log 8 log 2 log 4 = + log 8 log 4 log 2 = + log 8 log 2 log 4 = ∙ log 27

Algebra 2 Trig
Unit 7: Polynomials
Day 1 – 9.3: Properties of Exponents
Name:
Period:
Let’s Explore…
Circle the TRUE statements below. Then, create a conclusion statement based on the logarithm provided.
Product Rule
Quotient Rule
Power Rule
log 2 8  log 2 2  log 2 4
log 2 8  log 2 16  log 2 2
log 2 8  3  log 2 2
log 2 8  log 2 4  log 2 2
log 2 8  log 2 2  log 2 16
log 2 8  2  log 2 3
log 2 8  log 2 2  log 2 4
log 2 8  log 2 16  log 2 2
log 2 8  log 2 2  log 2 3
log3 27  log3 3  log3 9
log 2 8  log 2 2  log 2 16
log 4 64  4  log 4 4
log3 27  log3 3  log3 9
1
log 3    log 3 3  log 3 9
3
log 4 64  3  log 4 4
Conclusion:
Conclusion:
Conclusion:
log a XY 
log a  X  Y  
log a  X y  
Partner Think Tank!
Identify each statement below as TRUE or FALSE. If the statement is FALSE, correct it so that it is TRUE.
1.
log 9  log 3  log 6
2.
log16  4  log 2
3.
ln 4  ln 5  ln 9
Multiple Choice. Which of the following is equivalent to log 9  3log 2  log 3 ?
a.
log 8
b.
log14
c.
log18
d. log 24
Use A = logx 3 and B = logx 5 to write an equivalent expression using A and B.
1. logx 25
4. log x
5
3
7. logx 75
3
5
2. logx 27
3. log x
5. logx 15
6. logx 45
8. log x
1
3
9. log x
9
5
Solve each equation. Check your solutions!
10. log10 27 = 3 log10 x
12. log6 2c + log6 8 = log6 80
11. log4 5 + log4 x = log4 60
13. log5 y − log5 8 = log5 1
14. log2 q − log2 3 = log2 7
15. log10 x + log10 (3x − 5) = log10 2
16. log4 x + log4 (2x − 3) = log4 2
17. log3 d + log3 3 = 3