%I
%S 11,111,1111,1122,1212,1221,11111,11122,11212,11221,11222,12112,12121,
%T 12122,12211,12212,12221,111111,111122,111212,111221,111222,112112
%N List of words of length n over an alphabet of size 9 that are in standard order and which have the property that every letter that appears in the word is repeated.
%C We study words made of letters from an alphabet of size b, where b >= 1. (Here b=9.) We assume the letters are labeled {1,2,3,...,b}. There are b^n possible words of length n.
%C We say that a word is in "standard order" if it has the property that whenever a letter i appears, the letter i1 has already appeared in the word. This implies that all words begin with the letter 1.
%C These are the words described in row b=9 of the array in A278987.
%D D. D. Hromada, Integerbased nomenclature for the ecosystem of repetitive expressions in complete works of William Shakespeare, submitted to special issue of Argument and Computation on Rhetorical Figures in Computational Argument Studies, 2016.
%H Daniel Devatman Hromada, <a href="/A273978/b273978.txt">Table of n, a(n) for n = 1..4360</a>
%H Joerg Arndt and N. J. A. Sloane, <a href="/A278984/a278984.txt">Counting Words that are in "Standard Order"</a>
%o #PERL checking whether numbers listed in A273977 and given in standard input belong to the current sequence
%o OUTER: while (<>) {
%o my %d;
%o $i=$_;
%o chop $i;
%o for $d (split //,$i) {
%o (exists $d{$d}) ? ($d{$d}++) : ($d{$d}=1);
%o }
%o for $k (keys %d) {
%o next OUTER if ($d{$k}<2);
%o }
%o print "$i\n";
%o }
%Y Subset of A273977.
%Y Cf. A278987.
%K base,easy,nonn
%O 1,1
%A _Daniel Devatman Hromada_, Nov 10 2016
%E Edited by _N. J. A. Sloane_, Dec 06 2016
