JWJ~ $GP)WTKQP7PKXGTUKV[QHVJG0GIGX JJ &GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI svxd zwipkna dpiga 2006 x`exat 1 dl`y ep` .u ∈ U, v1 , v2 ∈ V, w ∈ W mixehwede W -e V ,U miixehwed miagxnd mipezp zix`ipild dwzrda mipc 2 1 T = ( w ⊗ v ) ◦ ( v ⊗ u ). (1) ?ef dwzrd dtnn agxn dfi`l agxn dfi`n .1 zervn`a mipezpd mixehwed z` e`ha ,mipeyd miagxna miqiqa exicbd .2 .el` miqiqal ziqgi gikedl yi . T T dwzrdd ly dvixhnd z` e`vne ,qiqad ixehwe dwzrdd xear (znieqn dcina xzei heyt) xg` iehia eazk .3 .lirl dwzrdd zxcbdn zexiyi iehiad z` 2 dl`y dzxfbpy sebd ly dpezp divxebitpew `id :`ad i`pzd z` miiwnd B κ xy`k κ ( B) lr b sebd gek dcy oezp b0 sebd gek dcy didi dn . F `id B ly P wlg lk xear Z Z b0 ( X ) dV = P -iyne ∂B sebd zty lr b(κ ( X )) dv. κ ( P) X dcewpn mi`veid U, V zeawra .mixvei mdy ziliawnd ly ghyd z` ?ziliawnd zenc ly ∂B lr xcbend t0 .1 sebd lr xcbend a miphw mixehwe ipy mipezp .2 A ici lr onqp .dtyl miw ghyd didi dn ,lirl dtyd gek dcy didi dn .∂κ ( B ) lr ,∂B ly Q divxebitpewd dtyd gek dcy oezp .3 wlg lk xear :`ad i`pzd z` miiwnd Z Z t0 dA = Q t κ t da. κ ( Q) 3 dl`y un`nd xeqph ici lr oezp dgepna `vnpd lfep jeza ihhqexcdd ugld Tij = ρgx3 δij . .lfepd zetitv `id ρ xy`k ?lfepa lretd sebd gek edn .1 izla elcebe lfepd ztyl avip lfepd ly edylk wlg lr dtyd gek ik egiked .2 b dtyl avipa ielz .n `vnpy edylk seb lr lirtn mxefdy gekd ik raewd qcnikx` weg z` egiked .3 .dgec sebdy mxefd lwynl deey ekeza 4 dl`y dwzrdd zxcben b n oezp dcigi xehwe xear b). T = 5( I − 2b n⊗n ?ef dwzrd ly zixletd dcxtdd idn 5 dl`y ihpnene m seb ihpnen seb lr milret dtyd zegeke sebd zegekl sqepa ik migipn ep` `ed sebd lr lretd mihpnend lk jqy jk µ dty Z M= Z ( x × b + m) dv + κ ( B) wlga ( x × t + µ) da. (2) ∂κ ( B) µ P ( x ) dtyd ihpnen zelz xear iyew zgpdl zibelp`d dgpdd didz dn ? P sebd (Couple-Stress) mihpnen-un`n xeqph meiw z` egiked iyew htynl dibelp`a .sebd iwlg lr dtyd hpnen z` lawl ozip epnny τ .1 .2 ?τ xear lwyn ieeiy ly zil`ivpxticd d`eeynd didz dn .3 !!dglvda aby oae`x 2 1 dl`y oexzt sqed) f (r )vw = f 0 − mω02 r-l gekd iablα √ '` sirq 2 · β= oezpd owez dpigaa ,al miy .(m-d ∑ fr = mar = m(r̈ − rθ̇ 2 ) ozep f 0 − mω02 r = mr̈ − mω02 r. ,r̈ r (t) = = f 0 /m o`kn f0 2 t + Ct + D 2m dlgzdd i`pz zavdae 'a sirq N = f θ = maθ = m(r θ̈ + 2ṙ θ̇ ) = m · 2 f0 t ω0 m (dpigad oeilb lr miyxz d`x) 2 dl`y ω̄ = ω̄1 + ω̄2 = ω1 k̂ + ω2 î, R̄ = R̄OA = Lî + ˆb ω̇ = ω̄1 × ω̄2 = ω1 ω2 jk. L L sin 37ĵ − cos 37k̂, 2 2 c R̄˙ XYZ = V AB, c = sin 37̂b − cos 37k̂. AB c R̄¨ XYZ = R̈ XYZ AB. c + ω̄ × (ω̄ × R̄) + ω̄˙ × R̄ + 2ω̄ × (V AB c ). r̄¨ = R̈ XYZ AB mixai`d xzi lk .cg` ixlwq mlrp `ede ziqgid dve`zd `ed R̈ XYZ ef d`eeyna .mireci ∑ f¯ = mr̄¨, N̄ + mg(−k̂) = mr̄¨ c -l avip `ede wiwlgd lr lirtn hendy gekd xehwe `ed miltek m` . AB zixlwq d`eeyn milawne ltep el yiy) N̄ N̄ N̄ xy`k c -a zixlwq dlrnl oinin d`eeynd z` f` , AB xehwed z` milawne d`eeyna r̄¨-l dxfg eze` miaivn . R̈ XYZ xear zg` .( x oeeika aikx mb 3 3 dl`y ω̄ = ω̄0 + ω̄1 = ω0 k̂ + ω1 î, ω̇ = ω̄1 × ω̄0 = −ω1 ω0 ĵ. `ed divxpi`d xefph [I] = 1 2 4 mr 0 1 2 4 mr 0 0 0 0 0 1 2 2 mr ,o`kne 1 ∑ M̄ = H̄˙ = I (ω̄˙ ) + ω̄ × ( I (ω̄ )) = − 2 mr2 ω0 ω1 ĵ. ok m` `id zihpeelxd mihpnend z`eeyne ,oaenk zqt`zn dqnd fkxn zve`z :y xiv aiaq − Ax 3L L 1 − Bx = − mr2 ω0 ω1 . 2 2 2 ,lawzn A x = − Bx = 1 mR2 ω0 ω1 2L (.dwihhqdn 4 Bz = mg xy`n ueg miqt`zn xzid)
© Copyright 2026 Paperzz