Study Guide for a No-Calculator Exam: Fractions HINT #1. The numerator (top) and denominator (bottom) may be multiplied or divided by the same value without changing the fractionβs numeric value. example i. example ii. example iii. 9 = 12 4 9 3 12 3 8 3 = 4 = 0.75 = 10 = 0.8 5 150 150×2 300 3 = 500×2 = 1000 = 10 = 0.3 500 HINT #2. Dividing by powers of 10 is easy. Use HINT #1 to get powers of 10 in denominator. example i. 150 example ii. 8 example iii. example iv. 100 = 1.50 (move the decimal point) 8×4 32 = 250×4 = 1000 = 32 ππ (βmilliβ) 250 1 1 = 3 ππ = 0.33 ππ 3ππ 16 320ππ 1 1 1 = 20ππ = 20 ππ = 20 ππ β 3 = .5ππ β 4 HINT #3. βPowersβ add when multiplied and subtract when divided. example i. 150ππ6 example ii. 6ππ9 50ππ8 = 150 6 50 ππ(6 β 8) = 3ππ β 2 = 0.03 3 = 8 ππ18 = 4 ππ18 = .75ππ18 8ππβ9 Worksheet #1 Reduce each fraction to a non-fractional value. You can check your answers with a calculator. 1. 8 = 4 12. 3 2. 80 13. 30 8 14. 4. = 40 6 15. 5. = 2 6 16. 5 6. 60 17. 50 7. = 20 6 = 200 18. 9 19. 9. = 2 90 20. 7 10. 9 21. 7 3. 8. 11. 4 = = 20 2 = = 20 9 = 200 22. 2 2 = 3 = 200 3 = 2000 4 = 40 50 4 5 = = 400 4 = 40 7 = = = 400 = Worksheet #2 Which fraction/value is not equivalent to the first? There may be more than one! a. b. c. d. 0.4 100 4 1000 0.04 10 0.04 1000 0.1 25 e. 0.004 a. b. c. 3 1200 1 400 9 3600 1 1 4 × 100 d. 0.25ππ β 2 e. 0.00025 a. b. 4 50 8 100 80 1000 c. 80 ππ d. 0.08 e. 8ππ β 3 a. b. c. 5 200 10 400 1 b. 40 1 4×10 d. 0.04 e. 0.025 a. b. 6 300 2 100 20 1000 c. 20 ππ d. 20000 ππ e. 2ππ β 3 a. 120 600 20 300 2 10 b. × c. 3 2 3 × a. 100 1 10 d. 0.67 e. 0.067 c. 7 500 7 a. 1000 14 b. 1000 7/5 100 d. 1.4ππ β 2 e. 0.014 a. 7 120 7 × 12 5 1 10 b. 1 ππ β 1 7 c. β 1.7ππ β 2 d. β 0.17 e. β 170 ππ a. 64 800 8 100 b. . 8 c. . 08 d. 80 ππ e. 800ππ Answers (left to right, top to bottom): c; d; a; c; e; e; b,c,d,e; b; e; a,b,c,d,e; b,e; d 9 300 9/3 300/3 3 100 c. . 09 d. 0.03 e. 30 ππ a. b. c. 1 20 10 200 10 2000 50 1000 d. 50 ππ e. 0.05 a. b. c. 3 270 1 90 12 1080 1 9 ππ β 1 d. 0.111 e. 0.0111 Worksheet #3 Reduce each fraction to a non-fractional value. The first is done for you. 1. 2. 3. 4. 5. 6. 7. 8. 9. .4 = 0.004 100 .5 = 200 1.8 = 200 1.8 = 10ππ 180 = 10ππ 4ππ = 10ππ 4ππ 10ππ .03 10ππ 3 = × 100 = 40ππ × 200 = 10. 11. 12. 13. 4m 5m 9m 0.18m 18m 0.4 400,000 0.3m 15 50ππ 12 9ππβ10 6ππβ8 2ππ8 18. 10. 11. 12. 13. 14. 15. 16. 17. 18. 8e-6 5k 66.7 0.5e-17 0.5 0.167e11 4e-20 1.71e6 100,000 8ππ8 = = 12ππ9 15. 17. × 10 = 6ππβ8 4ππ8 16. × 50 = 24ππ 14. Answers (your format may vary): 1. 2. 3. 4. 5. 6. 7. 8. 9. 8ππ = 12ππ = 1.6ππβ19 1200 16 28ππ × 300 = × 3ππ = 16ππ8 2000ππ 1 × = 8 Study Guide for a No-Calculator Exam: Logarithms HINT #1. log 2 π΄π΄ = π₯π₯ π π π π π π β π‘π‘βππππ 2π₯π₯ = π΄π΄ example i. log 2 1 = 0 example ii. log 2 2 = 1 example iii. 1 log 2 4 = 2 HINT #2. log 2 = β log 2 π΄π΄ π΄π΄ HINT #3. log 2 π΄π΄π΄π΄ = log 2 π΄π΄ + log 2 π΅π΅ example i. log 2 6 = log 2 2 + log 2 3 HINT #4. Use HINT#2 to fill in a table of logs when given logs of some of the factors in the table. example i. Given log 2 3 = 1.6, and using two examples from above, we find that log 2 6 = 1 + 1.6 = 2.6. example ii. log 2 12 = log 2 2 + log 2 2 + log 2 3 = 1 + 1 + 1.6 = 3.6 example iii. 3 log 2 = log 2 3 β log 2 7 = 1.6 β 7 2.8 = β1.2, π€π€βππππππ log 2 7 = 2.8 π€π€π€π€π€π€ ππππππππππ.
© Copyright 2026 Paperzz