17. ((2x−3)4 (x2 +x+1)5 )0 = 4(2x−3)3 ·2·(x2 +x+1)5 +(2x−3)4 ·5(x2 +x+1)4 ·(2x+1) = (2x − 3)3 (x2 + x + 1)4 (28x2 − 12x − 7). 31. (sin(tan 2x))0 = cos(tan 2x) · sec2 (2x) · 2 = 2 cos(tan 2x) sec2 (2x). 2 2 2 2 2 2 2 41. (sin2 (esin t ))0 = 2 sin(esin t ) cos(esin t )·esin t ·2 sin t cos t = 4 sin(esin t ) cos(esin t )esin t sin t cos t. 63. (a) (f ◦ g)0 (1) = f 0 (g(1)) · g 0 (1) = 5 · 6 = 30. (b) (g ◦ f )0 (1) = g 0 (f (1)) · f 0 (1) = 9 · 4 = 36. 65. (a) (f ◦ g)0 (1) = f 0 (g(1)) · g 0 (1) = f 0 (3) · (−3) = 43 . (b) (g ◦ f )0 (1) = g 0 (f (1)) · f 0 (1) = g 0 (2) · 2 DNE since g 0 (2) DNE. (c) (g ◦ g)0 (1) = g 0 (g(1)) · g 0 (1) = g 0 (3) · (−3) = −2. 69. (a) F 0 (x) = f 0 (ex ) · (ex )0 = ex f 0 (ex ). (b) G0 (x) = ef (x) f 0 (x). 75. y 0 = e2x (−3A sin 3x + 3B cos 3x) + 2e2x (A cos 3x + B sin 3x) = e2x ((2A + 3B) cos 3x + (2B − 3A) sin 3x). y 00 = e2x ((2(2A + 3B) + 3(2B − 3A)) cos 3x + (2(2B − 3A) − 3(2A + 3B)) sin 3x) = e2x ((12B − 5A) cos 3x + (−12A − 5B) sin 3x). 78. (xe−x )0 = e−x − xe−x = (1 − x)e−x . ((1 − x)e−x )0 = −e−x − (1 − x)e−x = −(2 − x)e−x . (−(2 − x)e−x )0 = e−x + (2 − x)e−x = (3 − x)e−x . Claim: (xe−x )(n) = (−1)n−1 (n − x)e−x . By induction on n, only need to consider ((−1)n−1 (n − x)e−x )0 = (−1)n e−x + (−1)n−1 (n − x)(−e−x ) = (−1)n (n + 1 − x)e−x . Hence, n = 1000 ⇒ −(1000 − x)e−x . 2π = 0.35 cos 2πt · 5.4 = 7π cos 2πt . 81. (a) dB dt 5.4 54 5.4 (b) t = 1 ⇒≈ 0.16. 86. (a) Rate of change of the volume of the balloon w.r.t. its radius or the time, respectively. 2 = 34 π d(rdt ) = 83 π dr . (b) V = 43 πr2 ⇒ dV dt dt x x dy y·1−x· dx dy de y 15. dx = e y and d(x−y) = 1 − dx . Hence, we have 2 y dx x ey −1 y x y xe −1 y2 x ey y x y − xey2 dy dx dy = 1 − dx ⇒ dy dx = x = ye y −y 2 x xe y −y 2 . 23. (4x3 dx y 2 + x4 (2y)) − (3x2 dx y + x3 ) + (2 dx y 3 + 2x(3y 2 )) = 0 ⇒ (4x3 y 2 − 3x2 y + 2y 3 ) dx = dy dy dy dy (−2x4 y + x3 − 6xy 2 ) ⇒ dx dy = −2x4 y+x3 −6xy 2 . 4x3 y 2 −3x2 y+2y 3 31. 4(x2 + y 2 ) · (2x + 2y 0 ) = 25(2x − 2yy 0 ). For x = 3, y = 1, we have 4(9 + 1) · (6 + 2y 0 ) = 25(6 − 2y 0 ) ⇒ y 0 = −9 . Tangent line: y − 1 = −9 (x − 3). 13 13 1 43. Horizontal ⇔ y 0 = 0 ⇒ 4(x2 + y 2 ) · (2x) = 25(2x). Then, either x = 0 or x2 + y 2 = 25 . 4 However, the only point on lemniscate with x = 0 is (0, 0), which gives no information about y 0 via the equation 4(x2 + y 2 ) · (2x + 2y 0 ) = 25(2x − 2yy 0 ). √ And x2 + y 2 = 25 4 2 5 3 25 5 2 2 = 25(x − + x ) ⇒ x = ± and y = ± . gives you the correct points: 2 · 25 4 4 4 4 √ dy dy dy −1 63. Suppose y = cos−1 x ⇔ x = cos y ⇒ 1 = − sin y dx = − 1 − x2 dx ⇒ dx = √1−x 2. √ 2 Note. Again, why sin y should be positive rather than being − 1 − x ? 2
© Copyright 2026 Paperzz