Pacific Journal of
Mathematics
THE FACTORIZATION OF H p ON THE SPACE OF
HOMOGENEOUS TYPE
A KIHITO U CHIYAMA
Vol. 92, No. 2
February 1981
PACIFIC JOURNAL OF MATHEMATICS
Vol. 92, No. 2, 1981
p
THE FACTORIZATION OF H ON THE SPACE OF
HOMOGENEOUS TYPE
AKIHITO UCHIYAMA
r
Let A be a Calderon-Zygmund singular integral operator
with smooth kernel. That is, there is an Ω(x) defined on
n
R \{0} which satisfies
ί
Ω= 0 , Ω m0 ,
Jl»l=t
(* )
n
Ω(rx) = Ω(x) w h e n
\Ω{x)-Ω(y)\<\x-y\
r > 0 a n d x e R \{0} ,
w h e n \χ\ = \y\ = l,
and that
n
Kf(x) = P.V.[
Ω{x-y)\x-y\- f(y)dy.
K'f(x) = P. F. (
β(y - x)\y - x \~ Ay)dy .
Let
n
R. Coifman, R. Rochberg and G. Weiss showed the weak verx
n
sion of the factorization theorem of H (R ) and that was
refined by Uchiyama in the following form.
THEOREM A.
// 1 < q < ^
CKJI/WHHR*)
^
and 1/q + 1/r = 1, then
inf
/ = Σ.(.htKgt - gtK%)\
i =l
)
£ c'κ
In this note, we extend Theorem A to HV(X), where p e (1 — sx, 1]
and X is a space of homogeneous type with certain assumptions.
1* Preliminaries* In the following, A > 1 and 7<;i are positive
constants depending only on the space X
Let X be a topological space endowed with a Borel measure μ
and a quasi-distance d such that
(1)
( 2)
d(x,
y)^0
d(x, y) > 0 iff
xΦ y
(3)
d(x, y) = d(y, x)
(4)
d(x, z) £ A{d{x, y) 4- d(y, z))
453
454
AKIHITO UCHIYAMA
I d(x, z) - d(x, y) \/d(x, y) £ A(d(z, y)/d(x, y))r
if d(z, y) < d(x, y)/(2A)
( 6)
t/A£ μ(B(x, t)) ^ t
for all x, y, z in X and all t e (0, Aμ(X)), where B(x, t) = {y e X:
d(x, y) < i). We postulate that {B(x, t)}te(0, Aμ{x)) form a basis of open
neighborhoods of the point x.
Let φ{t) e C°°(0, w) be a fixed nonnegative function such that
φ(t) = 0 on (0, 1/2), φ{t) = 1 on (1, oo) and |d^/dί| < 3.
Further, we assume that X is endowed with a function k(x, y)
defined on X x X such that
(7)
\k(x,y)\^l/d(x,y)
( 8)
for all a?, y e X
sup{|fc(α, y)\:yeX
satisfying A~2ί ^ d(a;, T/) ^ t} ^
sup{| Jc(y, x)\:yeX
satisfying A^t ^ d(x, y) ^ t} ^
for all x G X and all ί e (0, Aμ{X))
9
i ^ , 1/) ~ k(%, «)l, 1^(2/, a?) - &(s, ») I ^ (d(2/, z)/d(x, y))r/d(x, y)
if d(2/, z) < d(x, y)/(2A)
2
and that for any / e L (X)
Kf(x) = lim^fo Jfc(ί», i/, t)f(y)dμ(y)'
K'f(x) = lim^+o Jfc(i/, x, t)f(y)dμ(y)
exist almost everywhere and
(10)
!|iΓ/||2^||/||2, | | ί Γ 7 | | 2 ^ | | / | | 8 >
where
fc(a, 2/, ί) = k(x, y)φ(d{x, y)/t)
G
\l/P
χ
\9(y)\pdμ(v)J
.
For xeX and ί e (0, Aμ(X)), let
T(x, ί) = {ΨeC(X):
(11)
supp f c B(x, t)
(12)
iy(ί/)i^i/ί
(13)
I Ψ(y) - Ψ(z) I ^ (d(yf z)/ί)V« for any y,zeX}
For / e L'(X) and j> > 1/(1 + 7), let
/*(*)=
sup sup
ί e (0,/l/<(ΛΊ)
ΨeT(x,t)
.
THE FACTORIZATION OF HP ON THE SPACE OF HOMOGENEOUS TYPE 455
If p > 1, then 11 /1 \HP ^ \\ f \ \p by t h e Hardy-Littlewood maximal theorem
P
P
and we define H (X) = L (X).
If 1/(1 + y)< p ^ 1, then we define
P
H (X) t o be t h e completion of {feL\X):
\\f\\Hp < °°} by t h e metric
11/-A
A comment on notation: The letter C denotes a positive constant
depending only on A and 7. The various uses of C do not all denote
the same constant. All the functions considered are real valued
functions.
2* The results* Our results are the following.
THEOREM 1. // 1/p = 1/q + 1/r < 1 + 7, 0 < 1/q < 1 + T, 0 < 1/r <
1 + 7, g e Hq n L2 and h e Hr Π L\ then
\\hKg
where cq>r is a positive constant depending on q, r and X.
REMARK 1. As a consequence of this theorem, for any geH9
r
and any heH we can define hKg — gK'h as the limit of [hjίg^ —
gjK'hj}™^ in Hp, where {f^JJU aHq f) L2 converges to g in Hq and
{hj}™^ c Hr Π L2 converges to h in Hr.
THEOREM 2. If μ(X) = oo, l ^ l/p = ι/q + l/r < 1 + 7, 0 ^ 1/g <
1 + 7, 0 ^ 1/r < 1 + 7 and f e Hp, then there exist {gj}f=1 c Hq and
{hj}f=1c:Hr such that
/ = Σ (hdκgj - gόK%) ,
As a result of these theorems, we get
COROLLARY 1. // μ(X) = «>, l ^ i/ p = i/ g + i/ r < i + 7 , o <
1/q < 1 + 7, 0 < 1/r < 1 + 7 cmd / e i P ,
β f i r | | / I U , ^ i n f {(gdlflryllπtllλyl
/ =Σ
ii
EXAMPLE 1. LetX=R% d(x, y) = \x-y\nωn=(ΣΛU(xJ~yjyr/2ωnf
μ
be the Lebesgue measure and let k(x, y) — Ω(x — y)\x — y\~n, where
n
ωn is the volume of the unit ball of R and Ω satisfies (*). Then,
by taking 7 = 1/n and by taking A sufficiently large depending on
456
AKIHITO UCHIYAMA
Ω, the conditions (1) ~ (10) can be satisfied. In this case, the above
definition of H1 coincides with the definition of H\Rn) given by
Fefferman-Stein [5]. Thus, Corollary 1 is an extension of Theorem A.
2. Let At = tp(0 < t < oo) be a group of linear transn
formation on R with infinitesimal generator P satisfying (Px, x) ^
n
n
(x, x), where ( , ) is the usual inner product in R . For each xeR
let p(x) denote the unique t such that \A^x\ — 1. Let Ω(x) be such
that
EXAMPLE
(
Jlαl=l
Ω(x)(Pχf
x) = 0 ,
Ω =£ 0 ,
Ω(Atx) = Ω(x) w h e n t > 0 a n d x 6 Rn\{0}
\Ω(x) -Ω{y)\
£ \x-y\
w h e n \χ\ =
\y\=l.
Let X = Rn, d(x, y) ~ p(x — y)ua)n, μ be the Lebesgue measure and
let k(x, y) = i2(a; — y)/d(x, y), where v — tr P. Then, by taking T =
1/v and by taking A sufficiently large depending on P and Ω, the
conditions (1) — (10) can be satisfied. [See Riviere [12].]
If we remove the condition μ{X) = ^°, we can show the following
a little weaker result.
2'. // μ(X) < oo9 x is connected, 1 ^1/p = 1/g + 1/r <
2
1 + 7, 1 < q, 1 < r, / G ίί ' α^ώ [fdμ = 0, ίAew ίλere exist {g^ c
THEOREM
=
±(hjKgj-g3-K'hj)
Γ. // μ{X) < <χ>, Xis connected, l<*l/p = Ijq + 1/r <
q < o o , K r < co, feHp and [fdμ = 0,
COROLLARY
1+7, K
Σ
REMARK
2. When μ(X) < oo, for feL\X)
we can easily show
\\fdμ ^ C inf f*(x) .
p
Thus, for any f eH we can define l/eϊμ by lim \/%cί/^, where {fn} c
THE FACTORIZATION OF W ON THE SPACE OF HOMOGENEOUS TYPE 457
1
p
p
L Π H and \imfn = / in H . And it follows easily that
3* The basic lemmas.
DEFINITION 1. If 1/(1 + 7) < p ^ 1, we say that a function a{y)
is a p-atom if there exists a ball B(x, t) such that
supp a c £(&, ί), I N L ^ ί~1/p, ( αώμ = 0 .
(20)
We can show easily that ||a||#p ^ cp.
DEFINITION 2.
1
For f eL
2
+ L , q > 0 and α > 0, let
Jlfff/(a0 = sup (ί
ί>0
\f\gdμltX/9
\Jΰ(a;,t)
/
ΛΓ*/(») = sup I \k(x, y, t)f{y)dμ{y)
ί>0
I J
K'*f(x) = sup I U(^ f α?, t)f{y)dμ{y)
t>o I J
/*M(cc) = sup sup I [fWdμ
where
Γβ(a;, ί) = {¥ 6 C(X): | f(«) | ^ f(t + d(«, z))" 1 ^
l ^ ^ l ^ φ ) ^ ^
if d{z, y) < ad(x, z)} .
LEMMA
1. If p > q, then
This is an immediate consequence of the Hardy-Littlewood maximal
theorem. We omit the proof.
LEMMA
2. If d{y, z) ^ d(x, y)/(2A), then
d(x, y)/(2A) ^ d(x, z) ^ 2Ad(x, y) .
This follows easily from (4). We omit the proof.
LEMMA
3. If t > 0 and if d(y, z) sΞ d(x, y)/(2A), then
I ψ{d(x, y)/t) - φ(d(x, z)/t) I = 0 if d(x, y) $ (ί/(4A), 2At) ,
g C(d(y, z)/d(x, y)Y
458
AKIHITO UCHIYAMA
otherwise.
Proof. Set w = φ(d(x, y)/t) - <p(d(x, z)/t). If d(x, y) £ ί/(4A),
then, by Lemma 2, d(x, z) S t/2. Thus, w = 0 - 0 = 0. If d(x, y) ^
2Atf then, by Lemma 2, d(x, z) ^ t. Thus, w = 1-1 = 0. If ί/(4A) <
d(x, y) < 2At, then, by (5),
\w\£
LEMMA
C\d(x, y) - d(x, z)\/t ^
4. If t > 0 and if d(y, z) <; d(a;, y)/(2A), then
\k(x, y, t) — k(x, z,t) <i Cd(y, z)rd(x, y)~ι~τ
Ί
l
T
\k(y> x, t) — k(z, x, t) <^ Cd(y, z) d(x, y)~ ~ .
Proof.
We show only the first inequality.
Note that
\k{x, y, t) - k(x, 2, ί ) | =S \k(x, y) - k(x9 z)\φ{d{x, y)/t)
+ \h(x, Z)\ \φ(d(x, y)/t) - φ(d(x, z)/t)\ .
By (9), the first term of (22) is dominated by d(y, z)rd(x, y)~ι~r. By
Lemma 2, Lemma 3 and (7), the second term of (22) is also dominated
by Cd(y, z)rd(x9 yYv~τ.
5. Let 1/(1 + 7) < p ^ 1 and ueHp.
Then, there exist
a sequence of real numbers {λyl^i and a sequence of p-atoms {aj}j^1
such that
LEMMA
(23)
u(x) = Σ λ. α/^)
in
Hp
when
μ(X) = 00 ,
i=i
u(x) = X Xάaά(x) + \udμ/μ(X)
5=1
in Hp when μ{X) < ^ ,
J
This is the atomic decomposition of HP(X) which was shown by
Macias-Segovia [10].
LEMMA 6. Let 1/(1 + 7) < p ^ 1, u e L\ supp u c B(x0, t) and t e
(0, Aμ{X)).
Then, there exists a sequence of real numbers {λ^JU and
a sequence of p-atoms {aό\f=1 such that
CO
(24)
where
,„
THE FACTORIZATION OF HP ON THE SPACE OF HOMOGENEOUS TYPE 459
λ0 - \udμtυημ{B(x0,
t)) , ao(x) = t-u>Xm,Olt)(x)
and XE denotes the characteristic function
of a measurable set E.
Note that \udμ l/ί <: CmfxeB{XQf2At)u*(x).
Then, applying Lemma
5 to u — λoαo, we get Lemma 6.
LEMMA
7.
Let 1/(1 + 7) < p ^ °°.
(25)
ιιr
Proof
cα]
Then,
i!^^
It can be shown easily that
^ caMJ(x) .
f^\x)
Thus, if p > 1, (25) follows from the Hardy-Littlewood maximal
theorem.
Let 1/(1 + 7) < p ^ 1. Note that if μ(X) < 00, then it is trivial
that WXi^ll ^ CpWX*™^ ^ cp,a. Thus, by Lemma 5, it suffices to
show (25) for a p-atom a(y) satisfying (20). If yeB(x,t/a)c,s
>0
and Ψ e Ta(y, s),
\\a(z)W(z)dμ(z)
=
\\a{z){Ψ{z)-Ψ{x))dμ{z)
S \
t-1/pd(z, xYd(x, yYι-τdμ
JB(x,t)
^ tl-lp+rd(x,
y)-1-? .
Thus,
(26)
a*i«\y) ^ t
If yeB(x, t/a), then
(27)
a*w(
Hence, by (26) and (27),
LEMMA
(28)
(29)
8.
Lei 1/(1 + 7) < p < °°.
Then,
\\K*f\\p^cp\\f\\HP
by (21)
460
AKIHITO UCHIYAMA
Proof. If p > 1, then these follow from the well known argument
about the maximal singular integral.
Let 1/(1 + τ ) < V ^ I- We show only (28).
oo, then it follows easily that
Note that if μ(X) <
Thus, by Lemma 5, it suffices to show (28) for a p-atom a{y) satisfying
(20). If d(x, y) > 2 At and s > 0, then
\k(yf z, s)a{z)dμ{z)
=
γjciy, z, s) - k(y, x, s))a{z)dμ{z)
^ C[
JB(x,t)
d(x} z)rd{x, iή-i-rf-ί'pdμ by Lemma 4
Thus,
K*a{y) ^ Ct1-1'*»d(x y)-1^ .
(30)
On the other hand, since (28) has been known for p = 2, we get
(31)
(
\K*a\pdμ ^ ^'^([l^a^dμY2
^ Cί^^Hαllr ^ C .
Thus, by (30) and (31), we g e t
(32)
LEMMA
9. Let ζ(x, y) he a function
defined on X x X such that
(33)
\ζ(x, y) - ζ(x, z)\ ^ d{y, z)rjd(x, y)
if d(y, z) < d(x, y)/(2A).
(34)
Let u e L2, supp u c B(xQf t), t e (0, Aμ(X))
v(cc) = jζ(£c, y)u{y)dμ{y)
and 1 + 7 > 1/Si > 7.
(ί
(35)
where
M
(
B(xo,2At)
l/s2 — l/s x — 7.
Proof.
If Si > 1, this can be shown in the same way as [13]
THE FACTORIZATION OF Ή* ON THE SPACE OF HOMOGENEOUS TYPE 461
120. Let 1/(1 + 7) < Si ^ 1. Applying Lemma 6 to u{x) and p = s19
we get {Xj}f=o and {αy(α0}Γ=o such that (24). For j = 1, 2, 3
, let
{
(36)
B(xjf tj) =) supp ah tγ ^ ^ 11 aό | U .
For i = 0,1,2, -. ,let
(37)
vά{x) - jζ(a;, y)aά{y)dμ{y) .
Then,
(38)
1
"", t f r - l ί s ^ d { x f
x3))
fori ^ l .
Thus, by (24) and s, ^ 1 < s2,
MrfΣIίl
JB(ίB0,t)
(39)
/
i=0
l
\jB(xo,t)
^^Σlλjl^c^
B{x0Λ
4. Proof of Theorem 1. We may assume q ^ r. Then r > 1.
Let x e X be fixed. Let ί 6 (0, Aμ(X)) and r e T(x, t). Then
-
g{y)K'h{y))dμ{y)
(40)
J
- K(Ψg){y))h(y)dμ{y) .
Set
iy(y, z) = k(y, z)(Ψ(y) - Ψ{z))g{z) .
Note that
Ψ{y)Kg(y) - K{Ψg){y) =ty(y,z)dμ(z) .
Let
(41)
d(x, y) > 16A*t .
Then Ψ(y) = 0. Set
\v(y, z)dμ{z) = -k{y, x) \ψ(z)g(z)dμ(z)
(42)
, ίc) - Λ(», z))Ψ{z)g{z)dμ(z)
462
AKIHITO UCHIYAMA
V, z)g(z)dμ(z) = η,{y) + ηt(y) .
If z 6 supp Ψ, then, by (41),
d(x, z) < d(y, x)/(2A) .
Hence, by (9) and (12),
\ζ2(y, z)\ ^ d(x, y^-ψ-1
(43)
.
If zu z2 e B(x, 2At), then, by (41) and Lemma 2,
d(x, 2X) < d(y, x)l(2A)
and d{zlt z2) < d(y, zί)/(2A)
Hence, by (9), (12) and (13),
(44)
^ Ifc(y,x) - fcfo,
2l
) I I Ψ{zx) - ^(« 2 ) [ + | k(y, zj - k(y, z2) \ | ^(2 2 ) |
^ 0(^(2!, zj/typ-'dix, y)-1^ .
Thus, by (43), (44) and suppζ2(2/, ) c £ ( x , ί),
Ct-rd(x, yy+rζ2(y,
-)eT(x,t).
So,
ι
(45)
1 %(ί/) I ^ Cd(a;, y)- -φg*(x)
.
Let
(46)
d(x, ?/) ^ 1<OAH .
Set
= Ψ(y) jfc(α, «)?>(d(», z)/(βt))g(z)dμ(z)
, z) - k(x, z))φ(d(x,
^ ,
z)(Ψ(y) - Ψ(z))φ'(d(x,
z)l(βt))g(z)dμ(z)
z)/(βt))g(z)dμ(z)Imx,16AH)(y)
(47)
J ; , 2, βt)g(z)dμ(z)
, z)φ'(d(x,
+ Ψ(y) Jζ t (y, z)g{z)dμ(z)
z)l(βt))g{z)dμ{z)l{y)
where β = 128Aβ and φ' = 1 — φ.
Since /3 is sufficiently large, if φ(d(x, z)/(βt)) Φ 0, then
d(x, y) < d(x, z)/(2A) .
THE FACTORIZATION OF H" ON THE SPACE OF HOMOGENEOUS TYPE
463
Hence, by (9),
(48)
\Uv, z)\ £ Ct'(t + d(x, z))~^ .
Let
(49)
d(zlf z2) < d(x, «x)
Set
\UV, «i) - UV, «,) I ^ |A<», 2X) - k(x, Z2)\φ(d(X, zj
k
z
+ 1 (y>
oil
+ (I Kv,
= c« + c42
By (49) and (9),
(51)
Since β is sufficiently large, if φ(d(x, zj/iβt))
Lemma 2,
Φ 0, then, by (46) and
d{x, z1)/(2A) :g d{y, zd •
Hence, by (49) and (9),
ζ42 ^ d(zu
By Lemma 2,
(53)
dfo z,) ^ d(x, «1)
If ζ4S > 0, then, by Lemma 3,
d(x, zύ > βtl(AA) .
So
d(x, y) £ 16A4ί ^ 64A5d(x, z2)/β = d(x, zt)/(2A) .
Thus, by Lemma 2 and (53),
(54)
d(y, z2) ^ d(x, z2)/(2A) ^ d(a;, 21)/(2A)2 .
Hence, by (7), Lemma 3, (53) and (54),
1
(55)
ι
ζ* £ (d(y, z,)- + d(x, z2)- )C(d(zlt
^ Cd{zlt z,yd(x, zj-1-* .
So, by (48), (51), (52) and (55),
r
z2)/d(x, zt))
464
AKIHITO UCHIYAMA
Cζt(y, • ) e Γ M - ! ( i , t ) .
Thus,
(56)
M
y
)
2
\
By (7) and (13),
(57)
\ζ,(y,
If d(zu z2) < d(y, zd/(2A), then by (7), (9) and (13),
£ I k(y, zXnzύ
- Ψ(z*)) I + IKV, zt) - k(y, z2) \ \ ¥(z2) - Ψ(y) |
ι
ι
^ d(y, zx)- t- -rd(zx, z2γ + d(y, z^diz,,
z^r^d^,
yγ
^ Cd(y, zι)-1t-ι-rd{zu z2γ .
(
So, by (57) and (58), Ct1+rζ5(y, z) satisfies the hypothesis of Lemma
9. Note that if z e B(x, 2Aβt),
)/(/3t))flr( •))*(«) ^ Cg*(z) .
(φ'(d(x,
Thus, by Lemma 9, we get
\
4
B(x,lQA t)
where 7 < l/s1 < 1 + 7 and l/s 2 = l/s1 — 7.
By (42), (45), (47) and (56),
\V(V, z)dμ(z) = -Wgdμk(y,
x)φ(d(y, x)/t) +
where
\V*(y)\ ^ Cg*ί{2Λ)'\x)tr(t
+ d(x,
Thus,
/, z)dμ(z)h(y)dμ(y)
(60)
^ C]g*(x)K'*h(x)
+ h*(x)K*g(x)
Since 1/j) = 1/q + 1/r and 1/p < 1 + 7, we can take s2 such that
(61)
1 + 7 > 1/β! > max(l/?, 7), 1/βJ = 1 - s2 > 1/r .
THE FACTORIZATION OF W ON THE SPACE OF HOMOGENEOUS TYPE
465
Then, by (59),
(62)
s(
t
Mv)\μ(v))X\
S cSlMSlg*(x)Mφ(x) .
By (40), (60) and (62), we get
(hKg - gK'h)*(x) ^ C{g*(x)K'*h(x) + h*(x)K*g{x)
All the terms on the right hand side belong to Lp by Lemma 1,
Lemma 7, Lemma 8 and (61).
5. Proof of Theorem 2. By Lemma 5, we may assume that
/ is a j)-atom such that
supp / c B(x0, t), 11 /1U < t-ι/"
and
^fdμ = 0 .
Let q ^ r. Then r > 1.
Let N be a large number depending only on X and p.
by (8), there exists y0 such that
A-2Nt ^ d(x0, y0) ^ Nt, \k(y0, xo)\ > l/(ANt) .
By (9),
inί{\ k(y, x)|: d(«, x0) < t, d(y, y0) < t) > l/(2ANt) .
Let
(70)
h(x) = Z B ( ϊ O l i ) (a;)^.
Then, \K'h(x)\ > C on £(«„, ί). Let
flr(ir) = -f(x)IK'h(x0) .
r
Then, geH',heH
and
1
ιιi; He. ιιftUs, ^ cdb-wm *
= CN .
Set
= f{χ) - (h{x)Kg(x) - g(x)K'h(x))
= f(x)(K'h(x,) - K'h(x))/K'h(x0) - h(x)Kg{x)
— wax) + Wt(x) .
Since supp ^ c 5(a;0, ί) and 11 w,. | L ^ t~1/pN"r, we see that
Then,
466
AKIHITO UCHIYAMA
ί
wfp{x)dμ{x)
2
t-ιN~rP(l
^ I
2
+ d(xQf x)/t)~pdμ(x)
τ
jB(xQ,4A Λ t)
^ cpN~rP+1-p log N .
A similar estimate holds for w2.
Thus,
w?2' + wtpdμ
w*p(x)dμ(x) ^ I
I
2
2
JB(x0AA Nt)
τ
JB(xQ,4A Λ t)
^ cpN'ΪP+1-p
log iV
> 0 as
N
> oo .
Since supp w c B(xQ, 2ANt) and Iwd^ = 0, by taking N
sufficiently
large and applying Lemma 6 to w(x), we get
w(x) =
where {fj}f=1 are p-atoms and
oo
3=1
Hence,
/ - (hKg - gK'h) + Σ λy/y .
5=1
Applying the same argument to each f5 and repeating this process,
we get the desired result.
6* Proof of Theorem 2'* Since μ{X) < oo and X i s connected,
we can easily see that for any ε > 0 and any p-atom a(x)f there
exist {aj{x)}%l such that
and that each aά is a p-atom supported on the ball with radius <ε.
Thus, for the proof of Theorem 2', we may assume that / is a
p-atom such that the radius of its support is less than N~ιμ(X),
where JV is a sufficiently large number, depending only on X and
p, to be determined later.
Following the proof of Theorem 2, we define h(x) by (70) and
g(x) by
g(x) - -f(x)/K'h(x)
Then,
.
THE FACTORIZATION OP W ON THE SPACE OF HOMOGENEOUS TYPE 467
w(x) = f{x) - (h(x)Kg(x) - g(x)K'h{x)) = -h(x)Kg(x) .
Note that if y e B{yQ, t), then
/, z)f(z)dμ(z)/K'h(x0)
/, z)f(z)(l/K'h(x0) - 1/K'h(z))dμ(z)
£c\\k(y,z)-k(y,xo)\\f(z)\dμ(z)
+ \\k{y,z)\\f{z)\N-rdμ{z)
SΞ c
^Ntrw-rifωidμω ^
CN-1-^*
.
Thus,
,||A|| r ^ C||/IU|Λ|| Γ ύ C r ^ W
= CN,
μ = 0,
supp w c B(y0, t)
l | w | L ^ \\h\Usu-pytmyo,t)\Kg(y)\ ^
If iV is sufficiently large, then 2w is a ^-atom and the radius of its
support is less than N^μiX).
Iterating this process, we get desired
result.
I thank Professor M. Kaneko for helpful
conversation and valuable information.
ACKNOWLEDGMENT.
REFERENCES
1. A. P. Calderon and A. Torchinsky, Parabolic maximal functions associated with a
distribution, Advances in Math., 16 (1975), 1-64.
2. R. R. Coif man, A real variable characterization of Hp, Studia Math., 5 1 (1974),
269-274.
3. R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces
in several variables, Ann. of Math., 103 (1976), 611-635.
4. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis,
Bull. Amer. Math. Soc, 8 3 (1977), 569-645.
5. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math., 129 (1972),
137-193.
6. J. B. Garnett and R. H. Latter, The atomic decomposition foi Hardy spaces in several
complex variables, Duke Math., J., 4 5 (1978), 815-845.
7. S. Janson, Mean oscillation and commutator of singular integral operators, Uppsala
Universiy Department of Math. Report No. 1977: 5.
8. R H. Latter, A characterization of Hp(Rn) in terms of atoms, Studia Math., 62(1978),
93-101.
p
9. R. H. Latter and A. Uchiyama, The atomic decomposition for parabolic H spaces,
to appear.
468
AKIHITO UCHIYAMA
10. R. Macias and C. Segovia, A decomposition into atoms of distributions on spaces of
homogeneous type, preprint.
11.
, Lipschitz functions on spaces of homogeneous type, preprint.
12. N. M Riviere, Singular integrals and multiplier operators, Arkiv Mat., 9 (1971),
243-278.
13. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970.
14. A. Uchiyama, On the compactness of operators of Hankel type, Tόhoku Math. J., 30
(1978), 163-171.
Received October 1, 1979.
TOHOKU UNIVERSITY
KAWAUCHI, SENDAI, JAPAN
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
J . DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90007
DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024
HUGO ROSSI
R. F I N N and J .
University of Utah
Salt Lake City, UT 84112
MILGRAM
Stanford University
Stanford, CA 94305
C. C. MOORE and A N D R E W OGG
University of California
Berkeley, CA 94720
ASSOCIATE EDITORS
R. ARENS
E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA
SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please
do not use built up fractions in the text of the manuscript. However, you may use them in the
displayed equations. Underline Greek letters in red, German in green, and script in blue. The
first paragraph or two must be capable of being used separately as a synopsis of the entire paper.
Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in
triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math.
Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent.
All other communications should be addressed to the managing editor, or Elaine Barth, University
of California, Los Angeles, California, 90024.
50 reprints to each author are provided free for each article, only if page charges have been
substantially paid. Additional copies may be obtained at cost in multiples of 50.
The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $102.00 a year (6 Vols., 12 issues). Special rate: $51.00 a year to individual
members of supporting institutions.
Subscriptions, orders for numbers issued in the last three calendar years, and changes of address
shoud be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A
Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.
PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.
Copyright © 1981 by Pacific Jounal of Mathematics
Manufactured and first issued in Japan
Pacific Journal of Mathematics
Vol. 92, No. 2
February, 1981
Bruce Allem Anderson and Philip A. Leonard, Sequencings and Howell
designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Kevin T. Andrews, Representation of compact and weakly compact
operators on the space of Bochner integrable functions . . . . . . . . . . . . . . . . 257
James Glenn Brookshear, On the structure of hyper-real z-ultrafilters . . . . . . 269
Frank John Forelli, Jr., A necessary condition on the extreme points of a
class of holomorphic functions. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Richard J. Friedlander, Basil Gordon and Peter Tannenbaum, Partitions
of groups and complete mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Emden Robert Gansner, Matrix correspondences of plane partitions . . . . . . . 295
David Andrew Gay and William Yslas Vélez, The torsion group of a
radical extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
André (Piotrowsky) De Korvin and C. E. Roberts, Convergence theorems
for some scalar valued integrals when the measure is Nemytskii . . . . . . . . 329
Takaŝi Kusano and Manabu Naito, Oscillation criteria for general linear
ordinary differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Vo Thanh Liem, Homotopy dimension of some orbit spaces . . . . . . . . . . . . . . . 357
Mark Mahowald, bo-resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365
Jan van Mill and Marcel Lodewijk Johanna van de Vel, Subbases, convex
sets, and hyperspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
John F. Morrison, Approximations to real algebraic numbers by algebraic
numbers of smaller degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Caroline Series, An application of groupoid cohomology . . . . . . . . . . . . . . . . . . 415
Peter Frederick Stiller, Monodromy and invariants of elliptic surfaces . . . . . 433
Akihito Uchiyama, The factorization of H p on the space of homogeneous
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Warren James Wong, Maps on simple algebras preserving zero products.
II. Lie algebras of linear type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
© Copyright 2026 Paperzz