point curve at 0.101 325 MPa. b Uncertainties are reported at the 2 confidence level; those for the critical parameters are given in Table 9. Fixed Points for Nitrogen Symbol Tc pc c T tp Quantity Critical temperature Critical pressure Critical density Triple point temperature J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Valuea 126.192 K 3.3958 MPa 11.1839 mol/dm3 63.151 K THERMODYNAMIC PROPERTIES OF AIR 335 p tp Triple point pressure 0.012 523 MPa tpv Triple point density 共vapor兲 0.024 07 mol/dm3 tpl Triple point density 共liquid兲 30.957 mol/dm3 T nbp Normal boiling point temperature 77.355 K nbpv Normal boiling point density 共vapor兲 0.1646 mol/dm3 nbpl Normal boiling point density 共liquid兲 28.775 mol/dm3 Acentric factor 0.037 M Molar mass 28.013 48 g/mol T0 Reference temperature 298.15 K Reference pressure 0.101 325 MPa p0 Reference enthalpy at T 0 8670.0 J/mol h 00 Reference entropy at T 0 and p 0 191.5 J/共mol•K兲 s 00 a Span et al. 共2000兲 report the constants given here and their associated uncertainties; temperatures for nitrogen are given on ITS-90. Fixed Points for Argon Quantity Valuea Symbol Tc Critical temperature 150.687 K pc Critical pressure 4.863 MPa c Critical density 13.407 mol/dm3 T tp Triple point temperature 83.8058 K p tp Triple point pressure 0.068891 MPa tpv Triple point density 共vapor兲 0.1015 mol/dm3 tpl Triple point density 共liquid兲 35.465 mol/dm3 T nbp Normal boiling point temperature 87.302 K nbpv Normal boiling point density 共vapor兲 0.1445 mol/dm3 nbpl Normal boiling point density 共liquid兲 34.930 mol/dm3 Acentric factor ⫺0.002 M Molar mass 39.948 g/mol Reference temperature 298.15 K T0 Reference pressure 0.101 325 MPa p0 Reference enthalpy at T 0 6197.0 J/mol h 00 Reference entropy at T 0 and p 0 154.737 J/共mol•K兲 s 00 a Tegeler et al. 共1999兲 report the constants given here and their associated uncertainties; temperatures for argon are given on ITS-90. Fixed Points for Oxygen Symbol Quantity Valuea Value 共ITS-90兲 Tc Critical temperature 154.581 K 154.595 K pc Critical pressure 5.043 MPa c Critical density 13.63 mol/dm3 T tp Triple point temperature 54.361 K 54.359 K p tp Triple point pressure 0.000 146 3 MPa tpv Triple point density 共vapor兲 0.000 323 7 mol/dm3 tpl Triple point density 共liquid兲 40.816 mol/dm3 T nbp Normal boiling point temperature 90.188 K 90.196 K nbpv Normal boiling point density 共vapor兲 0.1396 mol/dm3 nbpl Normal boiling point density 共liquid兲 35.663 mol/dm3 Acentric factor 0.022 M Molar mass 31.9988 g/mol Reference temperature 298.15 K T0 Reference pressure 0.101 325 MPa p0 Reference enthalpy at T 0 8680.0 J/mol h 00 0 Reference entropy at T 0 and p 0 205.043 J/共mol•K兲 s0 a Schmidt and Wagner 共1985兲 report the constants given here and their associated uncertainties; temperatures for oxygen are given on IPTS-68 consistent with the equation of state, and on ITS-90 in the last column. J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 336 1. Introduction 1.1. Background The measurement of experimental data and the development of equations for the thermophysical properties of air and mixtures of nitrogen, argon, and oxygen has been a continuing project at the Center for Applied Thermodynamic Studies at the University of Idaho and the National Institute of Standards and Technology for more than 10 years. The experimental measurements on air are summarized by Haynes et al. 共1998兲. Equations of state for air as a pseudopure fluid were published by Jacobsen et al. 共1990a兲, 共1992兲. In addition, an extended corresponding states model for calculating the thermodynamic properties of nitrogen– argon–oxygen mixtures was published by Clarke et al. 共1994兲, and a Lagrangian interpolation model for calculating vapor–liquid equilibrium properties for this system was published by Lemmon et al. 共1992兲. A preliminary equation of state for air valid to temperatures of 2000 K and pressures to 2000 MPa was published by Panasiti et al. 共1999兲, and a new model for mixtures of nitrogen, argon, and oxygen was reported by Lemmon and Jacobsen 共1998兲, 共1999兲. The equations of state for air of Jacobsen et al. 共1990a兲, 共1992兲 were reported on the International Practical Temperature Scale of 1968 共IPTS-68兲. Version 1.0 of the NIST standard reference database for air 关Lemmon 共1998兲兴 was based on the equation of state of Jacobsen et al. 共1992兲. The new equation of state and mixture model presented here are based on the International Temperature Scale of 1990 共ITS-90兲. Atmospheric air is a mixture of fluids including nitrogen, oxygen, argon, carbon dioxide, water vapor, and other trace elements. The standard air considered in this report is dry and contains no carbon dioxide or trace elements. The composition of air used here was reported by Olien 共1987兲 based on the work of Jones 共1978兲. It is consistent with that of the U.S. Standard Atmosphere 共1976兲. Other compositions are given by Giacomo 共1982兲 and Waxman and Davis 共1978兲. The mole fractions of nitrogen, oxygen, argon, and carbon dioxide in air from each of the references listed above are given in Table 1. In the analysis of Olien 共1987兲, the values of Waxman and Davis 共1978兲 were excluded because they are based on a purified, rather than natural, sample. The difference between the U.S. standard atmosphere 共1976兲 and values from Jones 共1978兲 is that Jones used a more accurate value for the composition of argon. The differences between Giacomo 共1982兲 of BIPM 共International Bureau of Weights and Measures兲 and the U.S. standard atmosphere are greater than those for values from Jones. Although the argon value given by Giacomo is essentially the same as that given by Jones, the carbon dioxide value given by Giacomo is for a laboratory setting in which human respiration generally increases carbon dioxide concentration and decreases oxygen concentration. Therefore, the compositions given by Giacomo were not used. Rather, the compositions given by Jones, truncated to four significant digits as indicated in Table 2, were used. In this work, the concentration of carbon dioxide is assumed negligible. The normalized values based upon this assumption are given in Table 3. An analysis of experimental measurements on air at different compositions than that reported here showed that the change caused by the difference in composition was less than the experimental error in the measurements, and hence, no effort was made to transform measurements at different air compositions to the composition reported here. A property formulation is the set of equations used to calculate properties of a fluid at specified thermodynamic states defined by an appropriate number of independent variables. The term ‘‘fundamental equation’’ is often used in the literature to refer to empirical descriptions of one of four fundamental relations: internal energy, enthalpy, Gibbs energy, and Helmholtz energy. The formulations for fluid properties are often explicit in Helmholtz energy with independent variables of temperature and density. Pure fluids obey the Maxwell criterion 共equal pressures and Gibbs energies at constant temperatures during phase changes兲 so that all thermodynamic properties including the vapor–liquid equilibrium may be calculated from the full expression for the Helmholtz energy without additional ancillary equations. In this work, the general term ‘‘equation of state’’ rather than the term ‘‘fundamental equation’’ is used to refer to the empirical models developed for calculating fluid properties. Since air is not a pure fluid, general phase equilibrium calculations require consideration of phase compositions. This type of model is discussed in Sec. 5 for arbitrary mixtures of nitrogen, argon, and oxygen. For standard air at a fixed composition, two separate equations are required in addition to the equation of state to represent the dew and bubble-point pressures as functions of temperature. Densities along the dew and bubble-point curves are calculated by the solution of the equation of state and the dew or bubble-point pressure equations given in Sec. 3 at a given temperature. Ancillary equations for the dew and bubble-point densities TABLE 1. Summary of measured compositions of air N2 O2 Ar CO2 TABLE 2. Composition of air using nitrogen, argon, oxygen, and carbon dioxide as constituents U.S. Std. Atmosphere 共1976兲 Jones 共1978兲 Waxman and Davis 共1978兲 Giacomo 共1982兲 0.780 840 0.209 476 0.009 340 0.000 314 0.999 970 0.781 02 0.209 46 0.009 16 0.000 33 0.999 97 0.781 20 0.209 20 0.009 30 0.000 32 1.000 02 0.781 01 0.209 39 0.009 17 0.000 40 0.999 97 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Component Mole fraction N2 O2 Ar CO2 0.7810 0.2095 0.0092 0.0003 1.0000 THERMODYNAMIC PROPERTIES OF AIR TABLE 3. Composition of air using nitrogen, argon, and oxygen as constituents Component TABLE 4. Summary of prior formulations for the thermodynamic properties of air Mole fraction Year Temperature range 共K兲 1955 1955 50–3000 102–348 10 122 Din 共1962兲 1962 Baehr and Schwier 共1961兲 1961 Vasserman and Rabinovich 共1970兲 1970 90–450 60–1250 75–160a 122 450 Vasserman et al. 共1971兲 1971 75–1300b 100 Sychev et al. 共1987兲c Jacobsen et al. 共1990a兲 1978 1990 70–1500 60–873 100 70 Jacobsen et al. 共1992兲 Panasiti et al. 共1999兲 1992 1999 60–873 60–2000 70 2000 Author N2 O2 Ar 337 0.7812 0.2096 Hilsenrath 共1955兲 Michels et al. 共1955兲 0.0092 1.0000 are also given and can be used as estimating functions for iterative calculations of derived thermodynamic properties. 1.2. Prior Thermodynamic Property Formulations for Air Several previous thermodynamic property formulations for air are referenced in Table 4. The most recent prior widerange formulations are those of Jacobsen and co-workers 关Jacobsen et al. 共1990a兲; Jacobsen et al. 共1992兲; Panasiti et al. 共1999兲兴, the first of which is based upon liquid heat capacities predicted using extended corresponding states methods and the second of which used preliminary measurements of the isochoric heat capacity from the National Institute of Standards and Technology 共NIST兲, subsequently published by Magee 共1994兲. The third formulation was a preliminary equation extended to temperatures and pressures of 2000 K and 2000 MPa using predicted properties above 870 K and 70 MPa calculated by corresponding states methods from experimental nitrogen data. 2. Experimental Data The estimated uncertainty of reference equations of state for pure fluids or mixtures is generally based upon comparisons to experimental data. These data are used to determine the coefficients of the equation and to evaluate the behavior of the equation of state over the fluid surface. Data types used in this work include p – – T, speed of sound, isochoric and isobaric heat capacities, and vapor–liquid equilibrium. The equation of state reported here was developed using least squares fitting methods described in detail in Sec. 4.3. For reference quality equations, extensive comparisons to all data types are required. In the tables included in this section, columns are included which indicate the results of statistical analyses of the comparisons of calculated values to experimental data. The details of this analysis are given in Sec. 6. The available saturation data are summarized in Table 5 and discussed in Sec. 6.1. Data used in the fit of the ancillary equations are shown as bolded entries in the table. The values reported by Blanke 共1977兲 were obtained by graphical methods from his p – – T data; several of the near critical temperature data were used in the fit of ancillary equations. Values calculated using the Leung–Griffiths model for air as reported by Jacobsen et al. 共1990b兲 are also summarized in this table. Several of these values close to the critical point were used in the fit. High pressure limit 共MPa兲 50 a Liquid states only. Vapor states only. c English translation of original work published in 1978. b Experimental p – – T data for air are illustrated in Figs. 1 and 2 and summarized in Table 6. The solid lines represent the dew and bubble-point curves. Data used in the fit of the equation of state are shown as bolded entries in the table. All available experimental data were considered in preliminary analysis, but in the final regression of the coefficients of the equation of state, only the most accurate data and data in regions where no other data were available were fitted. The air p – – T data sets used in the development of the equation of state for air and for the mixture model were those of Blanke 共1977兲, Howley et al. 共1994兲, Kozlov 共1968兲, Michels et al. 共1954a兲, 共1954b兲, and Romberg 共1971兲. The isochoric and isobaric heat capacity data are illustrated in Fig. 3 and summarized in Table 6. The speed of sound data of Younglove and Frederick 共1992兲, Ewing and Goodwin 共1993兲 and of Van Itterbeek and de Rop 共1955兲 are also illustrated in Fig. 3 and summarized in Table 6. These speed of sound data and the isochoric heat capacity data of Magee 共1994兲 were used in the fit. The critical region data of Chashkin et al. 共1966兲 are not included in this table since their measurements were concerned with investigating the effect of impurities on the behavior of the isochoric heat capacity in the critical region, and the sample had a 1.2% impurity content 关see Sychev et al. 共1987兲兴. None of the isobaric heat capacity data summarized in Table 6 were used to develop the equation of state or mixture model because of the age of the data and the availability of other more accurate derived data 共isochoric heat capacity and speed of sound兲 in similar regions. A summary of sources of second virial coefficients, including those of Romberg 共1971兲 and Michels et al. 共1954a兲, 共1954b兲, are given in Table 6. The values of Michels et al. were used in the fit of the equation of state. In addition to the values reported by Romberg, values of the second virial coefficients were redetermined graphically from his reported p – – T data. These values are given in Table 7. At the higher isotherms, data below 0.5 mol/dm3 were not used in this graphical redetermination of the values of the second J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 338 TABLE 5. Summary and statistical analysis of saturation data for air No. of points Temp. range 共K兲 Pressure range 共MPa兲 AADa AADb 9 18 60–129 120–133 0.01–3.2 2.10–3.8 2.506 0.049 2.766 0.207 Kuenen and Clark 共1917兲 Michels et al. „1954a… 14 3 123–133 118–132 2.54–3.8 1.96–3.7 0.663 0.069 0.839 0.212 Overall 44 60–133 0.01–3.8 0.748 1.040 11 12 67–132 122–133 0.01–3.7 2.18–3.8 0.395 0.048 1.407 0.293 Kuenen and Clark 共1917兲 Michels et al. „1954a… 18 6 123–133 118–133 2.40–3.8 1.83–3.8 0.587 0.413 0.548 0.515 Overall 47 67–133 0.01–3.8 0.382 0.680 No. of points Temp. range 共K兲 Density range 共mol/dm3兲 AADa AADc 9 18 11 10 48 60–129 120–133 127–133 118–132 60–133 17.71–33.0 10.45–21.6 10.70–18.1 13.67–20.5 10.45–33.0 0.144 0.786 6.042 3.003 2.332 0.152 0.745 6.039 3.034 2.324 11 12 8 12 43 67–132 122–133 130–133 118–133 67–133 0.02–8.9 3.40–10.4 6.49–10.7 2.67–9.8 0.02–10.7 0.638 1.028 6.052 1.236 1.921 0.639 1.036 6.067 1.229 1.924 Author Bubble-point pressure Blanke „1977… Jacobsen et al. „1990b… Dew-point pressure Blanke „1977… Jacobsen et al. „1990b… Bubble-point density Blanke „1977… Jacobsen et al. „1990b… Kuenen and Clark 共1917兲 Michels et al. „1954a… Overall Dew-point density Blanke „1977… Jacobsen et al. „1990b… Kuenen and Clark 共1917兲 Michels et al. „1954a… Overall a Comparisons of the ancillary equations with experimental data. Comparisons of the mixture model with experimental data. c Comparisons of the equation of state for air with experimental data. b FIG. 1. Low temperature p – – T data for air. Solid lines represent the dew and bubble-point curves for air. J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 FIG. 2. High temperature p – – T data for air. THERMODYNAMIC PROPERTIES OF AIR 339 TABLE 6. Summary and statistical analysis of experimental data for air Author No. of points Temp. range 共K兲 Pressure range 共MPa兲 Density range 共mol/dm3兲 AADa 共air EOS兲 AADa 共mixture model兲 p––T Amagat 共1893兲 Blanke „1977… 78 110 273–318 61–170 0.10–304.0 0.01–4.9 0.04–31.0 0.02–33.0 0.220 0.350 0.246 0.312 42 286 273–473 67–400 1.98–10.0 1.06–35.2 0.61–4.5 1.95–32.2 0.019 0.050 0.031 0.044 348 157 199 288–873 273–348 118–248 1.21–72.2 0.73–228.0 0.56–102.0 0.21–17.2 0.30–28.7 0.33–25.2 0.072 0.022 0.147 0.069 0.030 0.152 62 10 124 128–293 273 84–122 2.52–6.20 4.71–8.6 0.02–2.0 1.20–4.5 2.12–3.9 0.03–2.7 0.094 0.091 0.028 0.100 0.102 0.045 109 1525 77–199 61–873 2.62–59.8 0.01–304.0 22.82–31.4 0.02–33.0 0.078 0.097 0.080 0.097 16 3 227 246 138–165 288–623 66–299 66–623 6.72–19.6 0.10 1.71–34.6 0.10–34.6 18.08–19.0 0.02 2.04–33.0 0.02–33.0 6.571 0.579 0.373 0.779 6.063 0.580 0.493 0.856 51 6 7 47 19 46 176 273–553 271–480 333 194–523 194–523 300–2499 194–2499 2.03–22.3 0.10 0.10–29.4 0.10–29.4 4.90–19.6 0.30–1.0 0.10–29.4 0.44–8.6 0.03 0.04–9.5 0.02–14.6 1.11–14.6 0.01–0.4 0.01–14.6 0.920 0.531 0.434 1.083 1.845 3.656 1.746 0.916 0.532 0.405 1.083 1.810 3.511 1.702 Abbey and Barlow 共1948兲 Colwell and Gibson 共1941兲 Colwell et al. 共1938兲 Ewing and Goodwin „1993… Hardy et al. 共1942兲 King and Partington 共1930兲 6 7 9 13 7 11 293 273 297–299 255 273–297 1138–1440 ⬍0.1 ⬍0.1 0.10 0.03–6.9 0.10 0.10 ⬍0.04 ⬍0.04 0.04 0.01–3.4 0.04 0.01 0.388 0.100 0.063 0.018 1.858 1.941 0.389 0.100 0.062 0.006 1.861 1.946 Quigley 共1945兲 Shilling and Partington 共1928兲 29 28 92–259 273–1572 0.10 0.10 0.05–0.1 0.01 0.313 1.405 0.306 1.407 Tucker 共1943兲 Van Itterbeek and de Rop „1955… Younglove and Frederick „1992… 6 44 169 292–347 229–313 90–300 0.07–0.1 0.10–1.3 0.34–13.8 0.02 0.04–0.7 0.25–29.7 2.353 0.216 0.216 2.351 0.211 0.105 Overall 329 90–1572 ⬍13.8 ⬍29.7 0.446 0.387 Andersen 共1950兲 Friedman 共1957兲 6 5 273–473 150–273 1.008 0.819 0.732 0.558 Hilsenrath 共1955兲 Levelt Sengers et al. 共1972兲 61 54 50–1501 100–1400 3.779 0.674 2.719 0.472 Michels et al. „1954a… Michels et al. „1954b… Romberg 共1971兲 4 10 39 273–348 118–248 84–473 0.220 0.127 0.240 0.357 0.159 1.130 Overall 179 50–1501 1.588 1.357 Holborn and Schultze 共1915兲 Howley et al. „1994… Kozlov „1968… Michels et al. „1954a… Michels et al. „1954b… Penning 共1923兲 Rogovaya and Kaganer 共1960兲 Romberg „1971… Vasserman et al. 共1976兲 Overall cv Eucken and Hauck 共1928兲 Henry 共1931兲 Magee „1994… Overall cp Bridgeman 共1929兲 Eucken 共1913兲 Holborn and Jakob 共1917兲 Jakob 共1923兲 Nesselmann 共1925兲 Poferl et al. 共1959兲 Overall w B AAD—Average absolute percent deviation in density for p – – T and average absolute difference in B 共cm3/mol兲 for the second virial coefficients. a J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 340 FIG. 3. Isochoric and isobaric heat capacities and speed of sound data for air. Solid lines represent the dew and bubble-point curves for air. FIG. 4. Derivation of second virial coefficient data from the p – – T data of Romberg 共1971兲. virial coefficients since in many apparatus, such low density data are subject to local adsorption by the walls of the apparatus or to higher uncertainties in the measurement of extremely low pressures. No value of the second virial coefficient was determined for the 84 K isotherm. The p – – T data used to generate the second virial coefficients are shown in Fig. 4. The solid lines show isotherms calculated from the equation of state presented here and the solid curve represents the dew-point curve. The y intercept 共zero density兲 represents the second virial coefficient at a given temperature, and the third virial coefficients can be taken from the slope of each line at zero density. The values of the second virial coefficient calculated from the equation of state are in good agreement with those presented in Table 7 and shown as circles in the figure. Values of the second virial coefficients and p – – T data from Michels et al. are shown in a similar fashion in Fig. 5. The circles at zero density represent the second virial coefficients reported by Michels. Binary p – – T and vapor–liquid equilibrium data for mixtures containing nitrogen, argon, and oxygen are summarized in Table 8. The composition ranges listed in these tables show the composition of the first component listed. All available experimental data were considered in the preliminary analysis, but the final regression of the coefficients of the mixture model used the data sets indicated by the bolded entries in Table 8. Data of Crain and Sonntag 共1966兲, Palavra 共1979兲, and Kosov and Brovanov 共1979兲 were used for the nitrogen–argon mixture, and data of Pool et al. 共1962兲 were used for the nitrogen–oxygen and argon– oxygen mixtures. In addition to the limited data for the nitrogen–oxygen system, the following data sets for air were also used in the mixture modeling: Blanke 共1977兲, Howley et al. 共1994兲, Michels et al. 共1954a兲, 共1954b兲, Romberg 共1971兲, Magee 共1994兲, Ewing and Goodwin 共1993兲, and Younglove and Frederick 共1992兲. The largest impact from the addition of these data sets was on the nitrogen–oxygen parameters, however, the argon–oxygen parameters were also influenced to some degree by the air data. These data had little impact on the nitrogen–argon parameters, as there were sufficient binary data for this system to model the parameters well. The VLE data used in the model development included the nitrogen–argon data of Hiza et al. 共1999兲, the nitrogen–oxygen data of Duncan and Staveley 共1966兲, and the argon–oxygen data of Burn and Din 共1962兲 and of Wilson et al. 共1965兲. Comparisons with ternary VLE data indi- TABLE 7. Second virial coefficients derived from the experimental p – – T data of Romberg 共1971兲 Temperature 共K/ITS-90兲 88.27 94.06 97.56 103.24 109.10 113.05 117.12 122.22 Graphical redetermination of the second virial coefficient 共dm3/mol兲 ⫺0.219 ⫺0.194 ⫺0.179 ⫺0.160 ⫺0.143 ⫺0.134 ⫺0.125 ⫺0.115 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 FIG. 5. Second virial coefficient data and p – – T data of Michels et al. 共1954a兲, 共1954b兲. THERMODYNAMIC PROPERTIES OF AIR 341 TABLE 8. Summary and statistical analysis of data for mixtures of nitrogen, argon, and oxygen No. of points Pressure range 共MPa兲 Density range 共mol/dm3兲 Temp. range 共K兲 Comp. range 共mol兲 AADa 264 41 201 88 6 203 24 21 144 55 1047 0.19–52.5 0.01–0.2 5.93–58.8 100.–800. 0.27–1.3 0.95–24.9 0.10–0.2 7.41–145. 0.18–13.9 0.76–9.6 0.01–800. 0.08–26.6 0.01–0.2 2.46–18.8 17.5–41.1 25.7–30.2 25.8–32.9 28.3–33.9 25.8–34.7 0.07–5.7 0.55–13.1 0.01–41.1 143–273 74–90 293–353 298–423 90–113 94–106 84 119 298–323 171–293 74–423 0.20–0.80 0.31–0.80 0.16–0.81 0.26–0.75 0.50 0.32–0.70 0.18–0.89 0.52 0.16–0.84 0.19–0.74 0.16–0.89 0.209 0.193 0.363 0.320 0.409 0.021 0.502 0.160 0.054 0.097 0.191 Elshayal and Lu 共1975兲 Fastovskii and Petrovskii 共1956兲 Hiza et al. „1999… Jin et al. 共1993兲 Lewis and Staveley 共1975兲 Miller et al. 共1973兲 Narinskii 共1966兲 Pool et al. 共1962兲 Sprow and Prausnitz 共1966兲 Thorpe 共1968兲 Wilson et al. 共1965兲 Overall N2 – O2 — p – – T 7 56 44 13 8 14 98 12 17 68 176 513 0.39–0.7 0.12–0.4 0.08–0.8 1.48–2.8 0.07–0.2 0.84–1.5 0.13–2.3 0.07–0.2 0.08–0.2 0.13–1.1 0.10–2.6 0.07–2.8 100 79–103 85–100 123 85 112 80–120 84 84 81–115 72–134 72–134 0.14–0.90 0.05–0.90 0.10–0.89 0.05–0.97 0.23–0.81 0.11–0.85 0.02–0.96 0.06–0.88 0.06–0.91 0.10–0.91 0.05–1.00 0.02–1.00 0.468 1.182 0.379 0.555 0.840 0.326 0.484 0.420 0.460 0.830 0.805 0.708 Blagoi and Rudenko 共1958兲 Knaap et al. 共1961兲 Kuenen et al. 共1922兲 Pool et al. „1962… Overall 19 7 153 7 186 2.93–6.0 0.09–0.2 0.09–6.0 67–79 77 135–293 84 67–293 0.11–0.80 0.29–0.91 0.25–0.50 0.25–0.74 0.11–0.91 0.415 0.097 0.877 0.088 0.771 Armstrong et al. 共1955兲 Cockett 共1957兲 Din 共1960兲 Dodge and Dunbar 共1927兲 Duncan and Staveley „1966… Hiza et al. 共1999兲 Pool et al. 共1962兲 Thorogood and Haselden 共1963兲 Wilson et al. 共1965兲 Yorizane et al. 共1978兲 Overall Ar–O2 — p – – T 70 62 108 49 11 65 11 13 138 20 547 0.003–0.1 0.12–0.1 0.11–1.0 0.06–3.0 0.002–0.01 0.001–0.8 0.05–0.2 0.10 0.10–2.6 0.05–0.1 0.001–3.0 65–78 81–91 79–116 77–125 63 63–100 84 88–90 78–136 80 63–136 0.03–0.94 0.07–0.81 0.10–0.89 0.05–0.91 0.10–0.80 0.07–0.88 0.10–0.90 0.002–0.08 0.05–0.99 0.11–0.85 0.002–0.99 0.870 1.287 0.788 0.903 1.524 0.689 0.310 1.320 0.540 2.489 0.865 Blagoi and Rudenko 共1958兲 Knaap et al. 共1961兲 Pool et al. „1962… Saji and Okuda 共1965兲 Overall 36 6 15 20 77 0.05–0.1 70–89 90 84–90 85–87 70–90 0.10–0.87 0.28–0.79 0.17–0.86 0.25–0.92 0.10–0.92 0.274 0.052 0.025 0.244 0.200 27 140 55 24 16 55 24 24 35 200 58 568 0.07–0.2 0.06–1.0 0.10–0.7 0.12–0.2 0.16–0.3 0.11–1.2 0.12–0.9 0.05–0.1 0.12–0.2 0.10–2.6 0.10 0.05–2.6 87–95 85–118 90–110 89–96 95–100 90–120 92–115 84–90 90–96 87–139 89–92 84–139 0.04–0.86 0.10–0.91 0.10–0.90 0.21–0.83 0.11–0.79 0.03–0.96 0.01–0.92 0.10–0.90 0.02–1.00 0.003–0.98 ⬍0.76 ⬍1.00 0.710 0.232 0.313 0.774 0.805 0.237 1.149 0.168 1.393 0.403 0.857 0.493 14 60 115 41 1427 1657 0.1 0.1 0.13–2.2 0.1 0.10–2.6 0.10–2.6 81–88 90 82–120 81–92 78–136 78–136 0.13–0.68 ⬍0.004 0.04–0.86 0.01–0.89 0.001–0.99 ⬍0.99 0.555 0.278 0.489 1.613 0.561 0.572 Author N2 – Ar — p – – T Crain and Sonntag „1966… Holst and Hamburger 共1916兲 Kosov and Brovanov „1979… Maslennikova et al. 共1979兲 Massengill and Miller 共1973兲 Palavra „1979… Pool et al. 共1962兲 Ricardo et al. 共1992兲 Townsend 共1956兲 Zandbergen and Beenakker 共1967兲 Overall N2 – Ar — VLE b b 30.7–38.0 29.6–34.8 1.22–19.4 29.8–34.1 1.22–38.0 N2 – O2 — VLE Ar–O2 — b b b 0.05–0.1 34.8–38.2 34.7–35.2 34.7–36.3 34.9–36.1 34.7–38.2 VLE Bourbo and Ischkin 共1936兲 Burn and Din „1962… Clark et al. 共1954兲 Fastovskii and Petrovskii 共1955兲 Hiza et al. 共1999兲 Narinskii 共1957兲 Parikh and Zollweg 共1997兲 Pool et al. 共1962兲 Wang 共1960兲 Wilson et al. „1965… Yorizane et al. 共1978兲 Overall N2 – Ar–O2 — VLE Fastovskii and Petrovskii 共1957兲 Funada et al. 共1982兲 Narinskii 共1969兲 Weishaupt 共1948兲 Wilson et al. 共1965兲 Overall a AAD—Average absolute deviation in density for p – – T and average absolute deviation in bubble-point pressure for VLE. No pressure reported, bubble-point pressure assumed. J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 b LEMMON ET AL. 342 TABLE 10. Coefficients for the dew and bubble-point pressure and density equations for air i 1 2 3 4 5 6 1 2 3 4 5 Ni Bubble-point pressure, Eq. „1… 0.226 072 4 ⫺7.080 499 5.700 283 ⫺12.440 17 17.819 26 ⫺10.813 64 Bubble-point density, Eq. „2… 44.3413 ⫺240.073 285.139 ⫺88.3366 ⫺0.892 181 i Ni 1 2 5 8 Dew-point pressure, Eq. „1… ⫺0.156 726 6 ⫺5.539 635 0.756 721 2 ⫺3.514 322 1 2 3 4 Dew-point density, Eq. „3… ⫺2.0466 ⫺4.7520 ⫺13.259 ⫺47.652 tion of state reported here so that the dew-point pressure and density equations will not be double-valued at any given temperature above the critical temperature as illustrated in Fig. 6; thus, for these temperature dependent equations, the dew-point line is represented by the bubble-point equation between the maxcondentherm point and the critical point. The fixed point properties for air used in this work are given in Table 9. FIG. 6. Critical region phase boundaries for air. cated that the binary mixture parameters were sufficient for modeling the ternary mixture interactions. 3. Vapor–Liquid Equilibria for Air The maxcondentherm 共state point of maximum temperature along the saturation line兲, maxcondenbar 共state point of maximum pressure along the saturation line兲, and critical point for air used in this work were reported by Jacobsen et al. 共1990b兲. These values were determined using a modified Leung–Griffiths model to represent the high-pressure VLE data for ternary systems of nitrogen, argon, and oxygen. The values of the properties at the maxcondentherm (T j , p j , j 兲 were used as reducing parameters for the equa- 3.1. Ancillary Equations The ancillary equations were developed using linear and nonlinear regression algorithms with the experimental database discussed in Sec. 2 and calculated data discussed in Sec. 6.1. The equation for the dew and bubble-point pressures is 冉 冊 冉 冊兺 p Tj ⫽ ln pj T 8 i⫽1 N i i/2, where the N i are the coefficients given in Table 10 for either the dew or bubble-point pressure equation and ⫽1 ⫺T/T j . Values of N i are zero for the coefficients not listed in the table. Densities along the dew and bubble lines can be calculated from the Helmholtz energy formulation given in Sec. 4 at any temperature and the corresponding pressure calculated from Eq. 共1兲. Ancillary equations for the densities TABLE 9. Maxcondentherm, maxcondenbar, and critical point for air Maxcondenthermb Maxcondenbar Critical point Pressurea 共MPa兲 Temperaturea,c 共K兲 Density 共mol/dm3兲 3.785 02Á0.004Á⌬p 3.7891⫾0.002⫾⌬p 3.7860⫾⌬p 132.6312Á0.002Á⌬T 132.6035⫾0.004⫾⌬T 132.5306⫾⌬T 10.4477Á0.05 11.0948⫾0.05 11.8308⫾0.05 ⌬p⫽0.02 MPa, ⌬T⫽0.02 K; the uncertainties in the maxcondentherm and maxcondenbar pressure and temperature comprise components related to the value associated with the critical parameters and smaller components related to the uncertainty in the distance from the critical point. b Values used for the reducing parameters in the equation of state. c Temperature on ITS-90. a J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 共1兲 THERMODYNAMIC PROPERTIES OF AIR along the saturation lines are given here for convenience in certain calculations such as estimation routines. The equation for the bubble-point density is T ⫺1⫽N 1 0.65⫹N 2 0.85⫹N 3 0.95⫹N 4 1.1⫹N 5 ln , j Tj 共2兲 and the equation for the dew-point density is ln 冉冊 ⫽N 1 0.41⫹N 2 1.0⫹N 3 2.8⫹N 4 6.5, j 共3兲 where the coefficients are also given in Table 10. In these equations, T j , p j , and j are values at the maxcondentherm. Comparisons of these equations to experimental data are given in Sec. 6.1. These ancillary equations are valid for temperatures from the solidification point 共59.75 K兲 to the maxcondentherm 共132.6312 K兲. Values for the dew-point pressure and density between the critical point and the maxcondentherm, shown in Fig. 6, are calculated by the bubblepoint equations. 3.2. Freezing Liquid Line A freezing liquid line for air was estimated using the melting curves for pure nitrogen, argon, and oxygen due to the lack of experimental information for the mixture. The solidification temperature T s of air along the bubble line given by Blanke 共1973兲 is 59.75 K. The solidification pressure p s corresponding to this temperature was calculated from the bubble-point pressure equation, Eq. 共1兲, as 0.005 265 MPa. The freezing liquid line for air was assumed to have the same general pressure dependence as the freezing liquid line for pure nitrogen. This can be expressed as p rf ⫽ p rf , Air 共4兲 N2 where the reduced freezing pressures are defined as p rf ⫽ p f共Tr兲 ⫺1 p tp 共5兲 for nitrogen, argon, or oxygen, and p rf ⫽ p f共Tr兲 ⫺1 ps 共6兲 for air. In these equations, p f (T r ) is the freezing liquid pressure at the reduced temperature, T r is the reduced temperature 共T/T tp or T/T s 兲, and the subscript tp indicates the triple point for nitrogen, argon, or oxygen. The value of was determined at a reduced temperature of 2 from x N2 ln p rf 共 2 兲 ⫹x Ar ln p rf 共 2 兲 ⫹x O2 ln p rf 共 2 兲 N Ar O 2 2 ⫽ln p rf 共 2 兲 ⫽ln p rf 共 2 兲 , Air N 共7兲 2 where the mole fractions x are taken from the composition of air used in this work, and the pure fluid melting pressures were taken from Span et al. 共2000兲, Tegeler et al. 共1999兲, and Schmidt and Wagner 共1985兲. The value calculated 343 TABLE 11. Averaged molar composition of standard air at specified temperatures Composition T共K兲 1500 1600 1700 1800 1900 2000 N2 Ar O2 NO 0.7804 0.7802 0.7797 0.7790 0.7780 0.7768 0.0093 0.0093 0.0093 0.0094 0.0094 0.0094 0.2089 0.2083 0.2078 0.2071 0.2063 0.2056 0.0014 0.0022 0.0032 0.0045 0.0063 0.0082 from this equation is 2.773 234. Although values of the freezing liquid line for air could have been calculated from a generalization of Eq. 共7兲, Eq. 共4兲 was selected instead since its extrapolation behavior to very high temperatures was known. The resulting equation for the freezing liquid pressure of air is 冋冉 冊 p T ⫺1⫽35 493.5 ps Ts 1.789 63 册 ⫺1 , 共8兲 derived using the melting pressure equation of nitrogen 关Span et al. 共2000兲兴. 4. Equation of State for Air 4.1. Effects of Dissociation The details included in this and the following section are taken from Panasiti 共1996兲 with some modifications. At high temperatures, air and its constituents dissociate, and the composition changes to include various atomic and ionic species and new compounds including oxides of nitrogen. Hilsenrath and Klein 共1965兲 report the extent of dissociation in the temperature range from 1500 to 15000 K. They considered the equilibrium between atoms, molecules, and ions for the elements nitrogen, oxygen, argon, carbon, and neon. In all, 28 species were considered by Hilsenrath and Klein. For the temperature range of current interest, the amount of nitric oxide 共NO兲 in equilibrium at 2000 K formed from the dissociation of oxygen and nitrogen was large enough that it might be expected to cause a noticeable change in the thermodynamic properties of the mixture. No other constituents were considered in the current study due to their small concentrations. Table 11 lists averaged values of composition, derived from Hilsenrath and Klein, for a mixture of nitrogen, argon, oxygen, and nitric oxide at various temperatures. Although Hilsenrath and Klein consider a pressure dependence, the effect on calculated properties is small, and the composition of air is assumed to be constant over all pressures at a given temperature. Several methods were considered to determine the effects of dissociation on the thermodynamic properties of air. These methods include calculations using cubic equations, extended corresponding states predictions 关Clarke et al. 共1994兲; Lemmon 共1996兲兴, and mixture equations of state of the form developed by Bender 共1973兲. Use of extended corJ. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 344 responding states models with accurate pure fluid information is one of the most accurate methods for obtaining mixture properties. However, the equation of state for oxygen 关Schmidt and Wagner 共1985兲兴 has limited temperature and pressure ranges 共less than 300 K and 82 MPa兲, and the accuracy of properties calculated beyond these limits is uncertain. In addition, there is no published equation of state for nitric oxide. Therefore, the Peng–Robinson 共1976兲 equation of state was used with standard mixing rules to determine the effect of dissociation of air and its constituents. The acentric factors required in the Peng–Robinson model and the critical parameters for nitrogen, argon, and oxygen are listed in the fixed point tables. The critical temperature of nitric oxide is 180.15 K, the critical pressure is 6.48 MPa, and the acentric factor is 0.6. The values of the critical parameters and the acentric factor for nitric oxide were taken from Prasad and Viswanath 共1974兲. Although cubic equations generally cannot be used to calculate values of density with high accuracy over a wide range of temperature and pressure, the purpose here was to compare the differences in density between two mixtures: the three-component N2 –Ar–O2 model of fixed composition for air used in this work, and a four-component N2 –Ar–O2 –NO model which accounted for dissociation by the addition of the NO component. Errors associated with the calculation of density differences should be much smaller than those calculated for the overall value of density. The highest deviation at 2000 K and 2000 MPa is approximately 0.1%, which is less than the expected uncertainty of experimental measurements at these high temperatures and pressures. The differences in calculated heat capacities between the two mixtures is approximately 0.8%, also within the estimated uncertainty. Based on this analysis, it was concluded that dissociation effects are small enough at temperatures up to 2000 K and pressures to 2000 MPa that they were not explicitly considered in the development of the new equation of state for air. 4.2. Calculation of Air Properties from Experimental Data for Nitrogen A modified extended corresponding states technique was used to predict properties of air corresponding to states defined by measurements of nitrogen properties. Experimental p – – T measurements for nitrogen extend to 1800 K and 2220 MPa. Air properties were calculated from high-pressure and high-temperature nitrogen data using the assumption that the compressibility factors are equal Z Air共 T Air , Air兲 ⫽Z N2共 T N2 , N2兲 共9兲 at corresponding states defined by T Air⫽ 共 1.038 128⫹0.000 054 933T N2兲 T N2 共10兲 Air⫽1.043 492 N2 , 共11兲 and J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 for T in kelvin. The pressure was calculated from Eq. 共9兲 for air using nitrogen data p Air⫽ T Air Air p . T N2 N2 N2 共12兲 The numerical constants in Eqs. 共10兲 and 共11兲 were obtained by fitting selected p – – T nitrogen data of Jaeschke and Hinze 共1991兲, Klimeck et al. 共1998兲, Michels et al. 共1936兲, and Nowak et al. 共1997兲 in the range from 200 to 520 K at pressures to 67 MPa to a preliminary version of the air equation of state. The data of Nowak et al. represent the most reliable high temperature, high pressure data available for nitrogen. This fitting procedure minimized deviations between air properties estimated from nitrogen data and values calculated from the preliminary equation of state for air. The average absolute deviations for values calculated from the nitrogen equation of state of Span et al. 共2000兲 were 0.01% for the data of Jaeschke and Hinze, 0.002% for the data of Klimeck et al., 0.02% for the data of Michels et al., and 0.001% for the data of Nowak et al. In comparison, the average absolute deviations for values calculated from the air equation of state as compared with the transformed data were 0.02% for the data of Jaeschke and Hinze and of Klimeck et al., 0.04% for the data of Michels et al., and 0.03% for the data of Nowak et al. Using Eqs. 共10兲–共12兲, high temperature, high pressure p – – T nitrogen data of Robertson and Babb 共1969兲 and Saurel 共1958兲 were transformed to predict state points for air and were used in subsequent fitting of the equation of state for air. The data of Robertson and Babb were used in the final regression of the coefficients. The estimated uncertainty of calculated air properties is 1.0% in density at the highest temperatures and pressures of 2000 K and 2000 MPa. 4.3. Fitting Procedures The equation of state was developed using selected experimental pressure–density–temperature (p – – T) data, isochoric heat capacity data, speed of sound data, and second virial coefficients as indicated in Table 6 and discussed in Sec. 2. The units adopted for this work are megapascals for pressure, moles per cubic decimeter for density, kelvins for temperature, and joules for energy. Units of the experimental data were converted as necessary from those of the original publications to these units. All temperatures were converted to the International Temperature Scale of 1990 共ITS-90兲 based on temperature differences given by Preston-Thomas 共1990兲. The functional forms of preliminary equations for the residual part of the Helmholtz energy were optimized with the algorithm developed by Wagner 共1974兲. The fitting process was used to select an optimal set of terms for representing the selected data from a large bank of terms of the form given in Eq. 共25兲 below. The exponents i k , j k , and l k were selected in this process. The exponents j k in Eq. 共25兲 are generally considered to be greater than or equal to zero so that only ideal gas terms contribute as T goes to infinity, and THERMODYNAMIC PROPERTIES OF AIR i k and l k are integers greater than zero. Each data point used in the least-squares determination of the coefficients of the equation of state was assigned a weighting factor. The weights used in the fitting process were calculated using the error propagation formula 共sometimes called the theorem of propagation of variance兲. The functions for weighting were calculated by making use of a preliminary equation of state for the partial derivatives required for estimating variances by the error propagation formula. In several instances, the error propagation weights were modified by the assignment of arbitrary multiplicative factors to increase or lessen the effect of a particular data set on the overall representation of the surface. The isobaric heat capacity and speed of sound data are not linearly related to the coefficients in the Helmholtz energy formulation and must first be linearized before being used in the fitting process. The isobaric heat capacity is linearized by calculating the density at the experimental pressure and temperature and reducing the isobaric heat capacities to an equivalent isochoric heat capacity using 冉 冊 ␣r 2␣ r 2 ⫺␦ ␦ ␦ . c v ⫽c p ⫺R r ␣ 2␣ r 2 1⫹2 ␦ ⫹␦ ␦ ␦2 1⫹ ␦ 4.4. Ideal Gas Heat Capacity R ⫽x N2 冉 冊 R ⫹x Ar N2 冉 冊 c 0p 共 T 兲 R ⫹x O2 Ar 冉 冊 c 0p 共 T 兲 R . O2 共14兲 The ideal gas heat capacity for nitrogen taken from Span et al. 共2000兲 is c 0p R 4 ⫽ 兺 i⫽1 N i T i⫺1 ⫹ N 5u 2e u , 共 e u ⫺1 兲 2 共15兲 5 ⫽ . R 2 Ni c0p i Ni c0p of nitrogen, Eq. „15… 1 2 3 4 5 6 3.5 0.306 646 9⫻10⫺5 0.470 124 0⫻10⫺8 ⫺0.398 798 4⫻10⫺12 1.012 941 3364.011 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 c0p of air, Eq. „18… 3.490 888 032 2.395 525 583⫻10⫺6 7.172 111 248⫻10⫺9 ⫺3.115 413 101⫻10⫺13 0.223 806 688 0.791 309 509 0.212 236 768 0.197 938 904 3364.011 2242.45 11 580.4 1 2 3 4 5 6 7 8 9 10 11 12 13 of oxygen, Eq. „17… 3.500 42 0.166 961⫻10⫺7 1.067 78 1.012 58 0.944 365 2242.45 11 580.4 ␣0 of air, Eq. „24… 0.605 719 400⫻10⫺7 ⫺0.210 274 769⫻10⫺4 ⫺0.158 860 716⫻10⫺3 ⫺13.841 928 076 17.275 266 575 ⫺0.195 363 420⫻10⫺3 2.490 888 032 0.791 309 509 0.212 236 768 ⫺0.197 938 904 25.363 65 16.907 41 87.312 79 N3 N 4v 2e v 共 2/3兲 N 5 w 2 e ⫺w ⫽N 1 ⫹N 2 T ⫹ 1.5 ⫹ v ⫹ , R T 共 e ⫺1 兲 2 关共 2/3兲 e ⫺w ⫹1 兴 2 共17兲 c 0p 2 where v ⫽N 6 /T and w⫽N 7 /T. The coefficients for Eqs. 共15兲 and 共17兲 are given in Table 12. The ideal gas heat capacity c 0p for air, calculated by combining the ideal gas heat capacity equations for nitrogen, argon, and oxygen, according to Eq. 共14兲, is given by the following expression: c 0p 4 ⫽ N N u 2e u N v 2e v 5 6 7 N i T i⫺1 ⫹ 1.5 ⫹ u 兺 2⫹ v T e ⫺1 e ⫺1 兲 2 兲 共 共 i⫽1 ⫹ 共 2/3 兲 N 8 w 2 e ⫺w , 共共 2/3兲 e ⫺w ⫹1 兲 2 共18兲 where u⫽N 9 /T, v ⫽N 10 /T, and w⫽N 11 /T. The coefficients of this equation are given in Table 12; note that different values for the coefficients N i are used in Eqs. 共15兲, 共17兲, and 共18兲 4.5. Ideal Gas Helmholtz Energy The ideal gas contribution to the Helmholtz energy of air is given by 3 where u⫽N 6 /T. The ideal gas heat capacity for argon is c 0p i R The ideal gas heat capacity for air is given by the mole fraction average of the ideal gas heat capacities for nitrogen, argon, and oxygen c 0p 共 T 兲 TABLE 12. Coefficients for the ideal gas expressions 共13兲 The speed of sound is linearized by calculating the density and the ratio of the heat capacities ␥ from a preliminary equation of state. To improve the representation of the speed of sound data and of the available shock tube data for air, the final functional form was developed using nonlinear regression techniques. Using a combination of linear and nonlinear techniques, a functional form was obtained which yielded the best representation of the selected experimental data. Details of the nonlinear fitting procedures are given by Lemmon and Jacobsen 共2000兲. c 0p 共 T 兲 345 共16兲 The ideal gas heat capacity for oxygen taken from Schmidt and Wagner 共1985兲 is a 0 ⫽⫺RT⫹ 兺 x i共 h 0i ⫺Ts 0i ⫹RT ln x i 兲 , i⫽1 共19兲 where x i is the mole fraction of component i in air, and h 0i and s 0i are the ideal gas enthalpy and entropy of component i at the specified temperature. The ideal gas enthalpy is given by J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 346 0 h 0i ⫽h 0i ⫹ 冕 T T0 TABLE 13. Coefficients and exponents for the equation of state for air 共20兲 c 0pi dT, 0 h 0i where is the enthalpy datum value at the reference temperature (T 0 ) for component i, based upon a zero reference point for the ideal crystal at absolute zero temperature. The ideal gas entropy is given by 0 ⫹ s 0i ⫽s 0i 冕 冉 冊 T c0 pi T0 p0 dT⫺R ln , T p0 共21兲 0 s 0i where is the entropy datum value at the reference temperature and pressure 共T 0 and p 0 兲 for component i, also based upon a zero reference point of the ideal crystal at absolute zero temperature. The variable p 0 is the ideal gas pressure at the fluid density and temperature. Combining Eqs. 共19兲–共21兲 results in the following expression for the ideal gas Helmholtz energy 3 a ⫽⫺RT⫹ 0 ⫹ 冕 T T0 兺 xi i⫽1 冉 RT ln c 0pi dT⫺T 冕 T T0 T 0 0 ⫹h 0i ⫺Ts 0i 0T 0 c 0pi T 冊 共22兲 dT⫹RT ln x i , where p 0 /p 0 has been replaced with T/ 0 T 0 . Dividing Eq. 共22兲 by RT and replacing the temperatures with T ci / and the densities with ␦ ci results in 3 ␣ 0⫽ 冉 0 0 s 0i ␦ 0 h 0i a0 x i ln ⫹ ⫺ ⫽⫺1⫹ ⫺ RT ␦ 0 RT c R R i⫽1 兺 ⫹ 1 R 冕 c 0pi 0 冊 d ⫹ ln x i , 冕 c 0pi 0 2 d 共23兲 where 0 ⫽T ci /T 0 , ␦ 0 ⫽ 0 / ci is the reduced ideal gas density at p 0 and T 0 , T 0 is the reference temperature 共298.15 K兲, and p 0 is the reference pressure 共0.101 325 MPa兲. T ci and ci are the critical parameters of the pure fluids. Values 0 0 and s 0i for nitrogen, argon, and oxygen are taken from of h 0i Cox et al. 共1989兲 and are given in the fixed point tables. The following expression for ␣ 0 is obtained by combining Eqs. 共18兲 and 共23兲: 5 ␣ 0 ⫽ln ␦ ⫹ 兺 N i i⫺4 ⫹N 6 1.5⫹N 7 ln i⫽1 ⫹N 8 ln关 1⫺exp共 ⫺N 11 兲兴 ⫹N 9 ln关 1⫺exp共 ⫺N 12 兲兴 ⫹N 10 ln关 2/3⫹exp共 N 13 兲兴 , 共24兲 where ␦ ⫽ / j and ⫽T j /T, as given by Eq. 共25兲 in the Sec. 4.6, and T j and j are parameters at the maxcondentherm of air. The coefficients of this equation are given in Table 12. 4.6. Equation of State for Air The equation of state for air was developed using experimental data for pressure–density–temperature (p – – T), isochoric heat capacity, speed of sound, and second virial J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 k Nk 1 2 0.118 160 747 229 0.713 116 392 079 ⫺0.161 824 192 067⫻101 3 ik jk lk 1 1 0 0.33 0 0 1 1.01 0 4 0.714 140 178 971⫻10⫺1 2 0 0 5 ⫺0.865 421 396 646⫻10⫺1 6 0.134 211 176 704 3 3 0 0.15 0 0 7 0.112 626 704 218⫻10⫺1 4 0 0 8 ⫺0.420 533 228 842⫻10⫺1 4 0.2 0 9 0.349 008 431 982⫻10⫺1 4 0.35 0 10 0.164 957 183 186⫻10⫺3 1.35 1.6 0 1 11 ⫺0.101 365 037 912 6 1 12 13 ⫺0.173 813 690 970 ⫺0.472 103 183 731⫻10⫺1 3 0.8 1 5 0.95 1 14 ⫺0.122 523 554 253⫻10⫺1 15 ⫺0.146 629 609 713 6 1 1.25 3.6 1 2 16 ⫺0.316 055 879 821⫻10⫺1 3 6 2 17 0.233 594 806 142⫻10⫺3 18 19 0.148 287 891 978⫻10⫺1 ⫺0.938 782 884 667⫻10⫺2 11 1 3.25 3.5 2 3 3 15 3 coefficients, along with calculated air properties at high temperatures and pressures as described in Sec. 4.2. Values of p – – T on the dew and bubble-point curves calculated using Eqs. 共1兲, 共2兲, and 共3兲 were used to define the vapor–liquid equilibrium boundaries. To expand the range of the equation beyond 2000 K and 2000 MPa, data published by Nellis et al. 共1991兲, determined using a shock tube apparatus, were included in the fitting process as discussed in Sec. 4.8 below. The equation of state for air used in this work is explicit in the nondimensional Helmholtz energy ␣共 ␦, 兲⫽ a 共 ,T 兲 ⫽ ␣ 0共 ␦ , 兲 ⫹ ␣ r共 ␦ , 兲 , RT 共25兲 where ␣ 0 is the ideal-gas contribution to the Helmholtz energy given in the previous section, ␣ r is the residual contribution to the Helmholtz energy, ␦ ⫽ / j is the reduced density, ⫽T j /T is the reciprocal reduced temperature, j is the density at the maxcondentherm, and T j is the temperature at the maxcondentherm. The residual Helmholtz energy contribution to the equation of state is given by 10 ␣ 共 ␦ , 兲⫽ 兺 N k␦ ⫹ r ik jk k⫽1 19 兺 k⫽11 N k ␦ i k j k exp共 ⫺ ␦ l k 兲 . 共26兲 The coefficients N k of the equation of state are given in Table 13. The values of i k , j k , and l k were determined from the fitting procedures described in Sec. 4.3. For the nonexponential terms in Eq. 共26兲, i k ranges from 1 to 6 and j k ranges from 0 to 1.35. The thermodynamic properties can be THERMODYNAMIC PROPERTIES OF AIR calculated from the Helmholtz energy using differentiation with respect to density and temperature as described in Sec. 4.7. 4.7. Calculation of Thermodynamic Properties The functions used for calculating pressure, compressibility factor, internal energy, enthalpy, entropy, Gibbs energy, isochoric heat capacity, isobaric heat capacity, and the speed of sound from Eq. 共25兲 are given as Eqs. 共27兲–共34兲. These functions were used in calculating the tables of thermodynamic properties of air given in the Appendix. The densities for the dew and bubble-point states are determined by the simultaneous solution of the dew or bubble-point pressure equation 共1兲 and the equation of state for a given temperature. The derived properties for saturation states are calculated as functions of temperature and density using the standard thermodynamic relations given in Eqs. 共27兲–共34兲. 冉 冊 冋冉 冊 冉 冊 册 冋冉 冊 冉 冊 册 冉 冊 冋冉 冊 冉 冊 册 ␣r p ⫽1⫹ ␦ Z⫽ RT ␦ ␣ u ⫽ RT h ⫽ RT ␣0 ⫹ ␦ ␣r ⫹ ␦ ␣0 s ⫽ R ␣ 0 r 共28兲 ␣r ⫹␦ ⫹1 ␦ ␦ ␣r ⫹ ␦ ⫺ ␣ 0⫺ ␣ r ␦ 冉 冊 2␣ 0 2 1⫹ ␦ ⫹ ␦ 2␣ r 2 ␣r 2␣ r ⫺␦ ␦ ␦ ⫹␦ 2 2␣ r ␦2 w2M c p ␣r 2␣ r 1⫹2 ␦ ⫹␦2 ⫽ RT cv ␦ ␦2 冉 冏冊 1 ␣r j ␦ 2p 2 ⫽ T 冋 冉 冊 冉 冊 冉 冊册 冉 冊 冋 冉 冊 冉 冊册 p T ⫽R 1⫹ ␦ ␦ ⫽0 J⫽ k T ⫽⫺ ⫽ ␣r 2␣ r ⫺␦ ␦ ␦ 冉 冊 T p ⫽ h 冉 冊 冉 冊 v p p v ⫽ T ⫽ p 1 p T ⫽ 冉 冉 冉 冉 冊 冊 冊 冊 1 v 1 ⫽⫺ kp v p p v 共42兲 共43兲 T 共44兲 s 共45兲 s 1 v 1 ⫽⫺ kTp v p T p v T K T ⫽k T p⫽⫺ v 共39兲 T p 共38兲 共41兲 冉 冊 冉 冊冉 冊 B s ⫽kp⫽⫺ v 共35兲 p p 共40兲 冉 冊 1 v v T 共33兲 T  ⫺1 cp w 2 M v p ⫽ p v s p  s⫽ 共34兲 共37兲 ␣r 2␣ r 3␣ r RT 2␦ ⫹4 ␦ 2 ⫹␦3 2 ␦ ␦ ␦3 共31兲 Equations for the second and third virial coefficients are given in Eqs. 共35兲–共36兲. B共 T 兲⫽ 冉 冊 共30兲 共36兲 ␦ ⫽0 ␣r 2␣ r ⫹␦2 ␦ ␦2 T 2 冋 冉 冊 冉 冊册 冋 冉 冊 冉 冊册 ␣r 1⫹2 ␦ ␦ 冉 冏冊 2␣ r ␦2 ⫽RT 1⫹2 ␦ k⫽⫺ ␦ 2j 冉 冊 冋 冉 冊 冉 冊册 p 共29兲 共32兲 1 Other derived properties, given in Eqs. 共37兲–共47兲, include the first derivative of pressure with respect to density ( p/ ) T , second derivative of pressure with respect to density ( 2 p/ 2 ) T , first derivative of pressure with respect to temperature ( p/ T) , Joule–Thomson coefficient ( J ), isentropic expansion coefficient 共k兲, isothermal expansion coefficient (k T ), volume expansivity (  ), adiabatic compressibility (  s ), adiabatic bulk modulus (B s ), isothermal compressibility ( ), and isothermal bulk modulus (K T ). 冋冉 冊 冉 冊 册 冋 冉 冊 冉 冊册 cv ⫽⫺ 2 R C共 T 兲⫽ ␦ g ␣r ⫽1⫹ ␣ 0 ⫹ ␣ r ⫹ ␦ RT ␦ cp cv ⫽ ⫹ R R 共27兲 347 共46兲 共47兲 The derivatives of the ideal gas Helmholtz energy, Eq. 共24兲, are given in Eqs. 共48兲–共49兲. J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 348 冏 5 ␣0 N 8 N 11 ⫽ 共 i⫺4 兲 N i i⫺5 ⫹1.5N 6 0.5⫹N 7 / ⫹ N 11 ␦ i⫽1 e ⫺1 兺 ⫹ 冏 N 9 N 12 N 10N 13 ⫹ N 12 e ⫺1 共 2/3兲e⫺N13 ⫹1 共48兲 5 2␣ 0 ⫽ 共 i⫺4 兲共 i⫺5 兲 N i i⫺6 ⫹0.75N 6 ⫺0.5⫺N 7 / 2 2 ␦ i⫽1 兺 ⫺ 2 N 11 e N 8 N 11 2 N 12 e N 9 N 12 共 e N 11 ⫺1 兲 共 e N 12 ⫺1 兲 2 2⫺ 2 ⫺N13 e 共 2/3兲 N 10N 13 ⫹ 共49兲 关共 2/3兲 e ⫺N 13 ⫹1 兴 2 The derivatives of the residual Helmholtz energy, Eq. 共26兲, are given in Eqs. 共50兲–共55兲. 冏 10 19 ␣r ⫽ i N ␦ i k ⫺1 j k ⫹ N k ␦ i k ⫺1 j k ␦ k⫽1 k k k⫽11 兺 兺 ⫻exp共 ⫺ ␦ l k 兲共 i k ⫺l k ␦ l k 兲 冏 10 共50兲 19 2␣ r ⫽ i 共 i ⫺1 兲 N k ␦ i k ⫺2 j k ⫹ N k ␦ i k ⫺2 j k ␦ 2 k⫽1 k k k⫽11 兺 兺 ⫻exp共 ⫺ ␦ l k 兲关共 i k ⫺l k ␦ l k 兲共 i k ⫺1⫺l k ␦ l k 兲 ⫺l 2k ␦ l k 兴 共51兲 冏 FIG. 7. Calculated Hugoniot curve for air. extrapolation behavior of an equation of state is the examination of the Hugoniot curve. The conservation relations for fluid properties before and after the shock wave taken from Nellis et al. and the equation of state presented here were used to generate the Hugoniot curve for air. The Hugoniot curve is the locus of states accessible to a fluid after a shock wave which occur at a specified initial state. The equations for the conservation of mass, momentum, and energy across the shock wave are p⫺p 0 ⫽ 0 共 w s ⫺w 0 兲共 w p ⫺w 0 兲 , 10 3␣ r ⫽ i 共 i ⫺1 兲共 i k ⫺2 兲 N k ␦ i k ⫺3 j k ␦ 3 k⫽1 k k 兺 冋 v ⫽ v 0 1⫺ 19 ⫹ 兺 k⫽11 N k ␦ i k ⫺3 j k exp共 ⫺ ␦ l k 兲 兵 i k 共 i k ⫺1 兲共 i k ⫺2 兲 ⫹ ␦ l k 关 ⫺2l k ⫹6i k l k ⫺3i 2k l k ⫺3i k l 2k ⫹3l 2k ⫺l 3k 兴 ⫹共 ␦ 兲 lk 2 冏 关 3i k l 2k ⫺3l 2k ⫹3l 3k 兴 ⫺l 3k 共 ␦ l k 兲 3 其 10 共52兲 19 ␣r ⫽ j N ␦ i k j k ⫺1 ⫹ j k N k ␦ i k j k ⫺1 exp共 ⫺ ␦ l k 兲 ␦ k⫽1 k k k⫽11 共53兲 兺 冏 兺 10 19 2␣ r ⫽ j 共 j ⫺1 兲 N k ␦ i k j k ⫺2 ⫹ j k 共 j k ⫺1 兲 2 ␦ k⫽1 k k k⫽11 兺 兺 i k j k ⫺2 ⫻N k ␦ exp共 ⫺ ␦ 兲 lk 10 共54兲 19 2␣ r ⫽ i j N ␦ i k ⫺1 j k ⫺1 ⫹ j k N k ␦ i k ⫺1 j k ⫺1 ␦ k⫽1 k k k k⫽11 兺 兺 ⫻exp共 ⫺ ␦ 兲共 i k ⫺l k ␦ 兲 lk lk 共55兲 4.8. Hugoniot Curve Data measured with a shock tube apparatus 关Nellis et al., 共1991兲兴 were included in the optimization of the equation of state for air to improve the extrapolation behavior beyond 2000 K and 2000 MPa. One method used to demonstrate the J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 册 共 w p ⫺w 0 兲 , 共 w s ⫺w 0 兲 共56兲 共57兲 and u⫺u 0 ⫽0.5共 p⫹ p 0 兲共 v 0 ⫺ v 兲 , 共58兲 where p 0 is the initial pressure, 0 is the initial mass density, u 0 is the initial molar internal energy, v 0 is the initial molar volume, w 0 is the initial velocity of the material ahead of the shock front, p is the final shock pressure, v is the final molar volume, and u is the final molar internal energy. The velocity of the shock wave is w s and the velocity of the material downstream from the shock front is w p . Combining Eqs. 共56兲 and 共57兲 results in 冉 v ⫽ v 0 1⫺ p⫺ p 0 0 w s2 冊 . 共59兲 Rearrangement of Eq. 共58兲 results in v⫽ ⫺2 共 u⫺u 0 兲 ⫹v0 . p⫹ p 0 共60兲 To calculate a point on the Hugoniot curve for air for a specified upstream state (p 0 ,T 0 兲 and downstream pressure 共p兲, Eqs. 共59兲 and 共60兲 are solved simultaneously by iterating on the unknown value for the shock wave velocity w s . The calculated molar volume from Eq. 共59兲 is used with the known value of p to calculate the temperature and internal energy u from the air equation of state. Figure 7 shows the THERMODYNAMIC PROPERTIES OF AIR TABLE 14. Pure fluid equations of state used in the mixture model Fluid Nitrogen Argon Oxygen Author Temperature range 共K兲 Maximum pressure 共MPa兲 Span et al. 共2000兲 Tegeler et al. 共1999兲 Schmidt and Wagner 共1985兲 63.151–1000 83.806–700 54.361–300 2200 1000 82 Hugoniot curve for air calculated using this process for an initial state on the bubble line at 77.1 K as specified by Nellis et al. The data point on the plot is the lowest measured shock tube point from Nellis et al. The reported shock tube points above 30 GPa were not included because, according to Nellis et al., nitrogen spontaneously dissociates above 30 GPa. As shown in Fig. 7, the Hugoniot curve approaches the shock tube point of Nellis et al. 共1991兲 indicating that the extrapolation behavior of the equation of state presented here is reasonable. However, the extrapolation behavior of the formulation should not be based solely on Fig. 7. To further assess the extrapolation behavior of the formulation, other techniques, such as determining the isothermal behavior at extreme pressures and densities, were used. These techniques are described in Sec. 7.1. 5. Mixture Model for the Nitrogen–Argon–Oxygen System 5.1. Mixture Model The model used in this work to calculate the thermodynamic properties of nitrogen–argon–oxygen mixtures is based on the Helmholtz energy of the mixture using a corresponding states theory that was originally developed by Lemmon 共1996兲 and Lemmon and Jacobsen 共1998兲, 共1999兲. The Helmholtz energy of the mixture is calculated as the sum of an ideal gas contribution, a real gas contribution, and a contribution from mixing. The Helmholtz energy for an ideal solution 共the first two contributions兲 is determined at the reduced density and temperature of the mixture using accurate pure fluid equations of state for the mixture components. The contribution from mixing, a modified excess function, is given by a single generalized empirical equation which is applied to all mixtures considered. Reducing parameters, which are dependent on the mole fraction, are used to modify values of density and temperature. The model may be used to calculate thermodynamic properties of mixtures at various compositions, including dew and bubble-point properties and critical points. It incorporates the most accurate published equation of state for each pure fluid as given in Table 14. Additional information concerning the model is given by Lemmon and Tillner-Roth 共1999兲. An excess property of a mixture is defined as the actual mixture property at a given condition minus the value for an ideal solution at the same condition. In most other work dealing with excess properties, the mixing condition is defined at constant pressure and temperature. Because the independent variables for the pure fluid Helmholtz energy equations are 349 density and temperature, properties are calculated here at the density and temperature of the mixture. Since this model deals with the entire fluid surface, reduced values of density and temperature are used rather than the physical values to ensure that properties of the constituents are calculated for the same phase as the mixture. While this approach is arbitrary and different from the usual excess property format, it results in an accurate representation of the phase boundaries for pure fluids and their mixtures. The formulation for nitrogen–argon–oxygen mixtures given here is a modification of the generalized model developed by Lemmon 共1996兲 for a wide range of fluids including hydrocarbons and cryogens. It preserves the general nature of the previous work, but is more accurate at low temperatures for the calculation of nitrogen–argon–oxygen mixture properties than the prior formulation. By restricting the application to a particular class of fluids, the model was designed to represent the unique characteristics of this system. The model represents available measured data in all parts of the thermodynamic surface within their estimated experimental accuracy. An advantage of the approach used here is that the behavior of the Helmholtz energy contribution from mixing is the same for the nitrogen–oxygen, nitrogen–argon, and argon– oxygen binary systems. Relatively simple scaling factors are used to determine its magnitude for each pair. This generalization makes it possible to extend the limits of the model for the argon–oxygen mixture, for which there are few experimental single-phase data. In addition, all vapor and liquid thermodynamic properties, including energy, entropy, heat capacity, sound speed, and the mixture critical temperature, pressure, and density, can be calculated using this approach. Preliminary equations for the mixture model based on the Helmholtz energy have incorporated equations with 7–10 terms in the excess contribution 关Lemmon and Jacobsen, 共1998兲, 共1999兲兴. Many of these terms were included to account for deficiencies in the pure fluid equations, especially in the extrapolation behavior to high temperatures and pressures, and at temperatures below the triple points of the pure fluids. The equation presented here uses only two terms and is more predictive in nature, and results calculated for the argon–oxygen system should generally be more accurate than the preliminary models. The Helmholtz energy for mixtures of nitrogen, argon, and oxygen can be calculated using a⫽a idmix⫹a E . 共61兲 The Helmholtz energy for the ideal mixture is 3 a idmix⫽ 兺 x i 关 a 0i 共 ,T 兲 ⫹a ri 共 ␦ , 兲 ⫹RT ln x i 兴 , i⫽1 共62兲 In these equations, and T are the mixture density and temperature, a 0i is the ideal gas Helmholtz energy for component i, and a ri (⫽ ␣ ri RT) is the pure-fluid residual Helmholtz energy of component i evaluated at a reduced density and temperature defined below. Equations for the ideal gas HelmJ. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 350 TABLE 15. Parameters of the mixture model Nitrogen–Argon Nitrogen–Oxygen Argon–Oxygen Fij i j 共K兲 i j 共dm3/mol兲 1.121 527 1. 0.597 203 ⫺1.237 713 ⫺0.856 350 ⫺2.115 126 ⫺0.000 760 31 ⫺0.000 418 47 0.000 412 32 holtz energy and residual Helmholtz energy for the pure fluids are given in the references shown in Table 14. The excess contribution to the Helmholtz energy from mixing used in this work is aE ⫽ ␣ E 共 ␦ , ,x兲 RT 再兺 2 ⫽ 冎 3 兺 x i x j F i j 关 ⫺0.001 952 45␦ 2 ⫺1.4 i⫽1 j⫽i⫹1 ⫹0.008 713 34␦ 2 1.5兴 , 共63兲 where the coefficients and exponents were obtained from nonlinear regression of experimental mixture data. Values of F i j are given in Table 15. All single phase thermodynamic properties can be calculated from the Helmholtz energy as described in Sec. 4.7 using the relations 3 ␣ ⫽ 兺 xi 0 i⫽1 冋 a 0i 共 ,T 兲 RT ⫹ln x i 册 共64兲 rameters of the mixture model. The generalized factors and mixture parameters F i j , i j and i j are given in Table 15. If equations for the ideal gas Helmholtz energy in the nondimensional form ␣ 0i ( ␦ , ), similar to Eq. 共24兲, are used rather than equations in the dimensional form a 0i ( ,T) as indicated by Eq. 共64兲, the reducing variables for ␦ and in the ideal gas equation are ␦ ⫽ / ci 共70兲 ⫽T c i /T, 共71兲 and rather than the reducing values defined by Eqs. 共66兲 and 共67兲. This only applies to the ideal gas part of the equation, not to the residual Helmholtz energy. The residual and excess terms ␣ ri ( ␦ , ) and ␣ E ( ␦ , ,x) in Eq. 共65兲 must be evaluated at the reduced state point of the mixture defined by Eqs. 共66兲 and 共67兲. This complication is avoided though the use of dimensional equations of the form given in Eq. 共22兲 or dimensionless equations of the form given in Eq. 共23兲 where the critical properties cancel out of the equation. Equations of the form given in Eq. 共24兲 are derived from dimensional equations, and the critical parameters of the pure fluids are built into the coefficients of the equations. 5.2. Vapor–Liquid Equilibrium „VLE… Properties In a two-phase nonreacting mixture, the thermodynamic constraints for vapor–liquid equilibrium 共VLE兲 are and 3 ␣ ⫽ 兺 x i ␣ ri 共 ␦ , 兲 ⫹ ␣ E 共 ␦ , ,x兲 , 共65兲 r i⫽1 where the derivatives are taken at constant composition. Calculations of two-phase properties are described in Sec. 5.2. The reduced values of density and temperature for the mixture used in Eqs. 共63兲 and 共65兲 are ␦ ⫽ / red 共66兲 ⫽T red /T, 共67兲 and T ⬘ ⫽T ⬙ ⫽T, 共72兲 p ⬘ ⫽ p ⬙ ⫽ p, 共73兲 and i⬘ ⫽ i⬙ , red⫽ 冉兺 i⫽1 2 xi ⫹ c i i⫽1 3 兺 j⫽i⫹1 兺 x ix j i j 冊 T red⫽ 2 共68兲 3 兺 x i T c ⫹ i⫽1 兺 j⫽i⫹1 兺 x ix j i j . i⫽1 i 共69兲 The parameters i j and i j are used to define the shapes of the reducing temperature lines and reducing density lines. These reducing parameters are not the same as the critical parameters of the mixture and are determined simultaneously in the nonlinear fit of experimental data with the other paJ. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 f i⬘ ⫽ f i⬙ . 共75兲 The chemical potential of component i in a mixture is ⫺1 and 3 共74兲 where the superscripts ⬘ and ⬙ refer to the liquid and vapor phases, respectively, and q is the number of components in the mixture. Equation 共74兲 is identical to equating the fugacities of the liquid and vapor phases for each component in the mixture where and T are the mixture density and temperature, and red and T red are the reducing values 3 i⫽1,2,...,q, i 共 ,T 兲 ⫽ 冉 冊 A ni ⫽ ci 共 T 兲 ⫹RTln共 f i 兲 , 共76兲 T,V,n j where ci (T) is a function of temperature only and the notation n j indicates that all mole numbers are held constant except n i . The chemical potential in an ideal gas mixture is 0i ⫽ 冉 冊 A0 ni ⫽ ci 共 T 兲 ⫹RT ln共 f 0i 兲 , 共77兲 T,V,n j where f 0i is the ideal gas partial pressure of constituent i, x i p 0 ⫽x i RT. Subtracting these equations results in THERMODYNAMIC PROPERTIES OF AIR 351 TABLE 16. Different types of VLE calculations Calculation type Specified quantities BUBL p DEW p BUBL T DEW T FLASH T T p p Calculated quantities and the x i and the y i and the x i and the y i T and p f i ⫽x i RT exp 冉 p p T T 共 n␣r兲 ni 冊 and the y i and the x i and the y i and the x i x i and y i 共78兲 , T,V,n j where ␣ r was defined in Eq. 共65兲. The partial derivative at constant temperature, total volume 共not molar volume兲, and mole number of all constituents except i is generally evaluated numerically. Five common VLE calculations are listed in Table 16. The VLE conditions for these five calculations can be determined iteratively. The x i represent the mole fractions in the liquid phase, and the y i represent the mole fractions in the vapor phase. Details of the iterative processes can be found in Van Ness and Abbott 共1982兲 or Smith and Van Ness 共1975兲. 5.3. Critical Locus In the development of the mixture model, equations for the reducing parameters were given for the calculation of the reduced density and temperature ␦ and . These parameters are equal to the critical parameters in the pure fluid limits. For a mixture, the reducing parameters are not the same as the critical parameters, but are empirical functions designed to minimize the deviations between experimental data and the mixture model. The criteria for the critical point of a binary mixture are 冉 冊 冉 冊 2g x2 3g ⫽ x3 p,T ⫽0, 共79兲 冉 冊 2g ⬇ T x2 p,T and 冉 冊 g T x3 g x3 3 ⌬ 冉 冊 2g ⌬T⫹ p x2 p,T 冉 冊 冉 冊 g p x3 3 ⬇ p,T 冉 冊 ⌬p p,T ⌬T⫹ 共80兲 ⌬p, p,T 冉 冊 冉 冊 冉 冊 冉 冊 冉 冊 冉 冊 冉 冊 冉 冊 2g x2 3g p x3 p,T g T x3 g p x2 p,T 3 共81兲 where ⌬T and ⌬p are the differences from the critical point temperature and pressure in an iterative algorithm for finding the critical point, and the left sides of these equations represent the deviations from the zero value at the critical point indicated in Eq. 共79兲. Solving these equations for ⌬T and ⌬p results in 3g x3 ⫺ p,T 2 2g p x2 p,T g T x2 2 ⫺ p,T p,T 3 g p x3 p,T p,T 共82兲 and ⫺ 3 p,T ⌬T⬇ p,T where g is the molar Gibbs energy of the mixture. Near the critical point, this equation can be expanded in terms of the numerical differences 2g ⌬ x2 FIG. 8. Critical lines for nitrogen–argon, nitrogen–oxygen, and argon– oxygen binary mixtures. ⌬p⬇ 冉 冊 2g x2 冉 冊 冉 冊 ⫺ p,T 2g T x2 2g p x2 ⌬T p,T , 共83兲 p,T from which an estimate of the location of the critical point can be obtained. The reducing parameters can be used as initial estimates for the critical pressure and temperature and the values of T and p are repeatedly incremented according to Eqs. 共82兲 and 共83兲 until the second and third derivatives of the Gibbs energy are both simultaneously near zero. The critical lines for the nitrogen–argon, nitrogen– oxygen, and argon–oxygen binary mixtures are shown in Fig. 8 along with experimental values of the critical temperature from Jones and Rowlinson 共1963兲. The value of T c for J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 352 oxygen reported by Jones and Rowlinson is 0.3% different from the value given by Schmidt and Wagner 共1985兲. Likewise, the value for argon is 0.2% different from that given by Tegeler et al. 共1999兲. To account for these differences, the experimental values of Jones and Rowlinson were corrected for each 共i, j兲 binary pair using T c ⫽T c,Jones⫹x i 共 T c,i ⫺T c,i,Jones兲 ⫹x j 共 T c, j ⫺T c, j,Jones兲 . 共84兲 The adjusted values are also shown in Fig. 8. 6. Comparisons of Calculated Properties to Experimental Data The uncertainty of the equation of state and the mixture model was determined by statistical comparisons of property values calculated with the equation of state or mixture model to experimental data. These statistics are based on the percent deviation in any property X defined as %⌬X⫽100 冉 冊 X exp⫺X calc , X exp 共85兲 where X exp is the measured or predicted data, and X calc is computed from the equation of state. Using this definition, the average absolute deviation 共AAD兲 is defined as FIG. 9. Comparisons of dew and bubble-point properties calculated with the ancillary equations toexperimental and calculated data for air. n 1 兩 %⌬X i 兩 , AAD⫽ n i⫽1 兺 共86兲 where n is the number of data points. For the second virial coefficient, the difference in B 共in cm3/mol兲 is used rather than the percent difference since the percent difference can become very large near B⫽0. 6.1. Comparisons of the Ancillary Equations for Air with Experimental Data Comparisons of dew and bubble-point properties calculated using Eqs. 共1兲, 共2兲, and 共3兲 to the experimental data of Blanke 共1977兲, Michels et al. 共1954a兲, Kuenen and Clark 共1917兲 and the calculated data reported by Jacobsen et al. 共1990b兲 are shown in Fig. 9 and the average absolute deviations are given in Table 6. For the bubble-point pressure equation, the Blanke data below 110 K are not in agreement with values calculated from the mixture model given in Sec. 5, with differences approaching 15% in pressure at the lowest temperature. The Blanke values are the only available low-temperature data for the properties of air on the phase boundaries, however, they were determined graphically from p – – T data. Because of the large deviations mentioned above, they were not used to develop the ancillary equations where they conflicted with values calculated from the mixture model. To maintain consistency between the mixture model and the ancillary equation reported here, the bubble-point pressures from the mixture model were used for temperatures below 100 K in developing the ancillary equations. At higher temperatures, J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 the data of Michels et al. and Blanke between 120 and 130 K and the Leung-Griffiths calculations from Jacobsen et al. between 131.8 and 132.5 K were used. For the dew-point pressure equation, values below 66 K from the mixture model were used in the absence of experimental data. Most of the data of Blanke are represented within 0.3%. The Leung–Griffiths calculations from Jacobsen et al. 共1990b兲 between 130.4 and 132.6 K were fitted in the critical region. For both the dew and bubble-point pressures, the first term of Eq. 共1兲 ensures that the first derivative of pressure with respect to temperature is infinite at the maxcondentherm, as shown in Fig. 6. Below 118 K, the data of Blanke are the only available saturated density data for air. For the bubble-point densities, both the air equation of state and the mixture model of this work agree with the density data of Blanke to within 0.1%. The single-phase liquid surface is represented well by accurate experimental data, and the uncertainty of density values calculated from the equation of state should be less than 0.1% even at the lowest temperatures. For the dew-point densities, the average absolute deviation of the data of Blanke was 0.6%. These data have not been represented well by previous equations of state for air 关Jacobsen et al. 共1990a兲; Jacobsen et al. 共1992兲; Panasiti et al. 共1999兲兴 nor with preliminary equations developed using second virial coefficients, and these data show deviations of up to 2% from all of these equations. Calculated density values from the equation of state were used in the development of the dew and bubble-point ancillary equations for consistency. THERMODYNAMIC PROPERTIES OF AIR 353 FIG. 10. Comparisons of densities calculated with the equation of state to experimental data for air. J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 354 LEMMON ET AL. FIG. 12. Comparisons of isochoric heat capacities calculated with the equation of state to experimental data for air. FIG. 11. Comparisons of pressures calculated with the equation of state to experimental data for air in the critical region. 6.2. Comparisons of the Equation of State for Air and the Mixture Model with Experimental and Calculated Data for Air Table 6 shows the statistical analysis of comparisons to experimental data sets for p – – T, isochoric and isobaric heat capacities, speed of sound, and second virial coefficients for air. Comparisons to all available experimental data are given in Figs. 10–15. The vertical lines in these figures show the locations of the phase boundaries at the indicated temperature. Deviations between the mixture model at the composition of standard air and the air equation of state are shown as solid lines at the indicated isotherms or isochores. These comparisons are quite useful in determining the consistency of data sets and the uncertainty of the equation of state, since the mixture model has very few adjustable parameters, and only a very limited set of data was used to determine the parameters. Equations of state can be overfit due to the large number of adjustable parameters. For the mixture model, this is not a problem, and deviations between J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 experimental data, the equation of state, and the mixture model are useful in showing various trends and inconsistencies. Figure 10 shows comparisons of densities calculated with the equation of state to experimental p – – T data. Several inconsistencies can be seen in the data used in the fit. At 290 K, the data of Michels et al. 共1954a兲 and of Kozlov 共1968兲 differ by an average of 0.1% in density. This offset is also seen between the data of Kozlov and the equation of state throughout most of the data of Kozlov. The data of Howley et al. 共1994兲 are generally consistent with the data of Michels et al., except at temperatures below 200 K. At 155 K, these two data sets differ by 0.1%. Although used in the fit, the scatter in the data of Blanke is within 0.2% in the liquid, and within 0.5% in the vapor. Differences between the overlapping vapor phase data of Romberg 共1971兲 and the equation of state are less than 0.1%, as compared with 0.5% for the data of Blanke. There are no overlapping data in the liquid. Despite the age of the data of Amagat 共1893兲, the equation of state 共which was not fit to these data兲 agrees on average to within 0.3% at pressures between 200 and 300 MPa and temperatures from 270 to 300 K. The only other data in a comparable range are the data of Michels et al. at 270 K up to 228 MPa. The equation of state agrees within 0.1% with these data. Differences between the mixture model and the Amagat data are larger at the highest pressures, however, these pressures are well beyond the limits of the oxygen equation of state. THERMODYNAMIC PROPERTIES OF AIR FIG. 13. Comparisons of isobaric heat capacities calculated with the equation of state to experimental data for air. The deviations of data in the critical region between 130 and 140 K are shown in Fig. 11. Since density deviations tend to be large in the critical region for any substance 共because / p at constant temperature approaches infinity at the critical point兲, this figure shows comparisons of pressures calculated with the equation of state to experimental p – – T data. The scatter between different data sets is within ⫾0.3% in pressure throughout most of the critical region, with deviations tending to be positive for the data of Blanke 共1977兲 and Michels et al. 共1954b兲, and negative or near zero for comparisons with the data of Howley et al. 共1994兲. Deviations between the mixture model and the equation of state tend to be less than that with the experimental data, with the mixture model agreeing best with the data of Howley et al. Comparisons of values calculated from the equation of state are shown for isochoric heat capacities in Fig. 12, isobaric heat capacities in Fig. 13, and the speed of sound in Fig. 14. The equation of state agrees very well with the c v data of Magee 共1994兲 except at the lowest density isochore, 2 mol/dm3, where the uncertainty of the isochoric heat capacity data tend to be highest. Comparisons with the mixture model are quite good, except for the upturns in the vapor phase near the saturation boundaries. Deviations with the isobaric heat capacity data in the vapor phase are generally within 2%, however, both the uncertainty and the scatter in these data are higher than that for the isochoric heat capacity data. Deviations between the equation of state and the mix- 355 ture model are nearly negligible, even at 2000 K. Comparisons between the equation of state and the speed of sound data of Ewing and Goodwin 共1993兲 and the data of Younglove and Frederick 共1992兲 are very good at temperatures above 200 K and below 120 K. Near the saturation boundaries and in the critical regions, the deviations tend to be somewhat higher but generally within 1%. The mixture model follows the data of Younglove and Frederick more closely than does the equation of state in these regions. The differences in the second virial coefficients are shown in Fig. 15. Differences between the data of Romberg 共1971兲 at low temperatures with the equation of state tend to be positive, whereas differences between the graphically determined data from Romberg given here in Table 7 tend to be more scattered, generally within ⫾1 cm3/mol 共about 0.5% at 90 K兲 except at the lowest temperature. This scatter is due to the difficulty of determining the second virial coefficient as the uncertainty of p – – T data increases at low pressures and temperatures as shown in Fig. 4. The second virial coefficients calculated from the mixture model are not as accurate as those calculated from the air equation of state. Values of the second virial coefficient for oxygen calculated from the equation of state of Schmidt and Wagner 共1985兲 show a minimum at 75 K, and calculated values become positive at temperatures below 58 K. This low temperature behavior is unrealistic and reduces the accuracy of virial coefficients calculated using the mixture model in spite of the fact that the calculated values from Schmidt and Wagner are within the uncertainty of available experimental data. Figure 16 shows calculated dew and bubble-line densities in the critical region reported by Jacobsen et al. 共1990b兲 determined using a Leung–Griffiths model for ternary systems. As shown in Fig. 16, the equation of state developed in this work represents the calculated data of Jacobsen et al. 共1990b兲 more accurately than the previous equation of Jacobsen et al. 共1992兲. Densities were calculated from each equation of state at the temperature and bubble or dew-point pressure of the equation. This pressure was calculated from the respective ancillary equation for each equation of state. Dew and bubble-point states at the air composition calculated from the mixture model as described in Sec. 5.2. are also shown in the figure. Figure 17 shows the percent deviation in density between values calculated with the equation of state for air and the properties of air predicted from nitrogen data by the methods described in Sec. 4.2 and used in the development of the air equation of state. At temperatures above 1000 K where deviations between the nitrogen equation of state and the experimental data for nitrogen exceed 2%, the equation of state for air mimics the trends set by the equation of state for nitrogen 关Span et al. 共2000兲兴 as shown by the calculated data points in Fig. 17. 6.3. Comparisons of the Mixture Model with Experimental Single Phase Data Summary comparisons of values calculated using the mixture model to p – – T data for mixtures of nitrogen, argon, J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 356 LEMMON ET AL. FIG. 16. Comparisons of critical region phase boundaries calculated with the equation of state to predicted data for air. FIG. 14. Comparisons of speeds of sound calculated with the equation of state to experimental data for air. and oxygen are given in Table 8; this table indicates the temperature range and composition range for the first component listed for each data set. The bubble-point pressures, calculated from the model, were assumed for several data sets for the nitrogen–oxygen and argon–oxygen systems where the pressures were not included in the published data. Comparisons of densities calculated from the mixture model to experimental data are shown in Fig. 18 for the nitrogen– argon binary mixture and in Fig. 19 for the nitrogen–oxygen and argon–oxygen binary mixtures. The Maslennikova et al. 共1979兲 data for the nitrogen– argon mixture extend to 800 MPa and deviations are on average within 0.3%. From this and because of the generalized nature of the model, calculated densities should be within 1.0% up to 800 MPa for the nitrogen–oxygen and argon– oxygen systems where no data exist. The magnitudes of the deviations for most of the nitrogen–argon data are similar to those for the extended corresponding states models of Clarke et al. 共1994兲 and version 9.08 of the NIST14 database 关Friend 共1992兲兴. Very few data exist for the nitrogen–oxygen and argon– oxygen mixtures. For the nitrogen–oxygen mixture, air data and the data of Pool et al. 共1962兲 were used to determine the parameters for the mixture model. Although the temperature range of experimental p – – T data for the argon–oxygen system is only 70–90 K with pressures up to 0.2 MPa in the liquid phase, the model should be valid for all temperatures and pressures for argon–oxygen mixtures within the ranges of experimental data for the nitrogen–oxygen and nitrogen– argon systems due to the predictive nature of the model. From these comparisons, we estimate that the uncertainty of p – – T calculations in the extended range for argon– oxygen mixtures is within 0.5%. This estimate is based additionally on comparisons to the large amount of VLE data available over the entire two-phase range for this mixture. 6.4. Comparisons of the Mixture Model with Experimental VLE Data FIG. 15. Comparisons of second virial coefficients calculated with the equation of state to experimental data for air. J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Comparisons of bubble-point pressures calculated with the mixture model to experimental data are shown in Fig. 20 for THERMODYNAMIC PROPERTIES OF AIR FIG. 17. Comparisons of densities calculated with the equation of state to calculated p – – T data estimated from nitrogen data. 357 FIG. 19. Comparisons of densities calculated with the mixture model to experimental data for the nitrogen–oxygen and argon–oxygen binary mixtures. the nitrogen–argon binary mixture, Fig. 21 for the nitrogen– oxygen binary mixture, Fig. 22 for the argon–oxygen binary mixture, and Fig. 23 for the nitrogen–argon–oxygen ternary mixture. The average deviations in bubble-point pressure for the VLE data of Wilson et al. 共1965兲 for the nitrogen–argon, nitrogen–oxygen, argon–oxygen, and nitrogen–argon– oxygen mixtures are within 0.8% and are nearly the same as those for the model developed by Lemmon 共1996兲. However, the deviations between the mixture model and the lower temperature nitrogen–oxygen data of Duncan and Staveley 共1966兲 and Armstrong et al. 共1955兲 are substantially lower in the new model reported here, and the average deviations for these data sets are about 1.6% and 0.8%, respectively, about 50% smaller than those for the model of Lemmon 共1996兲. 7. Estimated Uncertainty of Calculated Properties 7.1. Characteristic Curves of Air FIG. 18. Comparisons of densities calculated with the mixture model to experimental data for the nitrogen–argon binary mixture. Plots of constant property lines on various thermodynamic coordinates are useful in assessing the behavior of the equation of state in regions where there are no accurate experimental results for the corresponding property. The equation of state for air developed here was used to produce plots of temperature against isochoric heat capacity 共Fig. 24兲, isobaric heat capacity 共Fig. 25兲, and speed of sound 共Fig. 26兲. As mentioned in Sec. 4.8, analytical methods in addition to calculating the Hugoniot curve are needed to determine the extrapolation behavior of an equation of state. Figure 27 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 358 FIG. 20. Comparisons of bubble-point pressures calculated with the mixture model to experimental data for the nitrogen–argon binary mixture. FIG. 21. Comparisons of bubble-point pressures calculated with the mixture model to experimental data for the nitrogen–oxygen binary mixture. shows a pressure versus density plot along isotherms. This plot indicates that the equation of state presented here exhibits reasonable extrapolation behavior at high pressures and densities. Plots of certain ‘‘ideal curves’’ are useful in assessing the behavior of an equation of state 关Deiters and de Reuck 共1997兲, Span and Wagner 共1997兲, Span 共2000兲兴. The characteristic curves considered in this work are the Boyle curve, given by the equation 冉 冊 Z v ⫽0, 共87兲 T the Joule–Thomson inversion curve, 冉 冊 Z T p 冉 冊 h ⫽0, 共88兲 ⫽0, 共89兲 ⫽0. 共90兲 or T p and the Joule inversion curve 冉 冊 Z T v J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 FIG. 22. Comparisons of bubble-point pressures calculated with the mixture model to experimental data for the argon-oxygen binary mixture. THERMODYNAMIC PROPERTIES OF AIR 359 FIG. 25. Isobaric heat capacity versus temperature diagram for air. FIG. 23. Comparisons of bubble-point pressures calculated with the mixture model to experimental data for the nitrogen-argon-oxygen ternary mixture. Figure 28 illustrates these characteristic curves for the equation of state for air. Although the curves in Fig. 28 do not provide numerical information, reasonable shapes of these curves as shown indicate qualitatively correct extrapolation behavior of the equation of state. 7.2. Uncertainty of the Equation of State for Air and of the Mixture Model The uncertainties of the models presented here have been estimated by comparing calculated results with experimental data, as summarized in Sec. 6, and assessing the data them- FIG. 24. Isochoric heat capacity versus temperature diagram for air. FIG. 26. Speed of sound versus temperature diagram for air. FIG. 27. Pressure versus density diagram for air. J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 360 TABLE 17. Regions of stated uncertainty of the mixture model Mixture Nitrogen–Argon Nitrogen–Oxygen and Air Argon–Oxygen a FIG. 28. Characteristic curves for air. selves according to the quoted experimental uncertainties and the mutual consistency of data obtained from different sources. A general knowledge of the behavior of thermodynamic surfaces and substantial experience with other correlating equations for well-studied fluids have also been applied in the estimation of uncertainties. The uncertainties represent expanded combined uncertainties where a normal distribution of errors is assumed and a coverage factor of 2 has been applied 共equivalent to a confidence level of about 95%兲. This means that if a uniform distribution of state points is considered within the range specified below, no more than 2% of values for a given property will deviate from the physical value by more than the specified uncertainty. For the equation of state of standard air, the region for which sufficient data are available to establish reliable uncertainty estimates ranges from the solidification point to 873 K at pressures up to 70 MPa, except in the critical region from 130 to 134 K and 9 to 13 mol/dm3. The estimated uncertainty of density values calculated using the equation of state for air is 0.1%. The estimated uncertainty of speed of sound values is within 0.2% based on comparisons with the data of Younglove and Frederick 共1992兲, Van Itterbeek and de Rop 共1955兲, and Ewing and Goodwin 共1993兲. The estimated uncertainty is 1% for calculated values of heat capacity based upon comparisons to the experimental data of Magee 共1994兲. In the critical region defined above, the uncertainty in pressure calculations is estimated to be 0.3%. Outside the range of the primary experimental data for air 共T⬎870 K, p ⬎70 MPa兲 and at temperatures less than 2000 K and pressures less than 2000 MPa, the estimated uncertainty in predicted densities is 1.0%. Without experimental data, the uncertainty of extrapolated properties cannot be verified. The uncertainty of the mixture model reported here for arbitrary compositions of nitrogen, oxygen, and argon is within 0.1% in density, 0.2% for the speed of sound, and 1% in heat capacity for both binary and ternary mixtures in the same range given for the air equation of state. The uncertainty of calculated dew and bubble-point pressures is within J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Temperature range 共K兲 Maximum pressure 共MPa兲 70–420 60–870 70–90 70–400a 800 100 0.2 100a No data are available to verify this range, however, the uncertainty of the equation should be at least 0.5% in density for the range stated due to the predictive nature of the model. 1%. The mixtures and ranges for which calculated properties have been verified by experimental data to have deviations within these limits are listed in Table 17. In regions where there are no binary mixture data, the uncertainty is estimated to be of the same magnitude. However, these estimates cannot be verified until experimental data are available to support these estimates. Because of the generalized and predictive nature of the mixture model, calculated densities of mixtures of nitrogen, argon, and oxygen extrapolated to temperatures up to 1000 K and pressures to 100 MPa have an estimated uncertainty of 0.5%. Although the equation of state for oxygen by Schmidt and Wagner 共1985兲 is valid only to temperatures of 300 K, the original work of Lemmon 共1996兲 demonstrated that the oxygen equation extrapolates to temperatures up to 1000 K within 0.5% in density through comparisons with the Kozlov 共1968兲 data. As new measurements become available, they will refine the uncertainty estimates in regions not covered by experimental data, and will enable continued evaluation and optimization of the mixture model. 8. References Abbey, R. L. and G. E. Barlow, Aust. J. Sci. Res. A1, 175 共1948兲. Amagat, E. A., Ann. Chem. Phys. 29, 68 共1893兲. Andersen, J. R., Trans. ASME 72, 759 共1950兲. Armstrong, G. T., J. M. Goldstein, and D. E. Roberts, J. Res. Natl. Bur. Stand. 55共5兲, 265 共1955兲. Baehr, H. D. and K. Schwier, The Thermodynamic Properties of Air for Temperatures Between ⫺210 °C and 1250 °C up to Pressures of 4500 Bar, Thermodynamische Eigenschaften der Gase und Flussigkeiten 共Springer-Verlag, Berlin, 1961兲. Bender, E., Cryogenics 11, 11 共1973兲. Blagoi, Yu. P. and N. C. Rudenko, Izv. Vyssh. Uchebn. Zaved. Fiz. 6, 145 共1958兲. Blanke, W., ‘‘Messung der thermischen Zustandsgrossen von Luft im Zweiphasengebiet und seiner Umgebung,’’ Dissertation for Dr. Ing., Ruhr-Universitat Bochum, Germany, 1973. Blanke, W., Proceedings 7th Symposium Thermophysics Properties, edited by A. Cezairlizan 共The American Society of Mechanical Engineers, New York, 1977兲, p. 461. Bourbo, P. and I. Ischkin, Physica 3共10兲, 1067 共1936兲. Bridgeman, O. C., Phys. Rev. 34, 527 共1929兲. Burn, I. and F. Din, Trans. Faraday Soc. 58共475兲, 1341 共1962兲. Chashkin, Y. R., V. G. Gorbunova, and A. V. Voronel, Sov. Phys. JETP 22, 304 共1966兲. Clark, A. M., F. Din, and J. Robb, Proc. R. Soc. London A221, 517 共1954兲. Clarke, W. P., R. T Jacobsen, E. W. Lemmon, S. G. Penoncello, and S. W. Beyerlein, Int. J. Thermophys. 15共6兲, 1289 共1994兲. Cockett, A. H., Proc. R. Soc. London A239, 76 共1957兲. Colwell, R. C. and L. H. Gibson, J. Acoust. Soc. Am. 12, 436 共1941兲. THERMODYNAMIC PROPERTIES OF AIR Colwell, R. C., A. W. Friend, and D. A. McGraw, J. Franklin Inst. 225, 579 共1938兲. Cox, J. D., D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics 共Hemisphere, New York, 1989兲. Crain, R. W., Jr. and R. Sonntag, Adv. Cryo. Eng. 11, 379 共1966兲. Deiters, U. K. and K. M. de Reuck, Pure Appl. Chem. 69共6兲, 1237 共1997兲. Din, F., Trans. Faraday Soc. 56, 668 共1960兲. Din, F., Thermodynamic Functions of Gases, Volume 1: Ammonia, Carbon Dioxide, and Carbon Monoxide; Volume 2: Air, Acetylene, Ethylene, Propane and Argon, Volume 3. Ethane, Methane, and Nitrogen 共Butterworths, London, 1962兲. Dodge, B. F. and A. K. Dunbar, J. Am. Chem. Soc. 49, 591 共1927兲. Duncan, A. G. and L. A. K. Staveley, Trans. Faraday Soc. 62, 548 共1966兲. Elshayal, I. M. and B. C.-Y. Lu, Can. J. Chem. Eng. 53, 83 共1975兲. Eucken, A., Phys. Z. 14, 324 共1913兲. Eucken, A. and F. Hauck, Z. Phys. Chem. 134, 161 共1928兲. Ewing, M. B. and A. R. H. Goodwin, J. Chem. Thermodyn. 25, 423 共1993兲. Fastovskii, V. G. and Yu. V. Petrovskii, Russ. J. Phys. Chem. 29, 1311 共1955兲. Fastovskii, V. G. and Yu. V. Petrovskii, Russ. J. Phys. Chem. 30, 76 共1956兲. Fastovskii, V. G. and Yu. V. Petrovskii, Russ. J. Phys. Chem. 31, 836 共1957兲. Friedman, A. S., J. Res. Natl. Bur. Stand. 58共2兲, 93 共1957兲. Friend, D. G., NIST Standard Reference Database 12, NIST Thermophysical Properties of Pure Fluids, Version 3.0 共National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 1992兲. Funada, I., S. Yoshimura, H. Masuoka, and M. Yorizane, Adv. Cryo. Eng. 27, 893 共1982兲. Giacomo, P., Metrologia 18, 33 共1982兲. Hardy, H. C., D. Telfair, and W. H. Peilemeier, J. Acoust. Soc. Am. 13, 226 共1942兲. Haynes, W. M., E. W. Lemmon, R. T Jacobsen, and D. G. Friend, Rev. High Pressure Sci. Technol. 7, 1171 共1998兲. Henry, P. S. H., Proc. R. Soc. London A133, 492 共1931兲. Hilsenrath, J., Tables of Thermal Properties of Gases; Chapter 2: The Thermodynamic Properties of Air; Chapter 7: The Thermodynamic Properties of Nitrogen, NBS Circular 564 共1955兲. Hilsenrath, J. and M. Klein, Tables of Thermodynamic Properties of Air in Chemical Equilibrium Including Second Virial Corrections from 1500 °K to 15000 °K 共National Bureau of Standards, Gaithersburg, 1965兲, AEDC-TR-65-58. Hiza, M. J., A. J. Kidnay, and W. M. Haynes, Int. J. Thermophys. 共submitted 1999兲. Holborn, L. and M. Jakob, J. Soc. German Eng. 61, 146 共1917兲. Holborn, L. and H. Schultze, Ann. Phys. 47, 1089 共1915兲. Holst, G. and L. Hamburger, Z. Phys. Chem. 91, 513 共1916兲. Howley, J. B., J. W. Magee, and W. M. Haynes, Int. J. Thermophys. 15共5兲, 801 共1994兲. Jacobsen, R. T, W. P. Clarke, S. G. Penoncello, and R. D. McCarty, Int. J. Thermophys. 11共1兲, 169 共1990a兲. Jacobsen, R. T, W. P. Clarke, S. W. Beyerlein, M. F. Rousseau, L. J. Van Poolen, and J. C. Rainwater, Int. J. Thermophys. 11共1兲, 179 共1990b兲. Jacobsen, R. T, S. G. Penoncello, S. W. Beyerlein, W. P. Clarke, and E. W. Lemmon, Fluid Phase Equilib. 79, 113 共1992兲. Jaeschke, M. and H. M. Hinze, Fortschr.-Ber. VDI 3, 262 共1991兲. Jakob, M., Z. Tech. Phys. 4, 460 共1923兲. Jin, Z.-Li, K.-Y. Liu, and W.-W. Sheng, J. Chem. Eng. Data 38, 353 共1993兲. Jones, F. E., J. Res. Natl. Bur. Stand. 83共5兲, 419 共1978兲. Jones, I. W. and J. S. Rowlinson, Trans. Faraday Soc. 59共488兲, 1702 共1963兲. King, F. E. and J. R. Partington, Philos. Mag. 9共60兲, 1020 共1930兲. Klimeck, J., R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 30, 1571 共1998兲. Knaap, H. F. P., M. Knoester, and J. J. M. Beenakker, Physica 27, 309 共1961兲. Kozlov, A., ‘‘Experimental investigation of the specific volumes of air in the 20– 600 °C temperature range and 20–700 bar pressure range,’’ Dissertation for Candidate of Technical Science, Moscow Power Engineering Institute, 1968. Kosov, N. D. and I. S. Brovanov, Inz.-Fiz. Zh. 36共4兲, 627 共1979兲. Kuenen, J. P. and A. L. Clark, Communs. Phys. Lab. Univ. Leiden 150, 55 共1917兲. 361 Kuenen, J. P., T. Verschoyle, and A. T. Van Urk, Proc. R. Acad. Amsterdam 26, 49 共1922兲. Lemmon, E. W., ‘‘A generalized model for the prediction of the thermodynamic properties of mixtures including vapor-liquid equilibrium,’’ Ph.D. dissertation, University of Idaho, Moscow, 1996. Lemmon, E. W., NIST Standard Reference Database 72: NIST Thermophysical Properties of Air and Air Component Mixtures, Version 1.0 共National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 1998兲. Lemmon, E. W. and R. T Jacobsen, Adv. Cryo. Eng. 43, 1281 共1998兲. Lemmon, E. W. and R. T Jacobsen, Int. J. Thermophys. 20, 825 共1999兲. Lemmon, E. W. and R. T Jacobsen, An International Standard Formulation for the Thermodynamic Properties of 1,1,1-Tr; Triflluoroethane (HFC143a) for Temperatures from 161 to 450 K and Pressures to 50 MPa, J. Phys. Chem. Ref. Data. 共in press, 2000兲. Lemmon, E. W. and R. Tillner-Roth, Fluid Phase Equilib. 165, 1 共1999兲. Lemmon, E. W., R. T Jacobsen, and S. W. Beyerlein, Adv. Cryo. Eng. 37, 1107 共1992兲. Levelt Sengers, J. M. H., M. Klein, and J. S. Gallagher, Pressure-VolumeTemperature Relationships of Gases. Virial Coefficients, American Institute of Physics Handbook, 3rd ed. 共McGraw Hill, New York, 1972兲. Lewis, K. L. and L. A. K. Staveley, J. Chem. Thermodyn. 7共9兲, 855 共1975兲. Magee, J. W., Int. J. Thermophys. 15共5兲, 849 共1994兲. Maslennikova, V. Ya., A. N. Egorov, and D. S. Tsiklis, Russ. J. Phys. Chem. 53共6兲, 919 共1979兲. Massengill, D. R. and R. C. Miller, J. Chem. Thermodyn. 5, 207 共1973兲. Michels, A., T. Wassenaar, and G. J. Wolkers, Appl. Sci. Res. 5, 121 共1955兲. Michels, A., T. Wassenaar, and W. van Seventer, Appl. Sci. Res. 4, 52 共1954a兲. Michels, A., T. Wassenaar, J. M. H. Levelt, and W. de Graaf, Appl. Sci. Res. 4, 381 共1954b兲. Michels, A., H. Wouters, and J. DeBoer, Physica 3共7兲, 585 共1936兲. Miller, R. C., A. J. Kidnay, and M. J. Hiza, AIChE J. 19共1兲, 145 共1973兲. Narinskii, G. B., Kislorod 10共3兲, 9 共1957兲. Narinskii, G. B., Russ. J. Phys. Chem. 40共9兲, 1093 共1966兲. Narinskii, G. B., Zh. Fiz. Khim. 43共2兲, 408 共1969兲. Nellis, W. J., A. C. Mitchell, F. H. Ree, M. Ross, N. C. Holmes, R. J. Trainor, and D. J. Erskine, J. Chem. Phys. 95共7兲, 5268 共1991兲. Nesselmann, K., Z. Tech. Phys. 6共4兲, 151 共1925兲. Nowak, P., R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 29, 1137 共1997兲. Olien, N. A., National Bureau of Standards, Boulder 共private communication to R. T Jacobsen, 1987兲. Palavra, A. M., Effect of pressure and temperature on excess properties in the system argon-nitrogen, M. S. thesis, Instituto Superior Tecnico Universidade Tecnica De Lisboa, 1979. Panasiti, M. D., ‘‘Thermophysical properties of air from 60 to 2000 K at pressures up to 2000 MPa,’’ M. S. thesis, University of Idaho, Moscow, 1996. Panasiti, M. D., E. W. Lemmon, S. G. Penoncello, R. T Jacobsen, and D. G. Friend, Int. J. Thermophys. 20共1兲, 217 共1999兲. Parikh, N. C. and J. A. Zollweg, Energy Week Proceedings, Houston, 1997, Vol. 7, p. 58. Peng, D. Y. and D. B. Robinson, Ind. Eng. Chem. Fundam. 15共1兲, 59 共1976兲. Penning, F. M., Communs. Phys. Lab. Univ. Leiden, Number 166 共1923兲. Poferl, D. J., R. A. Svehla, and K. Lewandowski, ‘‘Thermodynamic and Transport Properties of Air and the Combustion Products of Natural Gas and of ASTM-A-1 Fuel with Air,’’ NASA Tech. Note D-5452 共1959兲. Pool, R. A. H., G. Saville, T. M. Herrington, B. D. C. Shields, and L. A. K. Staveley, Trans. Faraday Soc. 58, 1692 共1962兲. Prasad, D. H. L. and D. S. Viswanath, ‘‘Generalized thermodynamic properties of real fluids using molar polarization at the critical temperature as the third parameter,’’ Department of Chemical Engineering, Indian Institute of Science, Bangalore, 1974. Preston-Thomas, H., Metrologia 27, 3 共1990兲. Quigley, T. H., Phys. Rev. 67, 298 共1945兲. Ricardo, A. A., S. F. Barreiros, M. Nunes da Ponte, G. M. N. Albuquerque, and J. C. G. Calado, J. Chem. Thermodyn. 24, 1281 共1992兲. Robertson, S. L. and S. E. Babb, J. Chem. Phys. 50共10兲, 4560 共1969兲. J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 362 LEMMON ET AL. Rogovaya, I. A. and M. G. Kaganer, Russ. J. Phys. Chem. 34共9兲, 917 共1960兲. Romberg, H., VDI-Forsch., Dusseldorf, VDI-Verlag, Number 543 共1971兲. Saji, Y. and T. Okuda, Adv. Cryo. Eng. 10, 209 共1965兲. Saurel, J., J. Recherche CNRS 42, 22 共1958兲. Schmidt, R. and W. Wagner, Fluid Phase Equilib. 19, 175 共1985兲. Shilling, W. G. and J. R. Partington, Philos. Mag. 6共38兲, 920 共1928兲. Smith, J. M. and H. C. Van Ness, Introduction to Chemical Engineering Thermodynamics, 3rd ed. 共McGraw-Hill, New York, 1975兲. Span, R., Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data 共Springer, Berlin, 2000兲. Span, R., E. W. Lemmon, R. T Jacobsen, and W. Wagner, 2000, A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa 共in press, 2000兲, J. Phys. Chem. Ref. Data; Int. J. Thermophys. 14共4兲, 1121 共1998兲. Span, R. and W. Wagner, Int. J. Thermophys. 18共6兲, 1415 共1997兲. Sprow, F. B. and J. M. Prausnitz, AIChE J. 12共4兲, 780 共1966兲. Sychev, V. V., A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, and V. A. Tsymarny, Thermodynamic Properties of Air 共Hemisphere, Washington, 1987兲, Volume 6. Tegeler, C., R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 28共3兲, 779 共1999兲. Thorogood, R. M. and G. G. Haselden, Br. Chem. Eng. 8共9兲, 623 共1963兲. Thorpe, P. L., Trans. Faraday Soc. 64共549兲, 2273 共1968兲. Townsend, P. W., ‘‘Pressure-volume-temperature relationships of binary gaseous mixtures,’’ Ph.D. dissertation, Faculty of Pure Science, Columbia University, New York, 1956. Tucker, W. S., Philos. Mag. 34, 217 共1943兲. U.S. Standard Atmosphere 共U.S. Government Printing, Washington, D.C., 1976兲. Van Itterbeek, A. and W. de Rop, Appl. Sci. Res., Sec. A 6, 21 共1955兲. Van Ness, H. C. and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions with Applications to Phase Equilibria 共McGraw-Hill, New York, 1982兲. Vasserman, A. A. and V. A. Rabinovich, Thermophysical Properties of Liquid Air and its Components, Series of Monographs No. 3 共Israel Program for Scientific Translations, Jerusalem, 1970兲. J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Vasserman, A. A., E. A. Golovskii, E. P. Mitsevich, and V. A. Tsymarnyi, Measurement of the Density of Air at Temperatures of 78 to 190 K up to Pressures of 600 Bars, VINITI Deposition No. 2953 共Odessa Institute of Marine Engineering, Ukraine, 1976兲. Vasserman, A. A., Ya. Z. Kazavchinskii, and V. A. Rabinovich, 1971, Thermophysical Properties of Air and Air Components 共Israel Program Science Translations, Tech. 1971兲, Transl. TT70-50095, 397 pp. Wagner, W., Fortschr.-Ber. VDI, Dusseldorf, VDI-Verlag 3共39兲 共1974兲. Wang, D. I. J., Adv. Cryo. Eng. 3, 294 共1960兲. Waxman, M. and H. Davis, J. Res. Natl. Bur. Stand. 83共5兲, 415 共1978兲. Weishaupt, J., Angew. Chem. B20共12兲, 321 共1948兲. Wilson, G. M., P. M. Silverberg, and M.G. Zellner, Adv. Cryo. Eng. 10, 192 共1965兲. Yorizane, M., S. Yoshimura, H. Masuoka, A. Toyama, Y. Nakako, and I. Funada, Chem. Eng. Sci. 33, 641 共1978兲. Younglove, B. A. and N. V. Frederick, Int. J. Thermophys. 13共6兲, 1033 共1992兲. Zandbergen, P. and J. J. M. Beenakker, Physica 33共2兲, 343 共1967兲. 9. Appendix: Tables of Properties of Air 9.1. Representative Tables of Thermodynamic Properties of Air Properties of air along the dew and bubble-point curves were calculated using pressures from the appropriate ancillary equation at the specified temperature. The density was calculated using the air equation of state for the input temperature and pressure. Dew and bubble-point entries for the isobar tables were calculated using pressure as the input to Eq. 共1兲 to determine the corresponding temperatures. The densities for these entries were calculated using the temperature and pressure as input variables in the equation of state. THERMODYNAMIC PROPERTIES OF AIR 363 TABLE A1. Thermodynamic properties of air on the dew and bubble lines Temperature 共K兲 59.75a 59.75a 60 60 61 61 62 62 63 63 64 64 65 65 66 66 67 67 68 68 69 69 70 70 71 71 72 72 73 73 74 74 75 75 76 76 77 77 78 78 79 79 80 80 81 81 82 82 83 83 84 84 85 85 86 86 87 87 88 88 89 89 90 Pressure 共MPa兲 Density 共mol/dm3兲 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 0.005 265 0.002 43 0.005 55 0.002 58 0.006 80 0.003 27 0.008 27 0.004 11 0.009 99 0.005 12 0.012 00 0.006 33 0.014 32 0.007 76 0.016 99 0.009 44 0.020 04 0.011 42 0.023 52 0.013 71 0.027 46 0.016 37 0.031 91 0.019 43 0.036 91 0.022 93 0.042 50 0.026 92 0.048 73 0.031 44 0.055 66 0.036 55 0.063 33 0.042 28 0.071 79 0.048 70 0.081 09 0.055 86 0.091 29 0.063 81 0.102 45 0.072 61 0.114 62 0.082 32 0.127 85 0.093 00 0.142 21 0.104 71 0.157 75 0.117 51 0.174 53 0.131 47 0.192 62 0.146 65 0.212 07 0.163 12 0.232 95 0.180 94 0.255 31 0.200 18 0.279 22 0.220 91 0.304 75 33.067 0.004 91 33.031 0.005 19 32.888 0.006 47 32.745 0.008 00 32.601 0.009 82 32.457 0.011 95 32.312 0.014 44 32.166 0.017 33 32.020 0.020 66 31.873 0.024 48 31.725 0.028 84 31.576 0.033 79 31.427 0.039 38 31.277 0.045 66 31.126 0.052 70 30.974 0.060 55 30.821 0.069 27 30.668 0.078 92 30.513 0.089 56 30.357 0.101 27 30.200 0.114 10 30.042 0.128 13 29.883 0.143 43 29.722 0.160 06 29.560 0.178 11 29.397 0.197 65 29.232 0.218 75 29.066 0.241 50 28.898 0.265 98 28.729 0.292 28 28.558 0.320 48 28.385 ⫺4713.1 1721.6 ⫺4699.3 1728.6 ⫺4644.3 1756.7 ⫺4589.2 1784.7 ⫺4534.1 1812.5 ⫺4478.9 1840.1 ⫺4423.8 1867.5 ⫺4368.6 1894.7 ⫺4313.4 1921.7 ⫺4258.2 1948.5 ⫺4202.9 1974.9 ⫺4147.6 2001.1 ⫺4092.2 2027.0 ⫺4036.7 2052.6 ⫺3981.2 2077.8 ⫺3925.6 2102.7 ⫺3869.8 2127.2 ⫺3814.0 2151.3 ⫺3758.1 2175.0 ⫺3702.1 2198.3 ⫺3645.9 2221.2 ⫺3589.6 2243.6 ⫺3533.2 2265.5 ⫺3476.6 2286.9 ⫺3419.8 2307.8 ⫺3362.9 2328.1 ⫺3305.8 2347.9 ⫺3248.4 2367.1 ⫺3190.9 2385.8 ⫺3133.1 2403.8 ⫺3075.1 2421.2 ⫺3016.8 70.902 182.97 71.131 182.59 72.041 181.09 72.937 179.66 73.817 178.29 74.684 176.97 75.538 175.71 76.379 174.50 77.208 173.34 78.025 172.22 78.830 171.15 79.624 170.12 80.408 169.13 81.181 168.17 81.944 167.25 82.698 166.36 83.442 165.50 84.178 164.67 84.905 163.87 85.624 163.09 86.334 162.34 87.037 161.61 87.733 160.91 88.421 160.22 89.103 159.56 89.778 158.91 90.447 158.28 91.110 157.67 91.767 157.07 92.418 156.49 93.065 155.92 93.706 34.01 20.80 33.95 20.81 33.73 20.82 33.51 20.84 33.30 20.86 33.09 20.89 32.88 20.91 32.68 20.94 32.49 20.97 32.29 21.00 32.11 21.04 31.92 21.07 31.74 21.11 31.56 21.16 31.39 21.20 31.22 21.25 31.05 21.30 30.89 21.36 30.73 21.41 30.57 21.47 30.41 21.54 30.26 21.60 30.11 21.67 29.97 21.75 29.83 21.82 29.69 21.90 29.55 21.98 29.42 22.07 29.29 22.16 29.16 22.25 29.03 22.34 28.91 55.06 29.22 55.06 29.23 55.06 29.26 55.06 29.30 55.07 29.35 55.08 29.40 55.10 29.46 55.12 29.52 55.15 29.59 55.18 29.66 55.22 29.75 55.27 29.84 55.32 29.93 55.38 30.04 55.44 30.15 55.51 30.28 55.59 30.41 55.68 30.55 55.78 30.70 55.88 30.86 56.00 31.04 56.12 31.22 56.26 31.41 56.40 31.62 56.56 31.84 56.72 32.07 56.90 32.32 57.09 32.58 57.30 32.85 57.52 33.14 57.76 33.45 58.01 1030.3 154.8 1028.3 155.1 1020.3 156.4 1012.2 157.6 1004.0 158.8 995.8 160.0 987.5 161.2 979.1 162.3 970.7 163.4 962.2 164.5 953.7 165.6 945.1 166.7 936.4 167.7 927.7 168.7 918.9 169.7 910.0 170.6 901.1 171.6 892.1 172.5 883.0 173.4 873.9 174.2 864.7 175.1 855.4 175.8 846.1 176.6 836.7 177.4 827.2 178.1 817.6 178.8 808.0 179.4 798.2 180.0 788.4 180.6 778.6 181.2 768.6 181.7 758.5 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 364 TABLE A1. Thermodynamic properties of air on the dew and bubble lines—Continued Temperature 共K兲 90 91 91 92 92 93 93 94 94 95 95 96 96 97 97 98 98 99 99 100 100 101 101 102 102 103 103 104 104 105 105 106 106 107 107 108 108 109 109 110 110 111 111 112 112 113 113 114 114 115 115 116 116 117 117 118 118 119 119 120 120 121 121 Pressure 共MPa兲 Density 共mol/dm3兲 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 0.243 20 0.331 96 0.267 12 0.360 91 0.292 73 0.391 66 0.320 11 0.424 29 0.349 34 0.458 86 0.380 47 0.495 43 0.413 59 0.534 08 0.448 78 0.574 86 0.486 09 0.617 86 0.525 62 0.663 13 0.567 42 0.710 74 0.611 59 0.760 77 0.658 20 0.813 29 0.707 32 0.868 36 0.759 03 0.926 06 0.813 41 0.986 45 0.870 55 1.049 61 0.930 52 1.115 61 0.993 40 1.184 53 1.059 28 1.256 42 1.128 24 1.331 38 1.200 36 1.409 47 1.275 74 1.490 77 1.354 45 1.575 34 1.436 60 1.663 27 1.522 26 1.754 62 1.611 54 1.849 47 1.704 52 1.947 89 1.801 32 2.049 95 1.902 02 2.155 73 2.006 74 2.265 29 2.115 60 0.350 68 28.210 0.382 98 28.033 0.417 47 27.854 0.454 26 27.673 0.493 45 27.489 0.535 17 27.304 0.579 53 27.115 0.626 67 26.924 0.676 71 26.730 0.729 80 26.533 0.786 09 26.333 0.845 75 26.130 0.908 95 25.923 0.975 87 25.713 1.0467 25.499 1.1217 25.281 1.2011 25.058 1.2852 24.831 1.3742 24.598 1.4684 24.361 1.5682 24.118 1.6740 23.868 1.7862 23.613 1.9053 23.350 2.0318 23.080 2.1664 22.801 2.3097 22.514 2.4625 22.217 2.6259 21.908 2.8009 21.588 2.9889 21.253 3.1913 2437.9 ⫺2958.2 2454.0 ⫺2899.4 2469.3 ⫺2840.2 2484.0 ⫺2780.8 2497.9 ⫺2720.9 2511.0 ⫺2660.8 2523.3 ⫺2600.2 2534.8 ⫺2539.2 2545.4 ⫺2477.8 2555.2 ⫺2416.0 2564.0 ⫺2353.6 2571.9 ⫺2290.8 2578.8 ⫺2227.4 2584.6 ⫺2163.4 2589.4 ⫺2098.9 2593.0 ⫺2033.7 2595.5 ⫺1967.8 2596.7 ⫺1901.2 2596.6 ⫺1833.8 2595.1 ⫺1765.6 2592.2 ⫺1696.5 2587.7 ⫺1626.4 2581.7 ⫺1555.4 2573.8 ⫺1483.2 2564.2 ⫺1409.9 2552.5 ⫺1335.2 2538.7 ⫺1259.2 2522.7 ⫺1181.6 2504.0 ⫺1102.4 2482.7 ⫺1021.2 2458.3 ⫺937.90 2430.6 155.36 94.342 154.82 94.974 154.29 95.602 153.77 96.225 153.26 96.845 152.75 97.461 152.26 98.074 151.78 98.684 151.30 99.291 150.83 99.896 150.36 100.50 149.90 101.10 149.44 101.70 148.99 102.29 148.54 102.89 148.10 103.49 147.65 104.08 147.21 104.68 146.77 105.27 146.33 105.87 145.89 106.47 145.45 107.06 145.00 107.67 144.55 108.27 144.10 108.88 143.64 109.49 143.18 110.11 142.70 110.73 142.22 111.36 141.73 112.00 141.22 112.65 140.70 22.44 28.79 22.54 28.68 22.64 28.56 22.74 28.45 22.85 28.35 22.96 28.24 23.08 28.14 23.20 28.04 23.32 27.95 23.44 27.86 23.57 27.77 23.70 27.68 23.83 27.60 23.97 27.53 24.11 27.45 24.26 27.38 24.41 27.32 24.56 27.26 24.72 27.20 24.89 27.15 25.06 27.10 25.23 27.06 25.42 27.03 25.61 27.00 25.81 26.98 26.01 26.97 26.23 26.96 26.46 26.97 26.70 26.98 26.96 27.01 27.23 27.05 27.51 33.77 58.28 34.11 58.57 34.47 58.87 34.85 59.20 35.26 59.55 35.68 59.93 36.13 60.33 36.61 60.76 37.12 61.22 37.65 61.71 38.23 62.23 38.83 62.80 39.48 63.40 40.18 64.05 40.92 64.75 41.71 65.51 42.57 66.32 43.49 67.21 44.49 68.16 45.57 69.20 46.75 70.34 48.04 71.58 49.45 72.95 51.01 74.46 52.73 76.13 54.64 78.00 56.79 80.09 59.21 82.46 61.96 85.16 65.10 88.28 68.74 91.92 72.99 182.2 748.4 182.6 738.2 183.1 727.9 183.5 717.5 183.8 707.0 184.2 696.5 184.5 685.8 184.7 675.0 184.9 664.2 185.1 653.3 185.3 642.2 185.4 631.1 185.5 619.8 185.6 608.5 185.6 597.1 185.5 585.5 185.5 573.9 185.4 562.1 185.2 550.2 185.1 538.2 184.9 526.1 184.6 513.9 184.3 501.5 184.0 489.0 183.6 476.3 183.2 463.5 182.7 450.5 182.2 437.3 181.7 423.9 181.1 410.2 180.4 396.3 179.8 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 THERMODYNAMIC PROPERTIES OF AIR 365 TABLE A1. Thermodynamic properties of air on the dew and bubble lines—Continued Temperature 共K兲 122 122 123 123 124 124 125 125 126 126 127 127 128 128 129 129 130 130 131 131 132 132 132.6312b a Pressure 共MPa兲 Density 共mol/dm3兲 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 2.378 71 2.228 71 2.496 04 2.346 20 2.617 34 2.468 23 2.742 67 2.594 95 2.872 07 2.726 56 3.005 54 2.863 31 3.143 06 3.005 51 3.284 48 3.153 61 3.429 47 3.308 35 3.576 98 3.471 16 3.722 84 3.646 25 3.785 02 20.903 3.4103 20.534 3.6481 20.144 3.9078 19.727 4.1934 19.278 4.5101 18.788 4.8653 18.242 5.2697 17.616 5.7405 16.863 6.3074 15.869 7.0343 14.198 8.1273 10.4477 ⫺852.17 2399.1 ⫺763.63 2363.3 ⫺671.82 2322.6 ⫺576.07 2276.3 ⫺475.47 2223.2 ⫺368.72 2161.9 ⫺253.75 2090.3 ⫺127.06 2004.9 18.109 1899.9 198.35 1763.0 478.83 1553.9 1111.3 113.31 140.16 113.98 139.59 114.68 139.00 115.40 138.38 116.15 137.71 116.93 137.00 117.78 136.22 118.70 135.34 119.76 134.33 121.07 133.10 123.13 131.33 127.87 27.11 27.82 27.19 28.16 27.30 28.52 27.44 28.91 27.62 29.34 27.85 29.83 28.17 30.37 28.61 30.99 29.24 31.73 30.27 32.62 32.34 33.81 35.26 96.23 78.02 101.4 84.05 107.8 91.43 115.9 100.6 126.5 112.4 140.9 128.0 161.9 149.6 195.2 181.3 256.2 232.6 401.5 329.9 1015. 598.0 2196. 382.0 179.1 367.4 178.3 352.3 177.5 336.7 176.7 320.4 175.8 303.2 174.9 285.0 174.0 265.4 173.0 243.7 171.9 219.1 170.8 189.1 169.4 168.0 Solidification point. Maxcondentherm. b J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 366 TABLE A2. Thermodynamic properties of air Temperature 共K兲 59.77 60 62 64 66 68 70 72 74 76 78 78.90 81.72 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 155 160 165 170 175 180 185 190 195 200 210 220 230 240 Density 共mol/dm3兲 Internal energy 共J/mol兲 Enthalpy 共J/mol兲 33.069 33.036 32.750 32.462 32.171 31.878 31.581 31.281 30.978 30.670 30.358 30.215 0.155 27 0.154 67 0.150 53 0.146 63 0.142 95 0.139 47 0.136 17 0.133 03 0.130 05 0.127 21 0.124 49 0.121 90 0.119 42 0.117 04 0.114 76 0.112 57 0.110 47 0.108 44 0.106 49 0.104 62 0.102 81 0.101 06 0.099 377 0.097 748 0.096 174 0.094 650 0.093 175 0.091 747 0.090 363 0.089 021 0.087 718 0.086 455 0.085 227 0.084 035 0.082 877 0.081 750 0.079 065 0.076 553 0.074 198 0.071 985 0.069 902 0.067 937 0.066 081 0.064 324 0.062 659 0.061 079 0.058 147 0.055 486 0.053 059 0.050 836 ⫺4713.1 ⫺4700.3 ⫺4590.2 ⫺4480.1 ⫺4369.9 ⫺4259.7 ⫺4149.3 ⫺4038.7 ⫺3927.9 ⫺3816.7 ⫺3705.2 ⫺3654.7 1628.3 1634.6 1679.4 1723.8 1767.9 1811.7 1855.4 1898.8 1942.1 1985.2 2028.2 2071.0 2113.8 2156.4 2199.0 2241.5 2284.0 2326.3 2368.6 2410.9 2453.1 2495.3 2537.4 2579.5 2621.5 2663.5 2705.5 2747.5 2789.4 2831.3 2873.2 2915.1 2956.9 2998.7 3040.5 3082.3 3186.8 3291.1 3395.4 3499.6 3603.8 3707.9 3812.0 3916.0 4020.0 4124.0 4331.9 4539.8 4747.6 4955.4 0.101 325 MPa isobar ⫺4710.0 70.905 ⫺4697.2 71.119 ⫺4587.1 72.924 ⫺4477.0 74.672 ⫺4366.8 76.367 ⫺4256.5 78.013 ⫺4146.1 79.614 ⫺4035.5 81.172 ⫺3924.6 82.691 ⫺3813.4 84.173 ⫺3701.9 85.622 ⫺3651.4 86.266 2280.9 160.41 2289.8 160.52 2352.5 161.28 2414.8 162.01 2476.7 162.72 2538.2 163.41 2599.5 164.09 2660.4 164.74 2721.2 165.38 2781.7 166.00 2842.1 166.61 2902.2 167.21 2962.3 167.79 3022.2 168.36 3082.0 168.92 3141.6 169.47 3201.2 170.01 3260.7 170.53 3320.1 171.05 3379.4 171.56 3438.7 172.05 3497.8 172.54 3557.0 173.02 3616.0 173.50 3675.1 173.96 3734.0 174.42 3793.0 174.87 3851.9 175.31 3910.7 175.75 3969.5 176.18 4028.3 176.60 4087.1 177.02 4145.8 177.43 4204.5 177.83 4263.1 178.23 4321.8 178.62 4468.3 179.59 4614.7 180.51 4761.0 181.41 4907.2 182.29 5053.3 183.13 5199.3 183.96 5345.3 184.76 5491.2 185.54 5637.1 186.29 5782.9 187.03 6074.5 188.45 6365.9 189.81 6657.3 191.11 6948.6 192.35 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 34.01 33.96 33.52 33.09 32.69 32.30 31.92 31.56 31.22 30.89 30.57 30.43 21.73 21.71 21.58 21.48 21.40 21.33 21.27 21.22 21.17 21.13 21.09 21.06 21.03 21.01 20.98 20.96 20.94 20.93 20.91 20.90 20.89 20.87 20.86 20.85 20.84 20.84 20.83 20.82 20.82 20.81 20.81 20.80 20.80 20.79 20.79 20.78 20.78 20.77 20.76 20.76 20.75 20.75 20.75 20.75 20.75 20.74 20.74 20.74 20.74 20.75 55.05 55.05 55.05 55.07 55.11 55.17 55.25 55.37 55.51 55.68 55.88 55.99 31.56 31.52 31.26 31.04 30.85 30.69 30.55 30.42 30.32 30.22 30.13 30.05 29.98 29.92 29.86 29.81 29.76 29.72 29.68 29.64 29.61 29.58 29.55 29.52 29.50 29.48 29.45 29.43 29.42 29.40 29.38 29.37 29.35 29.34 29.33 29.32 29.29 29.27 29.25 29.23 29.22 29.20 29.19 29.18 29.17 29.16 29.15 29.14 29.13 29.13 1030.6 1028.8 1012.6 996.3 979.6 962.7 945.5 928.1 910.4 892.3 874.0 865.6 177.2 177.5 180.0 182.4 184.8 187.1 189.4 191.7 193.9 196.1 198.2 200.3 202.4 204.5 206.5 208.6 210.5 212.5 214.5 216.4 218.3 220.2 222.1 223.9 225.8 227.6 229.4 231.2 232.9 234.7 236.4 238.2 239.9 241.6 243.3 244.9 249.1 253.1 257.1 261.1 264.9 268.7 272.5 276.2 279.8 283.4 290.5 297.4 304.1 310.7 THERMODYNAMIC PROPERTIES OF AIR 367 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 59.78 60 62 64 66 68 70 72 74 76 78 80 82 84 85.39 87.99 88 90 92 94 96 98 100 102 104 106 Density 共mol/dm3兲 Internal energy 共J/mol兲 0.048 793 0.046 908 0.045 164 0.043 546 0.042 040 0.040 634 0.039 320 0.038 089 0.036 932 0.035 844 0.034 818 0.033 850 0.032 933 0.032 066 0.031 243 0.030 461 0.027 074 0.024 365 0.022 149 0.020 303 0.018 742 0.017 403 0.016 243 0.015 228 0.013 536 0.012 183 0.011 075 0.010 153 0.009 372 0.008 703 0.008 122 0.007 615 0.007 167 0.006 769 0.006 413 0.006 092 5163.2 5371.1 5578.9 5786.8 5994.8 6203.0 6411.2 6619.5 6828.1 7036.8 7245.7 7454.9 7664.3 7874.0 8084.0 8294.3 9351.8 10 421.0 11 503.0 12 602.0 13 717.0 14 849.0 15 999.0 17 166.0 19 549.0 21 994.0 24 494.0 27 042.0 29 633.0 32 261.0 34 922.0 37 612.0 40 329.0 43 069.0 45 830.0 48 610.0 33.072 33.041 32.756 32.468 32.177 31.884 31.588 31.288 30.985 30.678 30.366 30.050 29.728 29.400 29.168 0.292 03 0.291 99 0.284 13 0.276 75 0.269 81 0.263 27 0.257 08 0.251 21 0.245 64 0.240 33 0.235 27 ⫺4712.9 ⫺4701.0 ⫺4591.0 ⫺4481.0 ⫺4370.9 ⫺4260.7 ⫺4150.3 ⫺4039.8 ⫺3929.1 ⫺3818.0 ⫺3706.5 ⫺3594.7 ⫺3482.3 ⫺3369.2 ⫺3290.4 1718.8 1719.0 1765.8 1812.1 1857.9 1903.2 1948.2 1993.0 2037.4 2081.6 2125.6 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 7239.9 193.53 7531.1 194.68 7822.4 195.78 8113.7 196.84 8405.1 197.86 8696.5 198.85 8988.1 199.80 9279.8 200.73 9571.6 201.63 9863.6 202.50 10 156.0 203.34 10 448.0 204.17 10 741.0 204.97 11 034.0 205.75 11 327.0 206.51 11 621.0 207.26 13 094.0 210.73 14 579.0 213.86 16 078.0 216.71 17 592.0 219.35 19 123.0 221.80 20 671.0 224.09 22 237.0 226.25 23 820.0 228.30 27 035.0 232.08 30 311.0 235.53 33 642.0 238.71 37 022.0 241.65 40 444.0 244.39 43 904.0 246.95 47 397.0 249.36 50 919.0 251.63 54 466.0 253.79 58 038.0 255.83 61 630.0 257.77 65 242.0 259.62 0.2 MPa isobar ⫺4706.8 70.908 ⫺4695.0 71.106 ⫺4584.9 72.911 ⫺4474.8 74.659 ⫺4364.6 76.353 ⫺4254.4 77.999 ⫺4144.0 79.599 ⫺4033.4 81.157 ⫺3922.6 82.675 ⫺3811.5 84.157 ⫺3700.0 85.605 ⫺3588.0 87.022 ⫺3475.5 88.411 ⫺3362.4 89.773 ⫺3283.6 90.705 2403.6 156.49 2403.9 156.50 2469.7 157.24 2534.8 157.95 2599.1 158.64 2662.9 159.32 2726.2 159.97 2789.1 160.60 2851.6 161.22 2913.8 161.83 2975.7 162.42 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 20.75 20.76 20.76 20.77 20.78 20.80 20.81 20.83 20.85 20.87 20.89 20.92 20.94 20.97 21.01 21.04 21.25 21.50 21.80 22.13 22.47 22.82 23.17 23.51 24.15 24.73 25.25 25.70 26.10 26.45 26.76 27.04 27.29 27.51 27.71 27.90 29.13 29.13 29.13 29.13 29.14 29.15 29.16 29.18 29.19 29.21 29.23 29.26 29.28 29.31 29.34 29.38 29.58 29.83 30.13 30.45 30.79 31.14 31.48 31.82 32.47 33.05 33.57 34.02 34.42 34.77 35.08 35.35 35.60 35.82 36.03 36.21 317.1 323.4 329.6 335.6 341.5 347.4 353.1 358.7 364.2 369.7 375.0 380.3 385.4 390.5 395.5 400.5 424.2 446.4 467.3 487.1 505.9 523.9 541.2 557.8 589.6 619.6 648.1 675.5 701.7 727.0 751.5 775.2 798.2 820.5 842.3 863.5 34.01 33.96 33.52 33.10 32.69 32.30 31.93 31.57 31.22 30.89 30.57 30.27 29.97 29.69 29.50 22.25 22.24 22.05 21.90 21.77 21.66 21.57 21.49 21.42 21.36 21.30 55.05 55.04 55.04 55.06 55.10 55.16 55.24 55.35 55.49 55.65 55.86 56.10 56.38 56.71 56.98 33.14 33.14 32.70 32.33 32.03 31.77 31.54 31.34 31.17 31.01 30.87 1031.0 1029.3 1013.2 996.8 980.2 963.3 946.1 928.7 911.0 893.0 874.7 856.1 837.2 817.8 804.2 181.2 181.2 183.8 186.3 188.7 191.1 193.5 195.8 198.0 200.3 202.4 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 368 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 155 160 165 170 175 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 Density 共mol/dm3兲 Internal energy 共J/mol兲 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 0.230 44 0.225 83 0.221 41 0.217 17 0.213 11 0.209 20 0.205 45 0.201 83 0.198 35 0.194 99 0.191 75 0.188 63 0.185 61 0.182 68 0.179 86 0.177 12 0.174 47 0.171 90 0.169 40 0.166 98 0.164 63 0.162 35 0.156 93 0.151 86 0.147 12 0.142 67 0.138 49 0.134 55 0.130 83 0.127 32 0.124 00 0.120 84 0.115 00 0.109 70 0.104 87 0.100 46 0.096 399 0.092 660 0.089 203 0.085 996 0.083 012 0.080 230 0.077 629 0.075 193 0.072 905 0.070 753 0.068 725 0.066 810 0.064 999 0.063 285 0.061 658 0.060 114 0.053 424 0.048 077 0.043 704 0.040 061 0.036 980 0.034 338 0.032 049 0.030 047 0.026 709 0.024 039 0.021 855 2169.4 2213.0 2256.5 2299.9 2343.1 2386.2 2429.2 2472.2 2515.0 2557.8 2600.4 2643.0 2685.6 2728.1 2770.5 2812.9 2855.3 2897.6 2939.8 2982.1 3024.3 3066.4 3171.7 3276.8 3381.8 3486.6 3591.4 3696.0 3800.6 3905.1 4009.5 4113.9 4322.5 4531.0 4739.3 4947.6 5155.9 5364.1 5572.3 5780.6 5988.9 6197.2 6405.7 6614.3 6823.0 7032.0 7241.1 7450.4 7660.0 7869.9 8080.0 8290.5 9348.5 10 418.0 11 501.0 12 600.0 13 715.0 14 847.0 15 997.0 17 164.0 19 548.0 21 993.0 24 493.0 3037.3 3098.7 3159.8 3220.8 3281.6 3342.2 3402.7 3463.1 3523.3 3583.4 3643.4 3703.3 3763.2 3822.9 3882.5 3942.1 4001.6 4061.1 4120.5 4179.8 4239.1 4298.3 4446.2 4593.8 4741.2 4888.5 5035.5 5182.4 5329.2 5475.9 5622.5 5768.9 6061.7 6354.2 6646.4 6938.6 7230.6 7522.5 7814.4 8106.3 8398.1 8690.1 8982.0 9274.1 9566.3 9858.7 10 151.0 10 444.0 10 737.0 11 030.0 11 324.0 11 618.0 13 092.0 14 578.0 16 077.0 17 592.0 19 123.0 20 672.0 22 238.0 23 821.0 27 036.0 30 313.0 33 644.0 162.99 163.55 164.11 164.65 165.17 165.69 166.20 166.70 167.19 167.67 168.14 168.61 169.06 169.51 169.95 170.39 170.82 171.24 171.65 172.06 172.47 172.86 173.83 174.77 175.68 176.56 177.41 178.24 179.04 179.82 180.59 181.33 182.76 184.12 185.42 186.66 187.85 189.00 190.10 191.16 192.18 193.17 194.13 195.06 195.96 196.83 197.68 198.50 199.31 200.09 200.85 201.59 205.07 208.20 211.06 213.69 216.14 218.44 220.60 222.64 226.43 229.88 233.05 21.26 21.21 21.17 21.14 21.11 21.08 21.06 21.03 21.01 20.99 20.97 20.96 20.94 20.93 20.92 20.90 20.89 20.88 20.87 20.87 20.86 20.85 20.83 20.82 20.81 20.80 20.79 20.78 20.78 20.77 20.77 20.77 20.76 20.76 20.76 20.76 20.76 20.77 20.77 20.78 20.79 20.80 20.82 20.83 20.85 20.87 20.90 20.92 20.95 20.98 21.01 21.04 21.25 21.51 21.80 22.13 22.47 22.82 23.17 23.51 24.15 24.73 25.25 30.75 30.64 30.53 30.44 30.36 30.28 30.21 30.14 30.08 30.03 29.98 29.93 29.89 29.85 29.81 29.77 29.74 29.71 29.68 29.65 29.63 29.60 29.55 29.50 29.46 29.43 29.40 29.37 29.35 29.32 29.31 29.29 29.26 29.24 29.22 29.21 29.20 29.19 29.19 29.19 29.19 29.20 29.20 29.21 29.23 29.24 29.26 29.29 29.31 29.34 29.37 29.40 29.59 29.84 30.14 30.46 30.80 31.14 31.49 31.83 32.47 33.05 33.57 204.6 206.7 208.8 210.9 212.9 214.9 216.9 218.8 220.8 222.7 224.6 226.5 228.3 230.1 232.0 233.8 235.5 237.3 239.1 240.8 242.5 244.2 248.4 252.6 256.6 260.6 264.5 268.4 272.2 275.9 279.6 283.2 290.4 297.3 304.0 310.7 317.1 323.4 329.6 335.7 341.6 347.5 353.2 358.8 364.4 369.8 375.2 380.4 385.6 390.7 395.7 400.7 424.4 446.6 467.5 487.3 506.1 524.1 541.4 558.1 589.8 619.8 648.3 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 THERMODYNAMIC PROPERTIES OF AIR 369 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 1200 1300 1400 1500 1600 1700 1800 1900 2000 59.84 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 96.12 98.36 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 155 160 165 170 175 Density 共mol/dm3兲 Internal energy 共J/mol兲 0.020 034 0.018 494 0.017 173 0.016 029 0.015 027 0.014 144 0.013 358 0.012 656 0.012 023 27 041.0 29 632.0 32 261.0 34 922.0 37 612.0 40 329.0 43 069.0 45 830.0 48 610.0 33.080 33.057 32.772 32.485 32.195 31.903 31.608 31.309 31.007 30.701 30.391 30.076 29.755 29.429 29.096 28.756 28.408 28.051 27.683 27.304 27.281 0.695 38 0.678 71 0.659 81 0.642 25 0.625 86 0.610 51 0.596 06 0.582 43 0.569 54 0.557 31 0.545 69 0.534 63 0.524 08 0.514 00 0.504 35 0.495 11 0.486 25 0.477 73 0.469 55 0.461 67 0.454 08 0.446 76 0.439 69 0.432 87 0.426 28 0.419 89 0.413 72 0.399 10 0.385 55 0.372 95 0.361 19 0.350 19 ⫺4712.3 ⫺4703.4 ⫺4593.5 ⫺4483.6 ⫺4373.6 ⫺4263.6 ⫺4153.5 ⫺4043.1 ⫺3932.6 ⫺3821.7 ⫺3710.5 ⫺3598.9 ⫺3486.8 ⫺3374.0 ⫺3260.7 ⫺3146.5 ⫺3031.4 ⫺2915.2 ⫺2797.8 ⫺2679.0 ⫺2671.8 1830.0 1872.9 1924.1 1974.2 2023.5 2072.0 2120.0 2167.4 2214.4 2260.9 2307.1 2352.9 2398.5 2443.8 2488.9 2533.8 2578.4 2622.9 2667.2 2711.3 2755.3 2799.2 2843.0 2886.6 2930.2 2973.6 3017.0 3125.0 3232.6 3339.8 3446.6 3553.2 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 37 024.0 235.99 40 447.0 238.73 43 906.0 241.30 47 399.0 243.71 50 921.0 245.98 54 469.0 248.13 58 040.0 250.17 61 633.0 252.12 65 245.0 253.97 0.5 MPa isobar ⫺4697.1 70.919 ⫺4688.2 71.067 ⫺4578.2 72.871 ⫺4468.2 74.618 ⫺4358.1 76.311 ⫺4247.9 77.956 ⫺4137.6 79.554 ⫺4027.2 81.111 ⫺3916.4 82.627 ⫺3805.4 84.108 ⫺3694.1 85.554 ⫺3582.3 86.969 ⫺3469.9 88.356 ⫺3357.1 89.716 ⫺3243.5 91.052 ⫺3129.1 92.367 ⫺3013.8 93.663 ⫺2897.4 94.942 ⫺2779.8 96.207 ⫺2660.7 97.460 ⫺2653.4 97.535 2549.0 151.13 2609.6 151.74 2681.9 152.45 2752.7 153.14 2822.4 153.80 2891.0 154.45 2958.8 155.07 3025.9 155.67 3092.3 156.26 3158.1 156.83 3223.4 157.39 3288.2 157.93 3352.6 158.47 3416.6 158.99 3480.3 159.50 3543.6 160.00 3606.7 160.48 3669.5 160.96 3732.0 161.43 3794.4 161.90 3856.5 162.35 3918.4 162.80 3980.1 163.23 4041.7 163.66 4103.1 164.09 4164.4 164.50 4225.5 164.91 4377.8 165.91 4529.4 166.88 4680.4 167.80 4830.9 168.70 4981.0 169.57 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 25.70 26.10 26.45 26.76 27.04 27.29 27.51 27.71 27.90 34.02 34.42 34.77 35.08 35.35 35.60 35.82 36.03 36.21 675.7 701.9 727.2 751.7 775.4 798.3 820.7 842.5 863.7 34.01 33.98 33.54 33.11 32.71 32.32 31.94 31.59 31.24 30.91 30.59 30.28 29.99 29.70 29.43 29.17 28.92 28.68 28.46 28.24 28.23 23.36 23.07 22.79 22.56 22.37 22.21 22.07 21.95 21.85 21.76 21.68 21.61 21.54 21.48 21.43 21.38 21.34 21.30 21.26 21.23 21.20 21.17 21.14 21.12 21.10 21.08 21.06 21.02 20.98 20.95 20.93 20.90 55.02 55.02 55.01 55.02 55.06 55.11 55.19 55.30 55.43 55.59 55.79 56.02 56.29 56.61 56.98 57.41 57.91 58.49 59.15 59.92 59.98 37.31 36.53 35.75 35.11 34.57 34.10 33.70 33.35 33.04 32.77 32.52 32.30 32.10 31.92 31.75 31.60 31.46 31.34 31.22 31.11 31.01 30.91 30.83 30.75 30.67 30.60 30.53 30.39 30.26 30.15 30.05 29.97 1032.1 1030.8 1014.7 998.4 981.9 965.1 948.0 930.7 913.1 895.2 877.0 858.5 839.7 820.5 801.0 781.0 760.6 739.8 718.4 696.5 695.2 185.0 187.4 190.3 193.0 195.7 198.2 200.7 203.2 205.5 207.9 210.1 212.4 214.6 216.7 218.8 220.9 223.0 225.0 227.0 229.0 230.9 232.8 234.7 236.6 238.4 240.3 242.1 246.5 250.9 255.1 259.3 263.4 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 370 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 59.93 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 Density 共mol/dm3兲 Internal energy 共J/mol兲 0.339 87 0.330 17 0.321 04 0.312 41 0.304 25 0.289 19 0.275 59 0.263 25 0.251 99 0.241 67 0.232 18 0.223 42 0.215 31 0.207 77 0.200 75 0.194 20 0.188 06 0.182 31 0.176 89 0.171 80 0.166 99 0.162 45 0.158 15 0.154 07 0.150 20 0.133 45 0.120 07 0.109 14 0.100 04 0.092 347 0.085 752 0.080 038 0.075 038 0.066 707 0.060 042 0.054 589 0.050 045 0.046 199 0.042 902 0.040 045 0.037 544 0.035 338 0.033 377 0.031 621 0.030 042 3659.5 3765.6 3871.5 3977.3 4082.9 4293.7 4504.0 4714.1 4923.9 5133.4 5342.9 5552.2 5761.4 5970.6 6179.8 6389.1 6598.4 6807.8 7017.3 7227.0 7436.9 7647.0 7857.3 8067.9 8278.8 9338.5 10 409.0 11 494.0 12 593.0 13 709.0 14 842.0 15 993.0 17 160.0 19 545.0 21 990.0 24 491.0 27 039.0 29 631.0 32 259.0 34 921.0 37 611.0 40 328.0 43 068.0 45 829.0 48 610.0 33.094 33.083 32.800 32.514 32.225 31.934 31.641 31.344 31.044 30.740 30.431 30.119 29.801 29.478 29.148 28.812 28.467 ⫺4711.2 ⫺4707.2 ⫺4597.6 ⫺4487.9 ⫺4378.2 ⫺4268.5 ⫺4158.6 ⫺4048.6 ⫺3938.4 ⫺3827.9 ⫺3717.0 ⫺3605.8 ⫺3494.2 ⫺3381.9 ⫺3269.1 ⫺3155.5 ⫺3041.1 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Enthalpy 共J/mol兲 5130.6 5280.0 5429.0 5577.7 5726.2 6022.6 6318.3 6613.4 6908.1 7202.4 7496.4 7790.1 8083.7 8377.1 8670.5 8963.8 9257.1 9550.4 9843.9 10 137.0 10 431.0 10 725.0 11 019.0 11 313.0 11 608.0 13 085.0 14 573.0 16 075.0 17 591.0 19 123.0 20 673.0 22 240.0 23 823.0 27 040.0 30 318.0 33 650.0 37 030.0 40 453.0 43 914.0 47 407.0 50 929.0 54 477.0 58 049.0 61 641.0 65 254.0 1.0 MPa isobar ⫺4681.0 ⫺4677.0 ⫺4567.1 ⫺4457.2 ⫺4347.2 ⫺4237.2 ⫺4127.0 ⫺4016.7 ⫺3906.1 ⫺3795.3 ⫺3684.2 ⫺3572.6 ⫺3460.6 ⫺3348.0 ⫺3234.8 ⫺3120.8 ⫺3005.9 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 170.42 171.24 172.03 172.80 173.55 175.00 176.38 177.69 178.94 180.14 181.30 182.41 183.47 184.50 185.50 186.46 187.39 188.29 189.17 190.02 190.85 191.65 192.44 193.20 193.95 197.43 200.56 203.42 206.06 208.52 210.81 212.97 215.02 218.81 222.26 225.43 228.37 231.11 233.68 236.09 238.36 240.51 242.55 244.50 246.35 20.89 20.87 20.86 20.85 20.84 20.82 20.81 20.80 20.80 20.80 20.80 20.80 20.81 20.81 20.82 20.84 20.85 20.87 20.89 20.91 20.93 20.96 20.99 21.02 21.06 21.26 21.51 21.81 22.13 22.47 22.82 23.17 23.51 24.15 24.74 25.25 25.71 26.10 26.46 26.76 27.04 27.29 27.51 27.71 27.90 29.90 29.83 29.78 29.72 29.68 29.60 29.54 29.49 29.45 29.41 29.39 29.37 29.35 29.34 29.33 29.33 29.33 29.34 29.35 29.36 29.37 29.39 29.41 29.44 29.47 29.65 29.89 30.17 30.48 30.82 31.16 31.51 31.84 32.48 33.06 33.57 34.03 34.42 34.77 35.08 35.36 35.60 35.83 36.03 36.21 267.4 271.3 275.1 278.9 282.6 289.9 297.0 303.9 310.6 317.1 323.5 329.8 335.9 341.9 347.8 353.6 359.3 364.8 370.3 375.7 381.0 386.2 391.3 396.3 401.3 425.1 447.3 468.2 488.0 506.8 524.8 542.1 558.7 590.5 620.4 648.9 676.2 702.5 727.8 752.2 775.9 798.8 821.2 842.9 864.1 34.02 34.00 33.56 33.14 32.73 32.34 31.97 31.61 31.27 30.93 30.62 30.31 30.01 29.73 29.46 29.20 28.95 54.97 54.97 54.96 54.97 55.00 55.05 55.12 55.21 55.33 55.49 55.67 55.89 56.15 56.45 56.80 57.20 57.67 1033.8 1033.3 1017.3 1001.1 984.7 968.0 951.1 933.9 916.5 898.8 880.8 862.5 843.8 824.9 805.6 786.0 765.9 70.936 71.002 72.804 74.549 76.241 77.884 79.480 81.034 82.549 84.026 85.470 86.882 88.265 89.622 90.954 92.264 93.555 THERMODYNAMIC PROPERTIES OF AIR 371 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 92 94 96 98 100 102 104 106 106.22 108.10 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 155 160 165 170 175 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 450 500 Density 共mol/dm3兲 Internal energy 共J/mol兲 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 28.115 27.752 27.379 26.993 26.593 26.177 25.742 25.284 25.232 1.3836 1.3382 1.2951 1.2559 1.2200 1.1870 1.1563 1.1276 1.1009 1.0757 1.0519 1.0295 1.0082 0.988 04 0.968 81 0.950 48 0.932 97 0.916 22 0.900 18 0.884 78 0.869 99 0.855 77 0.822 47 0.792 01 0.763 99 0.738 11 0.714 11 0.691 76 0.670 90 0.651 36 0.633 01 0.615 74 0.584 06 0.555 66 0.530 03 0.506 76 0.485 53 0.466 07 0.448 16 0.431 62 0.416 30 0.402 05 0.388 76 0.376 35 0.364 72 0.353 80 0.343 53 0.333 85 0.324 71 0.316 06 0.307 87 0.300 09 0.266 51 0.239 74 ⫺2925.6 ⫺2809.1 ⫺2691.2 ⫺2571.8 ⫺2450.7 ⫺2327.5 ⫺2201.8 ⫺2073.2 ⫺2059.0 1873.7 1931.9 1990.8 2047.6 2102.9 2156.7 2209.5 2261.3 2312.2 2362.5 2412.1 2461.1 2509.7 2557.8 2605.5 2652.8 2699.8 2746.4 2792.8 2838.9 2884.8 2930.5 3043.8 3156.0 3267.4 3377.9 3487.9 3597.2 3706.1 3814.6 3922.6 4030.4 4245.0 4458.7 4671.7 4884.0 5095.9 5307.4 5518.5 5729.5 5940.2 6150.8 6361.4 6571.9 6782.4 6992.9 7203.6 7414.4 7625.3 7836.4 8047.7 8259.3 9322.0 10 395.0 ⫺2890.1 ⫺2773.1 ⫺2654.7 ⫺2534.8 ⫺2413.1 ⫺2289.3 ⫺2162.9 ⫺2033.7 ⫺2019.3 2596.5 2679.2 2763.0 2843.9 2922.5 2999.2 3074.3 3148.1 3220.6 3292.1 3362.7 3432.5 3501.5 3569.9 3637.7 3704.9 3771.6 3837.9 3903.7 3969.2 4034.3 4099.0 4259.6 4418.6 4576.3 4732.8 4888.2 5042.8 5196.6 5349.8 5502.4 5654.4 5957.2 6258.4 6558.4 6857.4 7155.5 7453.0 7749.9 8046.3 8342.3 8638.1 8933.6 9229.0 9524.2 9819.4 10 115.0 10 410.0 10 705.0 11 000.0 11 296.0 11 592.0 13 074.0 14 566.0 94.828 96.086 97.332 98.568 99.798 101.02 102.25 103.48 103.62 146.73 147.49 148.24 148.96 149.64 150.30 150.93 151.54 152.13 152.70 153.25 153.79 154.32 154.84 155.34 155.83 156.31 156.78 157.24 157.69 158.13 158.57 159.62 160.63 161.60 162.53 163.44 164.31 165.15 165.97 166.76 167.53 169.01 170.41 171.74 173.01 174.23 175.40 176.52 177.60 178.64 179.64 180.61 181.54 182.45 183.33 184.19 185.02 185.83 186.62 187.39 188.13 191.63 194.77 28.71 28.48 28.26 28.06 27.87 27.69 27.53 27.38 27.37 24.74 24.21 23.78 23.43 23.15 22.91 22.71 22.54 22.39 22.26 22.15 22.05 21.95 21.87 21.80 21.73 21.66 21.61 21.55 21.51 21.46 21.42 21.33 21.26 21.20 21.14 21.10 21.06 21.03 21.00 20.98 20.95 20.92 20.90 20.88 20.86 20.85 20.85 20.85 20.85 20.85 20.86 20.87 20.88 20.90 20.91 20.93 20.96 20.98 21.01 21.04 21.07 21.27 21.53 58.21 58.83 59.55 60.38 61.36 62.50 63.85 65.48 65.68 44.60 42.69 41.11 39.85 38.81 37.94 37.20 36.56 36.00 35.52 35.08 34.69 34.34 34.03 33.74 33.48 33.24 33.02 32.82 32.64 32.46 32.30 31.95 31.66 31.41 31.19 31.00 30.84 30.70 30.57 30.46 30.36 30.19 30.06 29.95 29.85 29.78 29.72 29.66 29.62 29.59 29.56 29.54 29.53 29.52 29.52 29.52 29.52 29.53 29.54 29.56 29.58 29.73 29.95 745.4 724.4 702.9 680.9 658.2 634.9 610.8 585.8 583.0 185.2 188.7 192.1 195.3 198.3 201.2 204.0 206.8 209.4 211.9 214.4 216.8 219.2 221.5 223.8 226.0 228.2 230.3 232.4 234.5 236.5 238.5 243.4 248.1 252.7 257.1 261.5 265.7 269.8 273.9 277.9 281.7 289.3 296.6 303.7 310.6 317.3 323.8 330.2 336.4 342.5 348.4 354.3 360.0 365.6 371.1 376.6 381.9 387.1 392.3 397.3 402.3 426.2 448.5 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 372 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 60.11 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 118.52 119.94 120 122 124 126 128 130 132 134 136 138 140 142 Density 共mol/dm3兲 Internal energy 共J/mol兲 0.217 90 0.199 72 0.184 35 0.171 19 0.159 79 0.149 81 0.133 19 0.119 90 0.109 02 0.099 953 0.092 279 0.085 701 0.079 999 0.075 008 0.070 604 0.066 689 0.063 185 0.060 031 11 481.0 12 582.0 13 699.0 14 834.0 15 985.0 17 153.0 19 539.0 21 986.0 24 487.0 27 036.0 29 628.0 32 257.0 34 919.0 37 610.0 40 327.0 43 067.0 45 829.0 48 609.0 33.121 32.854 32.570 32.285 31.997 31.706 31.412 31.116 30.815 30.511 30.203 29.891 29.573 29.249 28.919 28.583 28.238 27.885 27.522 27.149 26.763 26.364 25.948 25.514 25.058 24.577 24.065 23.513 22.913 22.245 22.059 2.9766 2.9709 2.8114 2.6809 2.5702 2.4740 2.3888 2.3124 2.2432 2.1799 2.1217 2.0678 2.0176 ⫺4709.1 ⫺4605.7 ⫺4496.5 ⫺4387.3 ⫺4278.1 ⫺4168.8 ⫺4059.3 ⫺3949.7 ⫺3839.9 ⫺3729.9 ⫺3619.4 ⫺3508.6 ⫺3397.4 ⫺3285.5 ⫺3173.1 ⫺3059.9 ⫺2945.9 ⫺2830.9 ⫺2714.7 ⫺2597.3 ⫺2478.4 ⫺2357.8 ⫺2235.2 ⫺2110.2 ⫺1982.5 ⫺1851.4 ⫺1716.2 ⫺1576.0 ⫺1429.3 ⫺1273.6 ⫺1231.7 1788.0 1791.1 1880.8 1961.3 2035.7 2105.5 2171.9 2235.5 2296.8 2356.4 2414.3 2470.9 2526.4 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 16 070.0 197.64 17 589.0 200.28 19 124.0 202.74 20 675.0 205.04 22 243.0 207.20 23 828.0 209.25 27 047.0 213.04 30 326.0 216.49 33 659.0 219.67 37 041.0 222.61 40 465.0 225.35 43 925.0 227.91 47 419.0 230.32 50 942.0 232.60 54 490.0 234.75 58 062.0 236.79 61 655.0 238.73 65 268.0 240.59 2.0 MPa isobar ⫺4648.7 70.970 ⫺4544.8 72.673 ⫺4435.1 74.414 ⫺4325.3 76.103 ⫺4215.6 77.741 ⫺4105.7 79.334 ⫺3995.7 80.884 ⫺3885.5 82.393 ⫺3775.0 83.866 ⫺3664.3 85.304 ⫺3553.2 86.710 ⫺3441.7 88.087 ⫺3329.7 89.436 ⫺3217.2 90.760 ⫺3103.9 92.062 ⫺2989.9 93.343 ⫺2875.0 94.606 ⫺2759.1 95.852 ⫺2642.1 97.084 ⫺2523.6 98.305 ⫺2403.7 99.517 ⫺2281.9 100.72 ⫺2158.1 101.92 ⫺2031.8 103.13 ⫺1902.7 104.33 ⫺1770.0 105.55 ⫺1633.1 106.78 ⫺1491.0 108.04 ⫺1342.0 109.34 ⫺1183.7 110.69 ⫺1141.0 111.05 2459.9 141.25 2464.3 141.29 2592.2 142.35 2707.4 143.28 2813.8 144.13 2913.9 144.92 3009.1 145.66 3100.4 146.36 3188.4 147.02 3273.8 147.65 3357.0 148.26 3438.2 148.84 3517.7 149.41 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 21.82 22.14 22.48 22.83 23.18 23.52 24.16 24.74 25.26 25.71 26.11 26.46 26.77 27.04 27.29 27.51 27.71 27.90 30.22 30.53 30.86 31.19 31.53 31.87 32.50 33.07 33.58 34.03 34.43 34.78 35.09 35.36 35.61 35.83 36.03 36.22 469.4 489.2 508.0 526.0 543.2 559.9 591.5 621.5 650.0 677.2 703.4 728.7 753.1 776.7 799.7 822.0 843.7 864.9 34.02 33.61 33.18 32.78 32.39 32.02 31.66 31.32 30.99 30.67 30.36 30.07 29.78 29.51 29.25 29.00 28.76 28.53 28.31 28.10 27.90 27.72 27.55 27.40 27.26 27.14 27.04 26.97 26.94 26.96 26.97 27.21 27.17 26.12 25.36 24.78 24.33 23.96 23.66 23.40 23.18 22.99 22.83 22.68 54.88 54.86 54.86 54.88 54.91 54.97 55.05 55.15 55.29 55.45 55.64 55.87 56.13 56.44 56.80 57.21 57.69 58.23 58.86 59.57 60.41 61.37 62.49 63.82 65.40 67.31 69.66 72.64 76.56 82.02 83.81 68.49 68.18 60.34 55.18 51.49 48.71 46.54 44.78 43.33 42.11 41.07 40.16 39.38 1037.4 1022.4 1006.5 990.3 973.8 957.2 940.3 923.1 905.7 888.1 870.2 852.0 833.5 814.7 795.6 776.1 756.2 736.0 715.3 694.1 672.5 650.2 627.4 603.9 579.6 554.3 528.0 500.4 470.9 439.1 430.4 180.5 180.7 186.1 190.8 195.1 199.0 202.6 206.1 209.3 212.4 215.4 218.3 221.0 THERMODYNAMIC PROPERTIES OF AIR 373 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 144 146 148 150 155 160 165 170 175 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 60.64 62 64 66 68 70 72 74 Density 共mol/dm3兲 Internal energy 共J/mol兲 1.9707 1.9267 1.8853 1.8462 1.7572 1.6785 1.6082 1.5448 1.4872 1.4345 1.3861 1.3413 1.2997 1.2610 1.1909 1.1291 1.0739 1.0243 0.979 42 0.938 59 0.901 25 0.866 94 0.835 28 0.805 97 0.778 73 0.753 36 0.729 65 0.707 45 0.686 60 0.666 99 0.648 50 0.631 04 0.614 51 0.598 86 0.531 41 0.477 83 0.434 20 0.397 94 0.367 32 0.34 112 0.31 842 0.298 57 0.265 50 0.239 05 0.217 40 0.199 36 0.184 08 0.170 99 0.159 63 0.149 69 0.140 92 0.133 12 0.126 14 0.119 85 2580.9 2634.4 2687.2 2739.2 2866.7 2991.0 3112.7 3232.4 3350.4 3466.9 3582.3 3696.5 3809.9 3922.4 4145.5 4366.5 4585.7 4803.5 5020.2 5236.0 5451.0 5665.4 5879.3 6092.8 6306.0 6519.0 6731.7 6944.4 7156.9 7369.5 7582.1 7794.8 8007.6 8220.6 9289.2 10 367.0 11 457.0 12 561.0 13 680.0 14 816.0 15 970.0 17 139.0 19 528.0 21 976.0 24 479.0 27 030.0 29 623.0 32 253.0 34 915.0 37 607.0 40 324.0 43 065.0 45 827.0 48 608.0 33.200 33.012 32.736 32.458 32.178 31.895 31.611 31.324 ⫺4702.6 ⫺4629.1 ⫺4521.2 ⫺4413.4 ⫺4305.7 ⫺4198.0 ⫺4090.2 ⫺3982.4 Enthalpy 共J/mol兲 3595.7 3672.5 3748.0 3822.5 4004.9 4182.5 4356.3 4527.1 4695.2 4861.1 5025.2 5187.6 5348.6 5508.4 5824.9 6137.9 6448.1 6756.1 7062.2 7366.9 7670.2 7972.4 8273.8 8574.3 8874.3 9173.7 9472.7 9771.4 10 070.0 10 368.0 10 666.0 10 964.0 11 262.0 11 560.0 13 053.0 14 552.0 16 063.0 17 586.0 19 125.0 20 680.0 22 251.0 23 838.0 27 061.0 30 343.0 33 679.0 37 062.0 40 487.0 43 949.0 47 444.0 50 967.0 54 517.0 58 089.0 61 683.0 65 296.0 5.0 MPa isobar ⫺4552.0 ⫺4477.6 ⫺4368.5 ⫺4259.4 ⫺4150.3 ⫺4041.2 ⫺3932.0 ⫺3822.8 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 149.95 150.48 151.00 151.50 152.69 153.82 154.89 155.91 156.88 157.82 158.72 159.58 160.42 161.23 162.77 164.23 165.61 166.92 168.17 169.36 170.51 171.61 172.67 173.68 174.67 175.62 176.54 177.43 178.30 179.14 179.95 180.75 181.52 182.28 185.79 188.95 191.83 194.48 196.94 199.25 201.42 203.47 207.26 210.72 213.90 216.84 219.58 222.15 224.56 226.83 228.98 231.03 232.97 234.82 22.55 22.43 22.32 22.22 22.02 21.85 21.71 21.60 21.50 21.42 21.35 21.29 21.24 21.19 21.12 21.07 21.02 20.99 20.97 20.95 20.94 20.93 20.93 20.93 20.93 20.94 20.95 20.97 20.98 21.00 21.03 21.05 21.08 21.11 21.30 21.55 21.84 22.16 22.50 22.84 23.19 23.53 24.17 24.75 25.26 25.72 26.11 26.46 26.77 27.05 27.29 27.52 27.72 27.90 38.68 38.06 37.51 37.01 35.96 35.12 34.44 33.87 33.39 32.99 32.64 32.34 32.08 31.84 31.46 31.15 30.90 30.70 30.53 30.39 30.28 30.18 30.09 30.03 29.97 29.92 29.88 29.85 29.83 29.82 29.81 29.80 29.80 29.81 29.91 30.09 30.33 30.62 30.93 31.26 31.58 31.91 32.53 33.10 33.61 34.05 34.44 34.79 35.10 35.37 35.61 35.83 36.04 36.22 223.7 226.3 228.8 231.3 237.2 242.7 248.1 253.1 258.0 262.8 267.3 271.8 276.1 280.3 288.4 296.2 303.6 310.8 317.8 324.6 331.2 337.6 343.8 349.9 355.9 361.7 367.4 373.0 378.5 383.9 389.2 394.4 399.5 404.5 428.5 450.8 471.8 491.5 510.3 528.3 545.5 562.1 593.7 623.6 652.0 679.2 705.3 730.5 754.8 778.4 801.3 823.6 845.3 866.4 34.04 33.75 33.33 32.93 32.54 32.17 31.82 31.48 54.61 54.58 54.55 54.54 54.55 54.57 54.61 54.67 1047.7 1037.3 1021.9 1006.3 990.5 974.6 958.5 942.2 71.073 72.287 74.019 75.698 77.326 78.907 80.445 81.942 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 374 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 155 160 165 170 175 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 Density 共mol/dm3兲 Internal energy 共J/mol兲 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 31.034 30.742 30.446 30.146 29.843 29.535 29.223 28.906 28.582 28.253 27.917 27.574 27.222 26.861 26.490 26.108 25.713 25.304 24.879 24.436 23.972 23.483 22.966 22.415 21.822 21.176 20.462 19.654 18.706 17.533 15.954 13.686 11.096 9.2688 8.1721 7.4446 6.9126 6.4975 5.7485 5.2273 4.8317 4.5153 4.2532 4.0305 3.8376 3.6681 3.5173 3.3819 3.1473 2.9500 2.7806 2.6330 2.5028 2.3868 2.2825 2.1880 2.1020 2.0232 1.9507 1.8837 1.8216 1.7637 1.7097 ⫺3874.5 ⫺3766.4 ⫺3658.2 ⫺3549.7 ⫺3441.0 ⫺3331.9 ⫺3222.4 ⫺3112.4 ⫺3002.0 ⫺2890.9 ⫺2779.1 ⫺2666.5 ⫺2553.1 ⫺2438.6 ⫺2322.9 ⫺2206.0 ⫺2087.5 ⫺1967.4 ⫺1845.3 ⫺1720.9 ⫺1594.0 ⫺1464.0 ⫺1330.4 ⫺1192.4 ⫺1049.1 ⫺899.10 ⫺740.19 ⫺569.09 ⫺380.05 ⫺162.02 108.31 470.13 892.71 1229.6 1462.3 1636.9 1778.7 1900.3 2152.4 2362.0 2547.3 2716.8 2875.2 3025.5 3169.5 3308.6 3443.6 3575.4 3831.0 4078.5 4319.9 4556.6 4789.7 5019.7 5247.4 5473.0 5697.0 5919.6 6141.1 6361.6 6581.2 6800.3 7018.8 ⫺3713.4 ⫺3603.8 ⫺3493.9 ⫺3383.8 ⫺3273.4 ⫺3162.6 ⫺3051.3 ⫺2939.5 ⫺2827.0 ⫺2713.9 ⫺2600.0 ⫺2485.2 ⫺2369.4 ⫺2252.4 ⫺2134.2 ⫺2014.5 ⫺1893.1 ⫺1769.8 ⫺1644.3 ⫺1516.3 ⫺1385.4 ⫺1251.1 ⫺1112.7 ⫺969.37 ⫺820.02 ⫺662.99 ⫺495.84 ⫺314.69 ⫺112.75 123.16 421.72 835.47 1343.3 1769.0 2074.2 2308.5 2502.1 2669.9 3022.2 3318.5 3582.1 3824.1 4050.8 4266.1 4472.4 4671.7 4865.2 5053.8 5419.6 5773.4 6118.1 6455.6 6787.4 7114.6 7438.0 7758.2 8075.7 8390.9 8704.2 9015.9 9326.2 9635.2 9943.3 83.401 84.824 86.214 87.574 88.904 90.208 91.488 92.744 93.980 95.196 96.395 97.579 98.748 99.906 101.05 102.19 103.33 104.46 105.59 106.72 107.86 109.01 110.17 111.36 112.57 113.83 115.14 116.55 118.09 119.86 122.07 125.09 128.75 131.77 133.90 135.52 136.83 137.96 140.27 142.15 143.78 145.22 146.54 147.75 148.88 149.94 150.95 151.90 153.69 155.34 156.87 158.30 159.66 160.94 162.16 163.33 164.44 165.51 166.54 167.53 168.48 169.40 170.30 31.15 30.83 30.52 30.23 29.94 29.67 29.41 29.15 28.91 28.68 28.45 28.24 28.03 27.84 27.66 27.48 27.32 27.17 27.03 26.90 26.79 26.70 26.62 26.57 26.55 26.57 26.63 26.78 27.04 27.53 28.44 29.89 30.37 29.21 27.96 26.99 26.24 25.66 24.63 23.95 23.46 23.08 22.78 22.54 22.35 22.18 22.04 21.92 21.72 21.58 21.46 21.37 21.31 21.25 21.21 21.17 21.15 21.13 21.12 21.11 21.11 21.12 21.12 54.75 54.85 54.98 55.13 55.31 55.52 55.77 56.06 56.38 56.75 57.17 57.64 58.18 58.79 59.48 60.26 61.15 62.17 63.34 64.69 66.26 68.12 70.34 73.05 76.44 80.80 86.66 95.03 107.94 130.20 173.22 241.20 246.60 178.44 131.40 105.29 89.47 78.99 63.74 55.49 50.29 46.71 44.09 42.09 40.51 39.24 38.19 37.31 35.92 34.88 34.08 33.45 32.94 32.52 32.17 31.88 31.63 31.42 31.24 31.09 30.96 30.85 30.76 925.7 909.0 892.1 875.0 857.7 840.2 822.4 804.4 786.2 767.7 748.9 729.9 710.6 690.9 671.0 650.7 630.0 609.0 587.6 565.7 543.3 520.4 496.8 472.5 447.2 420.8 393.0 363.1 330.4 294.1 253.7 216.2 199.5 199.2 202.8 206.9 211.0 214.9 223.8 231.8 239.1 245.9 252.2 258.2 263.9 269.3 274.5 279.4 288.8 297.7 306.0 314.0 321.5 328.8 335.9 342.7 349.2 355.6 361.8 367.9 373.8 379.6 385.2 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 THERMODYNAMIC PROPERTIES OF AIR 375 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 61.52 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 Density 共mol/dm3兲 Internal energy 共J/mol兲 1.6591 1.6117 1.5671 1.5250 1.4852 1.3152 1.1814 1.0731 0.983 39 0.907 81 0.843 21 0.787 32 0.738 47 0.657 11 0.592 03 0.538 74 0.494 31 0.456 67 0.424 38 0.396 36 0.371 82 0.350 15 0.330 88 0.313 61 0.298 06 7236.8 7454.5 7672.0 7889.3 8106.4 9192.6 10 284.0 11 384.0 12 497.0 13 624.0 14 766.0 15 924.0 17 099.0 19 494.0 21 949.0 24 456.0 27 011.0 29 607.0 32 239.0 34 904.0 37 598.0 40 317.0 43 059.0 45 823.0 48 605.0 33.329 33.264 32.998 32.731 32.462 32.192 31.921 31.648 31.373 31.096 30.817 30.536 30.253 29.966 29.677 29.384 29.088 28.788 28.484 28.176 27.863 27.546 27.222 26.893 26.558 26.215 25.866 25.509 25.143 24.768 24.383 23.988 23.582 23.164 22.732 22.287 21.826 ⫺4691.3 ⫺4665.6 ⫺4559.7 ⫺4454.0 ⫺4348.4 ⫺4243.0 ⫺4137.6 ⫺4032.4 ⫺3927.1 ⫺3821.9 ⫺3716.7 ⫺3611.5 ⫺3506.1 ⫺3400.7 ⫺3295.2 ⫺3189.5 ⫺3083.5 ⫺2977.4 ⫺2870.9 ⫺2764.1 ⫺2656.9 ⫺2549.4 ⫺2441.3 ⫺2332.7 ⫺2223.5 ⫺2113.6 ⫺2003.1 ⫺1891.7 ⫺1779.5 ⫺1666.3 ⫺1552.1 ⫺1436.8 ⫺1320.2 ⫺1202.4 ⫺1083.1 ⫺962.17 ⫺839.59 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 10 250.0 171.16 10 557.0 172.00 10 863.0 172.82 11 168.0 173.61 11 473.0 174.38 12 994.0 177.97 14 516.0 181.17 16 044.0 184.08 17 581.0 186.76 19 131.0 189.24 20 696.0 191.56 22 275.0 193.74 23 869.0 195.80 27 103.0 199.61 30 394.0 203.07 33 737.0 206.26 37 126.0 209.21 40 556.0 211.95 44 021.0 214.52 47 519.0 216.93 51 045.0 219.21 54 596.0 221.36 58 171.0 223.40 61 766.0 225.35 65 380.0 227.20 10.0 MPa isobar ⫺4391.2 71.245 ⫺4364.9 71.671 ⫺4256.7 73.390 ⫺4148.5 75.054 ⫺4040.4 76.668 ⫺3932.4 78.233 ⫺3824.4 79.755 ⫺3716.4 81.234 ⫺3608.4 82.674 ⫺3500.3 84.077 ⫺3392.2 85.446 ⫺3284.0 86.782 ⫺3175.6 88.088 ⫺3067.0 89.366 ⫺2958.2 90.616 ⫺2849.1 91.842 ⫺2739.7 93.044 ⫺2630.0 94.224 ⫺2519.8 95.384 ⫺2409.2 96.524 ⫺2298.1 97.647 ⫺2186.3 98.753 ⫺2073.9 99.844 ⫺1960.8 100.92 ⫺1846.9 101.99 ⫺1732.2 103.04 ⫺1616.5 104.08 ⫺1499.7 105.11 ⫺1381.8 106.14 ⫺1262.6 107.16 ⫺1142.0 108.17 ⫺1019.9 109.18 ⫺896.19 110.19 ⫺770.65 111.19 ⫺643.14 112.20 ⫺513.47 113.20 ⫺381.42 114.21 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 21.13 21.15 21.17 21.19 21.22 21.39 21.62 21.90 22.21 22.54 22.89 23.23 23.56 24.20 24.77 25.29 25.74 26.13 26.48 26.79 27.06 27.30 27.53 27.73 27.91 30.68 30.61 30.56 30.51 30.47 30.41 30.48 30.64 30.87 31.14 31.43 31.74 32.04 32.63 33.18 33.67 34.10 34.48 34.82 35.12 35.39 35.63 35.85 36.05 36.23 390.7 396.1 401.4 406.6 411.7 435.9 458.3 479.2 498.9 517.6 535.4 552.5 569.0 600.3 629.9 658.1 685.1 711.0 736.0 760.1 783.6 806.3 828.4 850.0 871.0 34.08 33.98 33.57 33.17 32.79 32.43 32.07 31.74 31.41 31.09 30.79 30.50 30.21 29.94 29.68 29.42 29.18 28.94 28.71 28.49 28.28 28.08 27.89 27.70 27.52 27.35 27.19 27.03 26.89 26.75 26.62 26.50 26.39 26.28 26.19 26.10 26.03 54.19 54.18 54.12 54.07 54.03 54.00 53.99 53.99 54.01 54.04 54.09 54.15 54.24 54.34 54.47 54.61 54.78 54.97 55.19 55.44 55.72 56.02 56.36 56.74 57.16 57.61 58.12 58.67 59.27 59.93 60.65 61.44 62.30 63.25 64.28 65.41 66.66 1064.0 1060.5 1046.0 1031.3 1016.5 1001.6 986.5 971.4 956.1 940.7 925.2 909.6 893.8 877.9 861.9 845.8 829.6 813.2 796.8 780.2 763.5 746.7 729.7 712.7 695.5 678.3 661.0 643.6 626.2 608.7 591.1 573.6 556.0 538.4 520.9 503.5 486.1 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 376 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 Density 共mol/dm3兲 Internal energy 共J/mol兲 134 136 138 140 142 144 146 148 150 155 160 165 170 175 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 21.349 20.855 20.342 19.810 19.257 18.684 18.090 17.478 16.851 15.253 13.709 12.331 11.170 10.218 9.4390 8.7946 8.2534 7.7920 7.3931 6.7353 6.2116 5.7819 5.4208 5.1116 4.8429 4.6064 4.3961 4.2075 4.0370 3.8819 3.7400 3.6096 3.4891 3.3774 3.2735 3.1765 3.0857 3.0004 2.9202 2.5803 2.3157 2.1029 1.9274 1.7800 1.6542 1.5454 1.4504 1.2922 1.1655 1.0618 0.975 11 0.901 65 0.838 54 0.783 74 0.735 69 0.693 21 0.655 39 0.621 49 0.590 94 ⫺715.17 ⫺588.77 ⫺460.24 ⫺329.46 ⫺196.33 ⫺60.807 77.041 217.00 358.66 715.54 1064.0 1388.9 1682.4 1944.8 2180.7 2395.5 2593.7 2778.9 2953.7 3279.3 3581.7 3867.3 4140.6 4404.4 4660.8 4911.3 5157.0 5398.7 5637.1 5872.8 6106.2 6337.7 6567.4 6795.8 7023.0 7249.1 7474.4 7699.0 7923.0 9037.7 10 151.0 11 268.0 12 395.0 13 533.0 14 685.0 15 852.0 17 033.0 19 441.0 21 904.0 24 419.0 26 980.0 29 581.0 32 218.0 34 886.0 37 583.0 40 305.0 43 050.0 45 815.0 48 600.0 33.574 33.480 33.230 ⫺4666.7 ⫺4627.8 ⫺4525.5 63.24 64 66 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Enthalpy 共J/mol兲 ⫺246.76 ⫺109.26 31.349 175.34 322.96 474.42 629.83 789.15 952.10 1371.2 1793.4 2199.9 2577.7 2923.4 3240.1 3532.6 3805.4 4062.3 4306.3 4764.1 5191.5 5596.8 5985.3 6360.7 6725.7 7082.2 7431.7 7775.4 8114.2 8448.9 8780.0 9108.1 9433.5 9756.7 10 078.0 10 397.0 10 715.0 11 032.0 11 347.0 12 913.0 14 469.0 16 023.0 17 583.0 19 151.0 20 730.0 22 322.0 23 928.0 27 179.0 30 484.0 33 837.0 37 235.0 40 672.0 44 143.0 47 646.0 51 176.0 54 731.0 58 308.0 61 906.0 65 522.0 20.0 MPa isobar ⫺4071.0 ⫺4030.5 ⫺3923.7 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 115.22 116.24 117.27 118.30 119.35 120.41 121.48 122.56 123.66 126.41 129.09 131.59 133.84 135.85 137.63 139.24 140.69 142.03 143.26 145.50 147.49 149.29 150.94 152.47 153.91 155.25 156.52 157.73 158.88 159.97 161.03 162.04 163.01 163.94 164.85 165.72 166.57 167.39 168.19 171.88 175.16 178.12 180.84 183.35 185.69 187.88 189.96 193.79 197.27 200.46 203.42 206.17 208.74 211.16 213.44 215.59 217.64 219.58 221.44 25.96 25.90 25.86 25.82 25.79 25.77 25.76 25.75 25.73 25.65 25.45 25.11 24.70 24.30 23.94 23.62 23.35 23.11 22.90 22.56 22.30 22.10 21.93 21.80 21.70 21.61 21.54 21.49 21.44 21.41 21.38 21.36 21.35 21.34 21.34 21.34 21.35 21.37 21.38 21.52 21.73 22.00 22.30 22.62 22.95 23.29 23.62 24.24 24.81 25.32 25.77 26.16 26.50 26.81 27.08 27.32 27.54 27.74 27.93 68.02 69.51 71.13 72.88 74.76 76.71 78.69 80.60 82.31 84.77 83.46 78.69 72.33 66.09 60.75 56.38 52.86 50.01 47.67 44.10 41.53 39.62 38.14 36.98 36.04 35.28 34.64 34.11 33.66 33.28 32.95 32.67 32.42 32.21 32.03 31.87 31.73 31.61 31.50 31.18 31.08 31.12 31.27 31.47 31.71 31.97 32.24 32.79 33.30 33.76 34.18 34.55 34.88 35.17 35.43 35.66 35.88 36.07 36.25 468.8 451.7 434.8 418.1 401.9 386.1 371.0 356.7 343.4 316.0 297.6 287.3 282.7 281.8 283.1 285.6 288.8 292.4 296.3 304.3 312.4 320.3 328.0 335.4 342.7 349.7 356.5 363.1 369.5 375.7 381.8 387.7 393.5 399.1 404.6 410.0 415.3 420.5 425.6 449.6 471.8 492.5 511.9 530.3 547.8 564.6 580.8 611.6 640.7 668.5 695.0 720.6 745.2 769.1 792.2 814.7 836.5 857.9 878.6 34.18 34.03 33.64 53.48 53.44 53.33 1094.3 1089.3 1076.1 71.587 72.224 73.867 THERMODYNAMIC PROPERTIES OF AIR 377 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 155 160 165 170 175 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300 310 Density 共mol/dm3兲 Internal energy 共J/mol兲 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 32.981 32.730 32.480 32.228 31.976 31.724 31.470 31.216 30.961 30.705 30.447 30.189 29.929 29.667 29.405 29.140 28.874 28.606 28.337 28.065 27.791 27.516 27.238 26.958 26.675 26.390 26.103 25.813 25.520 25.225 24.928 24.628 24.325 24.020 23.712 23.402 23.090 22.776 22.460 22.142 21.822 21.501 20.693 19.884 19.077 18.280 17.500 16.745 16.021 15.332 14.683 14.074 12.978 12.034 11.221 10.519 9.9093 9.3749 8.9032 8.4837 8.1078 7.7690 7.4616 ⫺4423.5 ⫺4321.8 ⫺4220.3 ⫺4119.0 ⫺4017.9 ⫺3917.1 ⫺3816.5 ⫺3716.0 ⫺3615.7 ⫺3515.6 ⫺3415.6 ⫺3315.7 ⫺3215.9 ⫺3116.3 ⫺3016.7 ⫺2917.2 ⫺2817.7 ⫺2718.3 ⫺2619.0 ⫺2519.6 ⫺2420.3 ⫺2320.9 ⫺2221.6 ⫺2122.2 ⫺2022.8 ⫺1923.4 ⫺1823.9 ⫺1724.4 ⫺1624.8 ⫺1525.2 ⫺1425.5 ⫺1325.8 ⫺1226.0 ⫺1126.3 ⫺1026.4 ⫺926.63 ⫺826.82 ⫺727.03 ⫺627.28 ⫺527.60 ⫺428.01 ⫺328.54 ⫺80.620 165.72 409.75 650.59 887.32 1119.0 1344.9 1564.4 1777.1 1982.9 2374.1 2740.3 3084.8 3410.9 3721.9 4020.3 4308.2 4587.4 4859.3 5125.0 5385.5 ⫺3817.1 ⫺3710.7 ⫺3604.5 ⫺3498.4 ⫺3392.5 ⫺3286.7 ⫺3180.9 ⫺3075.3 ⫺2969.7 ⫺2864.2 ⫺2758.7 ⫺2653.2 ⫺2547.7 ⫺2442.1 ⫺2336.5 ⫺2230.9 ⫺2125.1 ⫺2019.2 ⫺1913.2 ⫺1807.0 ⫺1700.6 ⫺1594.1 ⫺1487.3 ⫺1380.3 ⫺1273.0 ⫺1165.5 ⫺1057.7 ⫺949.55 ⫺841.10 ⫺732.32 ⫺623.18 ⫺513.69 ⫺403.84 ⫺293.61 ⫺183.00 ⫺72.016 39.349 151.09 263.20 375.68 488.50 601.66 885.87 1171.6 1458.1 1744.7 2030.2 2313.4 2593.3 2868.9 3139.3 3403.9 3915.2 4402.3 4867.1 5312.2 5740.2 6153.6 6554.6 6944.9 7326.1 7699.4 8065.9 75.457 76.999 78.496 79.949 81.361 82.736 84.074 85.378 86.650 87.892 89.105 90.290 91.450 92.585 93.696 94.786 95.854 96.903 97.932 98.943 99.937 100.91 101.88 102.82 103.76 104.68 105.58 106.48 107.36 108.23 109.09 109.94 110.77 111.60 112.42 113.23 114.03 114.83 115.61 116.39 117.15 117.91 119.78 121.59 123.35 125.07 126.72 128.32 129.85 131.32 132.72 134.06 136.56 138.83 140.89 142.79 144.53 146.16 147.67 149.09 150.43 151.69 152.89 33.27 32.91 32.57 32.23 31.91 31.60 31.30 31.02 30.74 30.47 30.20 29.95 29.71 29.47 29.24 29.02 28.81 28.60 28.40 28.21 28.02 27.84 27.67 27.50 27.34 27.18 27.03 26.88 26.74 26.61 26.48 26.35 26.23 26.11 26.00 25.89 25.79 25.69 25.59 25.50 25.41 25.32 25.12 24.92 24.74 24.56 24.39 24.22 24.06 23.89 23.74 23.58 23.30 23.04 22.81 22.62 22.45 22.31 22.19 22.09 22.00 21.93 21.86 53.24 53.15 53.07 53.00 52.94 52.88 52.84 52.80 52.77 52.76 52.75 52.75 52.76 52.79 52.82 52.86 52.91 52.98 53.05 53.13 53.23 53.33 53.44 53.57 53.70 53.84 53.99 54.14 54.31 54.48 54.65 54.84 55.02 55.21 55.40 55.59 55.78 55.96 56.15 56.33 56.50 56.66 57.01 57.25 57.34 57.24 56.91 56.35 55.58 54.62 53.52 52.34 49.90 47.56 45.45 43.61 42.03 40.69 39.54 38.55 37.71 36.97 36.34 1062.8 1049.4 1036.0 1022.6 1009.1 995.6 982.1 968.6 955.0 941.4 927.8 914.2 900.5 886.9 873.2 859.6 846.0 832.4 818.8 805.2 791.7 778.2 764.8 751.5 738.2 725.0 711.9 699.0 686.1 673.4 660.9 648.5 636.3 624.3 612.5 601.0 589.6 578.5 567.7 557.2 546.9 536.9 513.3 491.8 472.4 455.3 440.5 428.0 417.6 409.1 402.4 397.2 390.6 387.6 387.3 388.7 391.3 394.7 398.6 402.8 407.3 412.0 416.7 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 378 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 68.21 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 Density 共mol/dm3兲 Internal energy 共J/mol兲 7.1814 6.9246 6.6882 6.4698 6.2673 6.0788 5.9028 5.7380 5.5834 4.9320 4.4288 4.0260 3.6950 3.4173 3.1804 2.9756 2.7966 2.4982 2.2588 2.0621 1.8975 1.7576 1.6372 1.5323 1.4402 1.3586 1.2858 1.2205 1.1615 5641.5 5893.6 6142.3 6388.2 6631.6 6872.8 7112.2 7349.9 7586.1 8752.1 9904.1 11 053.0 12 204.0 13 364.0 14 533.0 15 715.0 16 910.0 19 339.0 21 820.0 24 349.0 26 921.0 29 532.0 32 177.0 34 852.0 37 555.0 40 282.0 43 032.0 45 802.0 48 590.0 34.238 34.049 33.837 33.626 33.416 33.206 32.997 32.789 32.581 32.374 32.167 31.961 31.756 31.551 31.346 31.142 30.939 30.736 30.534 30.332 30.130 29.929 29.729 29.529 29.329 29.130 28.932 28.733 28.536 28.339 28.142 27.946 27.750 ⫺4581.8 ⫺4497.3 ⫺4403.1 ⫺4309.3 ⫺4216.0 ⫺4123.0 ⫺4030.4 ⫺3938.2 ⫺3846.4 ⫺3754.9 ⫺3663.9 ⫺3573.2 ⫺3482.9 ⫺3392.9 ⫺3303.3 ⫺3214.0 ⫺3125.1 ⫺3036.5 ⫺2948.3 ⫺2860.4 ⫺2772.9 ⫺2685.6 ⫺2598.8 ⫺2512.2 ⫺2426.0 ⫺2340.0 ⫺2254.4 ⫺2169.2 ⫺2084.2 ⫺1999.6 ⫺1915.3 ⫺1831.3 ⫺1747.6 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 8426.5 154.04 8781.8 155.13 9132.7 156.18 9479.5 157.19 9822.8 158.15 10 163.0 159.08 10 500.0 159.98 10 835.0 160.85 11 168.0 161.70 12 807.0 165.56 14 420.0 168.96 16 020.0 172.01 17 617.0 174.79 19 216.0 177.35 20 822.0 179.73 22 436.0 181.96 24 061.0 184.05 27 345.0 187.92 30 674.0 191.43 34 047.0 194.64 37 461.0 197.61 40 911.0 200.37 44 393.0 202.95 47 904.0 205.38 51 442.0 207.66 55 003.0 209.82 58 586.0 211.87 62 189.0 213.81 65 809.0 215.67 50.0 MPa isobar ⫺3121.4 72.575 ⫺3028.8 73.915 ⫺2925.4 75.371 ⫺2822.4 76.783 ⫺2719.7 78.153 ⫺2617.2 79.483 ⫺2515.1 80.776 ⫺2413.3 82.033 ⫺2311.7 83.257 ⫺2210.5 84.448 ⫺2109.5 85.609 ⫺2008.8 86.740 ⫺1908.3 87.844 ⫺1808.1 88.922 ⫺1708.2 89.974 ⫺1608.5 91.002 ⫺1509.0 92.007 ⫺1409.8 92.989 ⫺1310.8 93.950 ⫺1212.0 94.891 ⫺1113.4 95.813 ⫺1015.0 96.715 ⫺916.88 97.599 ⫺818.93 98.466 ⫺721.17 99.316 ⫺623.60 100.15 ⫺526.23 100.97 ⫺429.04 101.77 ⫺332.03 102.56 ⫺235.21 103.34 ⫺138.56 104.10 ⫺42.096 104.84 54.197 105.58 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 21.81 21.77 21.74 21.71 21.69 21.68 21.67 21.67 21.68 21.76 21.94 22.17 22.45 22.76 23.08 23.40 23.72 24.33 24.89 25.39 25.83 26.21 26.55 26.85 27.12 27.36 27.58 27.78 27.96 35.79 35.30 34.87 34.50 34.17 33.87 33.61 33.38 33.18 32.46 32.09 31.95 31.95 32.04 32.20 32.39 32.61 33.07 33.52 33.94 34.32 34.67 34.97 35.25 35.50 35.72 35.93 36.12 36.29 421.5 426.3 431.1 435.9 440.6 445.3 450.0 454.6 459.2 481.1 501.8 521.2 539.5 557.0 573.7 589.8 605.2 634.8 662.8 689.6 715.2 740.0 764.0 787.2 809.7 831.6 853.0 873.8 894.2 34.51 34.20 33.87 33.55 33.24 32.94 32.65 32.37 32.10 31.84 31.59 31.34 31.10 30.87 30.65 30.43 30.22 30.01 29.81 29.62 29.43 29.25 29.07 28.90 28.73 28.57 28.41 28.26 28.11 27.96 27.82 27.68 27.55 51.91 51.77 51.60 51.45 51.29 51.14 50.99 50.84 50.70 50.56 50.42 50.29 50.16 50.04 49.91 49.79 49.68 49.56 49.45 49.34 49.23 49.13 49.03 48.93 48.83 48.74 48.64 48.55 48.46 48.37 48.28 48.19 48.10 1172.7 1163.3 1152.9 1142.5 1132.1 1121.8 1111.6 1101.4 1091.2 1081.1 1071.1 1061.2 1051.3 1041.5 1031.7 1022.0 1012.4 1002.9 993.4 984.1 974.8 965.6 956.4 947.4 938.5 929.6 920.9 912.3 903.7 895.3 887.0 878.8 870.7 THERMODYNAMIC PROPERTIES OF AIR 379 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 134 136 138 140 142 144 146 148 150 155 160 165 170 175 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 75.92 76 78 Density 共mol/dm3兲 Internal energy 共J/mol兲 27.555 27.361 27.167 26.974 26.781 26.589 26.398 26.207 26.017 25.545 25.079 24.618 24.163 23.714 23.272 22.837 22.410 21.990 21.579 20.783 20.022 19.299 18.613 17.963 17.350 16.773 16.228 15.716 15.234 14.780 14.353 13.950 13.569 13.210 12.870 12.549 12.244 11.955 11.680 10.489 9.5353 8.7536 8.0999 7.5440 7.0646 6.6465 6.2780 5.6573 5.1533 4.7351 4.3818 4.0790 3.8164 3.5862 3.3828 3.2015 3.0389 2.8923 2.7593 ⫺1664.2 ⫺1581.2 ⫺1498.4 ⫺1416.0 ⫺1333.9 ⫺1252.1 ⫺1170.7 ⫺1089.6 ⫺1008.7 ⫺808.12 ⫺609.54 ⫺413.01 ⫺218.56 ⫺26.212 164.03 352.15 538.13 721.98 903.69 1260.7 1609.4 1949.7 2282.1 2606.8 2924.2 3234.7 3538.8 3836.8 4129.2 4416.5 4699.1 4977.3 5251.6 5522.3 5789.7 6054.1 6315.8 6575.1 6832.1 8090.6 9319.0 10 531.0 11 737.0 12 943.0 14 153.0 15 370.0 16 595.0 19 076.0 21 599.0 24 163.0 26 764.0 29 400.0 32 066.0 34 760.0 37 479.0 40 221.0 42 983.0 45 764.0 48 562.0 35.183 35.176 35.002 ⫺4416.8 ⫺4413.2 ⫺4326.8 Enthalpy 共J/mol兲 150.32 246.26 342.03 437.64 533.07 628.33 723.42 818.33 913.08 1149.2 1384.2 1618.0 1850.8 2082.3 2312.6 2541.6 2769.3 2995.7 3220.7 3666.6 4106.6 4540.6 4968.5 5390.3 5806.0 6215.8 6619.8 7018.2 7411.3 7799.4 8182.8 8561.7 8936.4 9307.3 9674.6 10 039.0 10 399.0 10 758.0 11 113.0 12 858.0 14 563.0 16 243.0 17 910.0 19 571.0 21 230.0 22 892.0 24 559.0 27 915.0 31 302.0 34 722.0 38 175.0 41 658.0 45 168.0 48 703.0 52 260.0 55 839.0 59 436.0 63 051.0 66 683.0 100.0 MPa isobar ⫺1574.5 ⫺1570.4 ⫺1469.9 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 106.30 107.01 107.71 108.40 109.08 109.74 110.40 111.04 111.68 113.23 114.72 116.16 117.55 118.89 120.19 121.44 122.66 123.83 124.97 127.15 129.20 131.13 132.95 134.67 136.30 137.85 139.32 140.71 142.05 143.32 144.54 145.70 146.82 147.90 148.93 149.93 150.89 151.82 152.72 156.83 160.42 163.63 166.53 169.19 171.65 173.94 176.09 180.04 183.61 186.87 189.88 192.66 195.27 197.70 200.00 202.17 204.23 206.18 208.04 27.42 27.29 27.17 27.05 26.94 26.82 26.71 26.60 26.50 26.25 26.01 25.79 25.59 25.39 25.21 25.04 24.88 24.72 24.58 24.31 24.07 23.86 23.66 23.49 23.33 23.19 23.06 22.95 22.85 22.76 22.68 22.61 22.55 22.50 22.45 22.42 22.39 22.36 22.35 22.34 22.44 22.62 22.85 23.11 23.40 23.69 23.99 24.57 25.09 25.57 25.99 26.36 26.69 26.98 27.23 27.47 27.68 27.87 28.04 48.02 47.93 47.84 47.76 47.67 47.59 47.50 47.42 47.33 47.11 46.89 46.66 46.42 46.18 45.93 45.68 45.41 45.14 44.87 44.29 43.70 43.10 42.49 41.88 41.27 40.68 40.12 39.57 39.06 38.57 38.11 37.68 37.28 36.91 36.56 36.24 35.94 35.67 35.42 34.44 33.81 33.44 33.25 33.19 33.21 33.29 33.40 33.71 34.04 34.37 34.68 34.97 35.23 35.47 35.68 35.88 36.07 36.23 36.39 862.7 854.8 847.1 839.4 831.9 824.6 817.3 810.2 803.2 786.3 770.2 754.9 740.5 726.9 714.1 702.1 690.9 680.4 670.6 653.1 638.1 625.4 614.7 605.8 598.5 592.7 588.0 584.4 581.7 579.7 578.4 577.7 577.4 577.6 578.1 578.9 580.0 581.4 582.9 592.4 604.1 616.6 629.5 642.5 655.5 668.3 681.0 705.9 730.0 753.6 776.5 798.8 820.6 841.8 862.5 882.8 902.6 922.0 941.1 34.95 34.94 34.65 50.34 50.34 50.15 1281.8 1281.5 1273.7 74.060 74.114 75.419 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 380 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 155 160 165 170 175 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 Density 共mol/dm3兲 Internal energy 共J/mol兲 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 34.829 34.658 34.487 34.318 34.150 33.982 33.816 33.651 33.486 33.323 33.161 33.000 32.839 32.680 32.522 32.365 32.208 32.053 31.898 31.745 31.592 31.440 31.289 31.139 30.990 30.842 30.695 30.548 30.403 30.258 30.114 29.971 29.829 29.688 29.547 29.408 29.062 28.722 28.387 28.057 27.732 27.412 27.097 26.787 26.482 26.182 25.596 25.029 24.481 23.951 23.440 22.946 22.469 22.009 21.566 21.138 20.725 20.327 19.942 19.572 19.214 18.869 18.536 ⫺4240.9 ⫺4155.4 ⫺4070.3 ⫺3985.6 ⫺3901.3 ⫺3817.4 ⫺3733.9 ⫺3650.8 ⫺3568.2 ⫺3485.8 ⫺3403.9 ⫺3322.4 ⫺3241.2 ⫺3160.4 ⫺3080.0 ⫺2999.9 ⫺2920.2 ⫺2840.9 ⫺2761.9 ⫺2683.2 ⫺2604.9 ⫺2527.0 ⫺2449.3 ⫺2372.0 ⫺2295.1 ⫺2218.4 ⫺2142.1 ⫺2066.1 ⫺1990.4 ⫺1915.0 ⫺1840.0 ⫺1765.2 ⫺1690.7 ⫺1616.6 ⫺1542.7 ⫺1469.1 ⫺1286.5 ⫺1105.6 ⫺926.45 ⫺748.99 ⫺573.18 ⫺398.99 ⫺226.38 ⫺55.313 114.25 282.34 614.24 940.66 1261.9 1578.1 1889.6 2196.6 2499.3 2798.0 3092.9 3384.3 3672.2 3956.9 4238.6 4517.5 4793.8 5067.6 5339.1 ⫺1369.8 ⫺1270.0 ⫺1170.7 ⫺1071.6 ⫺972.99 ⫺874.69 ⫺776.74 ⫺679.13 ⫺581.87 ⫺484.94 ⫺388.34 ⫺292.06 ⫺196.11 ⫺100.48 ⫺5.1555 89.857 184.56 278.97 373.08 466.90 560.44 653.68 746.65 839.34 931.76 1023.9 1115.8 1207.4 1298.8 1389.9 1480.7 1571.4 1661.7 1751.8 1841.7 1931.3 2154.4 2376.1 2596.3 2815.2 3032.8 3249.0 3464.1 3677.9 3890.4 4101.8 4521.2 4936.1 5346.7 5753.2 6155.8 6554.6 6949.8 7341.5 7729.9 8115.1 8497.3 8876.6 9253.0 9626.9 9998.2 10 367.0 10 734.0 76.686 77.918 79.115 80.280 81.414 82.518 83.595 84.644 85.668 86.668 87.644 88.597 89.528 90.439 91.330 92.202 93.055 93.891 94.709 95.511 96.297 97.067 97.823 98.565 99.293 100.01 100.71 101.40 102.07 102.74 103.39 104.04 104.67 105.29 105.90 106.50 107.96 109.37 110.73 112.03 113.30 114.51 115.69 116.83 117.94 119.01 121.05 122.98 124.81 126.54 128.18 129.75 131.24 132.66 134.03 135.33 136.59 137.79 138.95 140.06 141.14 142.18 143.19 34.37 34.10 33.83 33.58 33.33 33.09 32.85 32.63 32.40 32.19 31.98 31.78 31.58 31.39 31.20 31.02 30.84 30.66 30.50 30.33 30.17 30.01 29.86 29.71 29.57 29.43 29.29 29.15 29.02 28.90 28.77 28.65 28.53 28.41 28.30 28.19 27.92 27.67 27.43 27.20 26.99 26.78 26.59 26.41 26.23 26.07 25.76 25.48 25.23 24.99 24.78 24.59 24.42 24.26 24.11 23.98 23.86 23.75 23.65 23.57 23.49 23.42 23.35 49.96 49.78 49.60 49.42 49.24 49.06 48.89 48.72 48.55 48.38 48.22 48.06 47.90 47.74 47.58 47.43 47.28 47.13 46.98 46.84 46.69 46.55 46.41 46.28 46.14 46.01 45.88 45.75 45.62 45.49 45.36 45.24 45.12 45.00 44.88 44.76 44.47 44.19 43.91 43.65 43.38 43.13 42.88 42.64 42.40 42.16 41.71 41.27 40.86 40.45 40.07 39.70 39.34 39.00 38.68 38.37 38.07 37.78 37.51 37.26 37.01 36.78 36.56 1265.9 1258.3 1250.6 1243.1 1235.6 1228.3 1220.9 1213.7 1206.5 1199.4 1192.4 1185.4 1178.5 1171.7 1165.0 1158.3 1151.7 1145.2 1138.7 1132.3 1126.0 1119.8 1113.6 1107.5 1101.5 1095.5 1089.7 1083.9 1078.1 072.5 1066.9 1061.4 1055.9 1050.6 1045.3 1040.1 1027.3 1015.0 1003.2 991.7 980.8 970.2 960.0 950.3 941.0 932.0 915.2 899.9 885.9 873.2 861.6 851.2 841.7 833.1 825.4 818.5 812.2 806.7 801.7 797.3 793.3 789.9 786.8 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 THERMODYNAMIC PROPERTIES OF AIR 381 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 89.73 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 155 160 165 170 175 180 185 Density 共mol/dm3兲 Internal energy 共J/mol兲 18.214 17.904 17.604 16.245 15.089 14.095 13.231 12.473 11.803 11.206 10.671 9.7481 8.9805 8.3307 7.7726 7.2877 6.8619 6.4847 6.1481 5.8456 5.5723 5.3239 5.0972 5608.4 5875.7 6141.2 7445.0 8720.1 9977.4 11 225.0 12 470.0 13 716.0 14 966.0 16 222.0 18 757.0 21 326.0 23 929.0 26 565.0 29 230.0 31 923.0 34 641.0 37 381.0 40 142.0 42 921.0 45 717.0 48 530.0 36.712 36.693 36.561 36.430 36.299 36.170 36.042 35.914 35.788 35.662 35.538 35.414 35.291 35.170 35.049 34.929 34.810 34.691 34.574 34.457 34.342 34.227 34.113 33.999 33.887 33.775 33.664 33.554 33.445 33.336 33.228 33.121 32.856 32.596 32.340 32.088 31.841 31.597 31.357 ⫺4043.0 ⫺4032.4 ⫺3954.8 ⫺3877.6 ⫺3800.8 ⫺3724.3 ⫺3648.1 ⫺3572.3 ⫺3496.8 ⫺3421.6 ⫺3346.7 ⫺3272.1 ⫺3197.9 ⫺3124.0 ⫺3050.3 ⫺2977.0 ⫺2904.0 ⫺2831.3 ⫺2758.8 ⫺2686.6 ⫺2614.8 ⫺2543.2 ⫺2471.8 ⫺2400.8 ⫺2330.0 ⫺2259.5 ⫺2189.2 ⫺2119.2 ⫺2049.5 ⫺1980.0 ⫺1910.8 ⫺1841.8 ⫺1670.3 ⫺1500.4 ⫺1331.8 ⫺1164.7 ⫺998.86 ⫺834.33 ⫺671.06 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 11 099.0 144.16 11 461.0 145.10 11 822.0 146.01 13 601.0 150.20 15 347.0 153.88 17 072.0 157.17 18 784.0 160.15 20 487.0 162.88 22 188.0 165.40 23 889.0 167.75 25 593.0 169.95 29 015.0 173.98 32 461.0 177.61 35 933.0 180.92 39 430.0 183.96 42 952.0 186.78 46 497.0 189.40 50 062.0 191.86 53 647.0 194.18 57 249.0 196.36 60 867.0 198.43 64 501.0 200.39 68 148.0 202.26 200.0 MPa isobar 1404.9 76.473 1418.2 76.622 1515.5 77.691 1612.4 78.733 1708.9 79.749 1805.2 80.741 1901.0 81.710 1996.6 82.655 2091.7 83.580 2186.6 84.483 2281.1 85.366 2375.3 86.231 2469.2 87.076 2562.8 87.904 2656.0 88.715 2748.9 89.510 2841.6 90.288 2933.9 91.051 3025.9 91.799 3117.6 92.533 3209.1 93.253 3300.2 93.960 3391.1 94.653 3481.7 95.334 3572.0 96.003 3662.0 96.661 3751.8 97.306 3841.3 97.941 3930.5 98.565 4019.5 99.179 4108.2 99.782 4196.7 100.38 4416.7 101.82 4635.3 103.21 4852.4 104.54 5068.1 105.83 5282.4 107.07 5495.4 108.27 5707.1 109.43 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 23.30 23.25 23.21 23.10 23.12 23.22 23.39 23.61 23.86 24.11 24.38 24.90 25.39 25.83 26.23 26.58 26.89 27.16 27.40 27.62 27.82 28.01 28.17 36.36 36.16 35.98 35.22 34.69 34.34 34.13 34.03 34.01 34.05 34.12 34.33 34.59 34.85 35.10 35.34 35.55 35.75 35.94 36.10 36.26 36.41 36.55 784.1 781.8 779.8 773.7 772.4 774.3 778.2 783.7 790.1 797.4 805.1 821.8 839.3 857.4 875.6 893.9 912.2 930.3 948.2 965.9 983.4 1000.6 1017.7 35.48 35.45 35.22 35.00 34.78 34.56 34.36 34.15 33.96 33.76 33.58 33.39 33.21 33.04 32.87 32.70 32.54 32.38 32.22 32.07 31.92 31.77 31.63 31.49 31.35 31.22 31.09 30.96 30.84 30.71 30.59 30.47 30.19 29.92 29.66 29.42 29.18 28.96 28.74 48.75 48.72 48.54 48.37 48.19 48.02 47.85 47.68 47.51 47.35 47.18 47.02 46.86 46.70 46.54 46.39 46.24 46.09 45.94 45.79 45.65 45.50 45.36 45.22 45.08 44.95 44.81 44.68 44.55 44.42 44.30 44.17 43.86 43.57 43.28 43.00 42.73 42.47 42.21 1462.1 1461.4 1456.1 1450.9 1445.8 1440.7 1435.7 1430.7 1425.8 1420.9 1416.1 1411.4 1406.6 1402.0 1397.4 1392.8 1388.3 1383.8 1379.4 1375.0 1370.7 1366.4 1362.2 1358.0 1353.9 1349.8 1345.8 1341.8 1337.8 1333.9 1330.0 1326.2 1316.8 1307.7 1298.8 1290.2 1281.9 1273.7 1265.8 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 382 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 190 195 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 123.66 124 126 128 130 132 134 136 138 140 142 144 146 148 150 155 160 165 170 Density 共mol/dm3兲 Internal energy 共J/mol兲 31.121 30.888 30.660 30.212 29.778 29.357 28.947 28.549 28.163 27.787 27.421 27.065 26.718 26.381 26.052 25.731 25.419 25.114 24.817 24.527 24.245 23.968 23.699 22.441 21.316 20.305 19.391 18.562 17.804 17.111 16.473 15.338 14.359 13.505 12.752 12.083 11.484 10.944 10.455 10.010 9.6027 9.2283 8.8829 ⫺509.01 ⫺348.14 ⫺188.42 127.71 439.64 747.62 1051.9 1352.6 1650.0 1944.3 2235.6 2524.1 2810.0 3093.4 3374.5 3653.4 3930.3 4205.2 4478.3 4749.7 5019.5 5287.8 5554.8 6872.0 8167.3 9449.0 10 723.0 11 995.0 13 269.0 14 545.0 15 828.0 18 412.0 21 027.0 23 671.0 26 345.0 29 045.0 31 770.0 34 517.0 37 284.0 40 069.0 42 870.0 45 688.0 48 519.0 39.920 39.905 39.820 39.736 39.652 39.569 39.486 39.404 39.322 39.241 39.161 39.081 39.002 38.923 38.845 38.651 38.461 38.274 38.089 ⫺2818.8 ⫺2807.3 ⫺2739.8 ⫺2672.5 ⫺2605.5 ⫺2538.6 ⫺2471.9 ⫺2405.3 ⫺2339.0 ⫺2272.9 ⫺2206.9 ⫺2141.1 ⫺2075.5 ⫺2010.1 ⫺1944.8 ⫺1782.4 ⫺1621.1 ⫺1460.8 ⫺1301.6 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 5917.5 110.56 6126.8 111.64 6334.8 112.70 6747.6 114.71 7156.0 116.61 7560.4 118.41 7961.0 120.11 8358.0 121.73 8751.5 123.28 9141.9 124.75 9529.3 126.16 9913.7 127.51 10 295.0 128.80 10 675.0 130.05 11 052.0 131.24 11 426.0 132.40 11 798.0 133.51 12 169.0 134.58 12 537.0 135.62 12 904.0 136.62 13 269.0 137.60 13 632.0 138.54 13 994.0 139.46 15 784.0 143.67 17 550.0 147.39 19 299.0 150.73 21 037.0 153.75 22 770.0 156.53 24 502.0 159.10 26 234.0 161.49 27 969.0 163.72 31 452.0 167.83 34 955.0 171.52 38 481.0 174.88 42 029.0 177.97 45 598.0 180.82 49 186.0 183.48 52 791.0 185.97 56 412.0 188.30 60 048.0 190.51 63 698.0 192.60 67 360.0 194.58 71 034.0 196.46 500.0 MPa isobar 9706.4 81.122 9722.5 81.252 9816.7 82.006 9910.6 82.745 10 004.0 83.472 10 098.0 84.185 10 191.0 84.885 10 284.0 85.573 10 376.0 86.249 10 469.0 86.914 10 561.0 87.567 10 653.0 88.210 10 744.0 88.842 10 836.0 89.464 10 927.0 90.075 11 154.0 91.563 11 379.0 92.994 11 603.0 94.372 11 826.0 95.700 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 28.54 28.34 28.16 27.81 27.48 27.19 26.91 26.66 26.43 26.21 26.01 25.83 25.66 25.50 25.36 25.23 25.10 24.99 24.89 24.80 24.71 24.63 24.57 24.32 24.22 24.23 24.32 24.46 24.64 24.84 25.06 25.50 25.92 26.31 26.66 26.97 27.24 27.49 27.71 27.91 28.09 28.26 28.41 41.97 41.73 41.50 41.05 40.64 40.25 39.87 39.52 39.19 38.88 38.59 38.31 38.05 37.80 37.56 37.34 37.13 36.94 36.75 36.58 36.41 36.26 36.12 35.53 35.12 34.86 34.70 34.64 34.63 34.67 34.74 34.93 35.15 35.37 35.59 35.79 35.97 36.13 36.29 36.43 36.56 36.68 36.80 1258.1 1250.7 1243.4 1229.6 1216.5 1204.2 1192.5 1181.6 1171.3 1161.6 1152.5 1143.9 1135.8 1128.2 1121.0 1114.3 1107.9 1101.9 1096.3 1091.0 1086.1 1081.4 1077.0 1058.7 1045.4 1035.9 1029.4 1025.3 1023.1 1022.5 1023.1 1027.4 1034.5 1043.7 1054.4 1066.0 1078.4 1091.3 1104.5 1118.0 1131.6 1145.2 1158.9 36.30 36.27 36.12 35.97 35.82 35.67 35.53 35.39 35.25 35.12 34.98 34.85 34.72 34.59 34.47 34.17 33.87 33.60 33.33 47.19 47.17 47.04 46.90 46.77 46.64 46.51 46.38 46.25 46.13 46.00 45.88 45.75 45.63 45.51 45.21 44.92 44.64 44.37 1860.1 1859.6 1856.8 1853.9 1851.0 1848.2 1845.4 1842.7 1839.9 1837.2 1834.5 1831.8 1829.1 1826.5 1823.9 1817.5 1811.2 1805.0 1799.0 THERMODYNAMIC PROPERTIES OF AIR 383 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 175 180 185 190 195 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 167.86 170 175 180 185 190 195 200 210 220 230 240 250 260 270 280 Density 共mol/dm3兲 Internal energy 共J/mol兲 37.908 37.729 37.553 37.380 37.209 37.041 36.711 36.391 36.079 35.776 35.480 35.192 34.911 34.636 34.368 34.106 33.850 33.599 33.354 33.114 32.878 32.648 32.421 32.200 31.982 31.769 30.756 29.826 28.965 28.164 27.416 26.714 26.054 25.431 24.283 23.247 22.305 21.443 20.651 19.921 19.243 18.614 18.027 17.478 16.963 16.480 ⫺1143.2 ⫺985.89 ⫺829.45 ⫺673.92 ⫺519.26 ⫺365.46 ⫺60.311 241.69 540.72 836.94 1130.5 1421.5 1710.2 1996.6 2280.8 2563.1 2843.4 3122.0 3398.9 3674.2 3948.0 4220.5 4491.6 4761.5 5030.3 5298.0 6623.2 7932.1 9231.2 10 526.0 11 820.0 13 116.0 14 417.0 15 724.0 18 356.0 21 018.0 23 707.0 26 424.0 29 164.0 31 926.0 34 708.0 37 508.0 40 324.0 43 155.0 46 000.0 48 857.0 43.415 43.352 43.208 43.065 42.925 42.786 42.649 42.514 42.249 41.990 41.738 41.493 41.252 41.018 40.789 40.565 ⫺736.70 ⫺670.08 ⫺514.75 ⫺360.10 ⫺206.12 ⫺52.792 99.887 251.93 554.16 853.98 1151.5 1446.8 1740.0 2031.1 2320.3 2607.7 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 12 047.0 96.982 12 267.0 98.221 12 485.0 99.419 12 702.0 100.58 12 918.0 101.70 13 133.0 102.79 13 560.0 104.87 13 981.0 106.83 14 399.0 108.69 14 813.0 110.45 15 223.0 112.12 15 629.0 113.72 16 032.0 115.24 16 432.0 116.69 16 829.0 118.09 17 223.0 119.42 17 615.0 120.70 18 003.0 121.94 18 390.0 123.13 18 774.0 124.27 19 156.0 125.38 19 536.0 126.45 19 913.0 127.49 20 290.0 128.49 20 664.0 129.46 21 037.0 130.41 22 880.0 134.75 24 696.0 138.58 26 494.0 142.00 28 279.0 145.11 30 058.0 147.96 31 833.0 150.59 33 608.0 153.04 35 384.0 155.33 38 947.0 159.53 42 526.0 163.30 46 124.0 166.73 49 741.0 169.87 53 375.0 172.78 57 026.0 175.49 60 691.0 178.02 64 370.0 180.39 68 061.0 182.63 71 763.0 184.74 75 476.0 186.75 79 198.0 188.66 1000.0 MPa isobar 22 297.0 85.397 22 397.0 85.987 22 629.0 87.335 22 860.0 88.639 23 091.0 89.899 23 319.0 91.120 23 547.0 92.303 23 774.0 93.451 24 224.0 95.645 24 669.0 97.718 25 110.0 99.679 25 548.0 101.54 25 981.0 103.31 26 411.0 105.00 26 837.0 106.60 27 260.0 108.14 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 33.07 32.82 32.58 32.35 32.13 31.91 31.51 31.13 30.78 30.45 30.14 29.85 29.58 29.33 29.10 28.88 28.67 28.47 28.29 28.12 27.96 27.82 27.68 27.55 27.43 27.32 26.89 26.61 26.47 26.41 26.43 26.50 26.60 26.72 26.99 27.27 27.54 27.79 28.01 28.21 28.39 28.55 28.70 28.83 28.95 29.07 44.10 43.84 43.58 43.33 43.09 42.86 42.40 41.98 41.57 41.19 40.82 40.47 40.15 39.84 39.54 39.27 39.00 38.75 38.52 38.30 38.09 37.89 37.70 37.52 37.36 37.20 36.56 36.11 35.81 35.63 35.53 35.49 35.51 35.55 35.70 35.89 36.08 36.26 36.43 36.58 36.72 36.85 36.97 37.08 37.18 37.27 1793.1 1787.4 1781.7 1776.2 1770.8 1765.5 1755.2 1745.3 1735.8 1726.7 1718.0 1709.5 1701.4 1693.6 1686.1 1678.8 1671.8 1665.0 1658.5 1652.2 1646.0 1640.1 1634.4 1628.8 1623.4 1618.2 1594.3 1573.6 1555.7 1540.0 1526.5 1514.8 1504.7 1496.1 1482.8 1473.8 1468.3 1465.5 1465.0 1466.3 1469.2 1473.2 1478.2 1484.0 1490.5 1497.6 37.29 37.17 36.90 36.65 36.40 36.15 35.92 35.69 35.25 34.84 34.45 34.08 33.74 33.41 33.10 32.81 46.74 46.63 46.38 46.14 45.90 45.66 45.43 45.20 44.76 44.33 43.92 43.53 43.16 42.80 42.45 42.12 2313.2 2311.1 2306.4 2301.7 2297.0 2292.5 2288.0 2283.6 2275.0 2266.7 2258.6 2250.8 2243.3 2235.9 2228.8 2221.8 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 LEMMON ET AL. 384 TABLE A2. Thermodynamic properties of air—Continued Density 共mol/dm3兲 Internal energy 共J/mol兲 290 300 310 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 40.345 40.130 39.920 39.714 39.512 39.314 39.119 38.928 38.741 38.557 38.376 38.198 37.351 36.567 35.836 35.150 34.505 33.895 33.316 32.765 31.736 30.791 29.916 29.101 28.338 27.622 26.946 26.307 25.701 25.125 24.577 24.054 2893.3 3177.3 3459.6 3740.5 4019.9 4297.9 4574.7 4850.3 5124.8 5398.2 5670.7 5942.2 7288.1 8619.7 9942.8 11 262.0 12 581.0 13 902.0 15 228.0 16 559.0 19 238.0 21 944.0 24 676.0 27 431.0 30 207.0 33 003.0 35 816.0 38 644.0 41 486.0 44 341.0 47 208.0 50 085.0 236.19 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 450 500 550 600 650 700 750 800 900 1000 1100 1200 47.967 47.893 47.700 47.512 47.327 47.145 46.968 46.793 46.622 46.454 46.289 46.126 45.967 45.810 45.656 45.504 45.355 45.208 44.506 43.852 43.240 42.664 42.120 41.603 41.111 40.641 39.760 38.945 38.184 37.471 3353.0 3466.7 3764.2 4060.2 4354.8 4648.0 4939.9 5230.5 5519.8 5808.0 6094.9 6380.8 6665.7 6949.6 7232.5 7514.5 7795.7 8076.2 9468.3 10 848.0 12 220.0 13 588.0 14 956.0 16 326.0 17 700.0 19 078.0 21 849.0 24 643.0 27 458.0 30 292.0 Temperature 共K兲 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 27 679.0 109.61 28 096.0 111.03 28 510.0 112.38 28 921.0 113.69 29 329.0 114.94 29 734.0 116.15 30 138.0 117.32 30 539.0 118.45 30 937.0 119.55 31 334.0 120.60 31 729.0 121.63 32 122.0 122.62 34 061.0 127.19 35 967.0 131.21 37 848.0 134.80 39 711.0 138.04 41 562.0 141.00 43 405.0 143.73 45 243.0 146.27 47 079.0 148.64 50 748.0 152.96 54 421.0 156.83 58 103.0 160.34 61 794.0 163.55 65 495.0 166.51 69 206.0 169.26 72 927.0 171.83 76 656.0 174.24 80 395.0 176.50 84 141.0 178.65 87 896.0 180.68 91 658.0 182.60 2000.0 MPa isobar 45 048.0 90.033 45 227.0 90.783 45 693.0 92.685 46 155.0 94.499 46 614.0 96.232 47 070.0 97.890 47 522.0 99.477 47 972.0 101.00 48 418.0 102.46 48 862.0 103.87 49 302.0 105.23 49 740.0 106.54 50 175.0 107.80 50 608.0 109.02 51 038.0 110.20 51 466.0 111.34 51 892.0 112.44 52 316.0 113.52 54 406.0 118.44 56 455.0 122.76 58 473.0 126.61 60 466.0 130.07 62 440.0 133.23 64 400.0 136.14 66 349.0 138.83 68 289.0 141.33 72 151.0 145.88 75 998.0 149.94 79 835.0 153.59 83 666.0 156.93 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 32.53 32.27 32.02 31.79 31.57 31.36 31.17 30.98 30.81 30.65 30.49 30.35 29.75 29.33 29.06 28.88 28.79 28.75 28.76 28.80 28.92 29.07 29.22 29.36 29.49 29.60 29.70 29.79 29.88 29.95 30.02 30.08 41.81 41.51 41.22 40.95 40.69 40.44 40.21 39.98 39.77 39.57 39.38 39.19 38.42 37.84 37.42 37.13 36.93 36.80 36.73 36.69 36.70 36.77 36.86 36.96 37.06 37.16 37.25 37.34 37.42 37.51 37.58 37.66 2215.1 2208.5 2202.1 2195.9 2189.8 2183.9 2178.1 2172.4 2166.9 2161.5 2156.2 2151.1 2126.8 2104.7 2084.6 2066.2 2049.3 2033.9 2019.9 2007.0 1984.7 1966.3 1951.2 1939.0 1929.2 1921.4 1915.5 1911.0 1908.0 1906.1 1905.2 1905.3 38.84 38.69 38.33 37.98 37.64 37.32 37.01 36.72 36.44 36.17 35.92 35.68 35.44 35.22 35.02 34.82 34.63 34.45 33.68 33.11 32.68 32.37 32.15 32.00 31.90 31.84 31.78 31.77 31.79 31.80 46.92 46.79 46.43 46.08 45.74 45.41 45.09 44.78 44.49 44.20 43.92 43.66 43.40 43.15 42.92 42.69 42.48 42.27 41.36 40.65 40.09 39.66 39.32 39.07 38.88 38.73 38.53 38.41 38.34 38.29 2923.5 2920.7 2913.6 2906.7 2899.8 2893.2 2886.7 2880.3 2874.1 2867.9 2861.9 2856.1 2850.3 2844.6 2839.0 2833.6 2828.2 2822.9 2797.6 2774.1 2752.1 2731.6 2712.4 2694.4 2677.5 2661.8 2633.2 2608.2 2586.1 2566.7 THERMODYNAMIC PROPERTIES OF AIR 385 TABLE A2. Thermodynamic properties of air—Continued Temperature 共K兲 1300 1400 1500 1600 1700 1800 1900 2000 Density 共mol/dm3兲 Internal energy 共J/mol兲 Enthalpy 共J/mol兲 Entropy J/共mol-K兲 cv J/共mol-K兲 cp J/共mol-K兲 Speed of sound 共m/s兲 36.799 36.162 35.556 34.978 34.425 33.894 33.384 32.893 33 143.0 36 010.0 38 889.0 41 780.0 44 680.0 475 90.0 505 07.0 534 33.0 87 493.0 91 317.0 95 138.0 98 958.0 102 780.0 106 600.0 110 420.0 114 240.0 159.99 162.82 165.46 167.93 170.24 172.42 174.49 176.45 31.82 31.83 31.84 31.85 31.85 31.85 31.86 31.86 38.25 38.22 38.21 38.20 38.19 38.19 38.20 38.21 2549.5 2534.2 2520.6 2508.5 2497.8 2488.2 2479.6 2472.1 J. Phys. Chem. Ref. Data, Vol. 29, No. 3, 2000
© Copyright 2026 Paperzz