EXERCISE(Complex Variable) 1. Show that the following limits does not exit. Re z 2 1 (a) lim 2 (b) lim + ix 2 1 y z →0 z →0 1 − e z 2. Examine the continuity of the function Img z 3 , z≠0 2 f ( z) = z , z=0 0 3. Show that for the function x 3 − 3 xy 2 y 3 − 3 x 2 y +i 2 , ( x, y ) ≠ 0 2 f ( z) = x2 + y 2 + x y 0 , ( x, y ) = 0 Cauchy-Riemann Equations are satisfied at the origin. Does f ′(0) exist ? 4. Find an analytic function f ( z )= u + iv such that Img f ′( z ) = 1 + y and f (1 + i ) = 0. 5. Find the values of the constants a, b, c & d such that the function f ( z ) = ( y 2 + axy + bx 2 ) + i (cy 2 + dxy + x 2 ) is analytic. 6. Let f ( z )= u + iv and g ( z )= v + iu be analytic functions for all z . Show that u and f ( z) . v are constant. If f (0) = 2i and g (0) = 5 , then find the value of h( z ) = g ( z) 7. If f ′( z ) = − f ( z ) for all z , then find f ( z ) . 8. Show that if f ( z )= u + iv and g ( z )= A + iB are differentiable at a point z , u x u y Ax Ay 2 Then f ′( z ).g ′( z ) = vx v y Bx By 9. If f ( z )= u + iv is an analytic function, show that f ( z ) is not Harmonic. 10. If f ( z )= u + iv is an analytic function, show that log f ( z ) is a Harmonic. 11. Prove that f ( z ) = z is differentiable but not analyticat z = 0 . 4 12. If C is the curve y = x 4 + x 2 − x + 1 joining points (0,1) and (1, 2) , then find the value of ∫ ( z 2 − iz ) dz . C sin z + cos z where C is the circle z = 4 . π C z− ( z −π ) 2 cos z 4. if C is the ellipse z − 1 + z + 1 = 14. Evaluate ∫ πi C z −πi z − ( ) 2 1 e zt 15. Evaluate ∫ 2 2 dz if t > 0 and C is the circle z = 3 . 2π i C ( z + 4) 13. Evaluate ∫ 16. Find Laurent series about the indicated singularity for each of the following functions. Name the singularity in each case and give region of convergence of each series. 1 (a ) ( z − 3) cos , z= −4 z+4 1 (b) , z = −3 ( z + 3) 2 z 2 17. Expand the function 1 in the Laurent series valid for f ( z) = ( z + 2)( z + 4) (a ) 2 < z < 4 (b) z > 4 (c ) 0 < z + 2 < 2 ( d ) z < 2 18. Determine the poles and Residues at the poles for f ( z ) = sec h z . 19. Evaluate 2 cos π2 z ∫ z ( z − 2 ) 2 dz . C ∞ 20. Evaluate ∫ (x 0 2 dx + 1) ( x 2 + 4) 2 Hint & Answers Ex -1. (a) Use paths x → 0 , y → 0 and y → 0, x → 0 (b) Use paths x → 0, y → 0 + and x → 0, y → 0 − 2. Continuous. Use r , θ definitions ∂u ∂x ∂u ∂y ∂v ∂x ∂v ∂y 3. At (0,0) we have= 1,= 0,= 0,= 1 , but lim z →0 f ( z ) − f (0) does not exist (e.g. z −0 choose path y=mx) 4. Ans. f ( = z) 1 2 ( z + 2iz + 2 − 4i ) 2 5. a = −2, b = −1, c = −1, d = −2 by showing partial derivatives are continuousand then calculate by assuming C − R are satisfied 6. h( z ) = 2i 5 7. f ( z ) = ke − z Use f ′( = z) 8. Use f ′( = z) ∂u ∂v where f ( z )= u + iv then apply C − R equations +i ∂x ∂x ∂u ∂v +i ∂x ∂x 9.= w | f (= z) | u 2 + v 2 does not satisfy Laplace equation. 10. Use Laplace equation for w = 1 log(u 2 + v 2 ) 2 f ( z ) − f (0) using x r= cos θ , y r sin θ But C.R. are not satisfied at 2r 3 0= ≤ lim = z →0 r →∞ z (0,0) for f ( z ) = | z |4 = ( x 2 + y 2 )2 , z ≠ 0 11.= f ′(0) lim 1 5i ) z 2 − iz is analytic, hence Integral is Independent of path. So choose + . As f ( z= 6 2 path c= c1 ∪ c2 when c1 : straight line joining (0, 1) to (1, 1) & c2 : straight line joining (1, 1) (1, 2) 12. Ans.= ∫ (z c1 2 1 i 1 − iz )dz =+ while ∫ ( z 2 − iz )dz =− 2i 3 2 6 c2 13. Ans. −8i −π & π which lie inside |z|=4. Apply Cauchy Integral formula after breaking the 2 Singular points are 2 sin z + cos z sin z + cos z dz − ∫ dz Integral into ∫ π π | z| = 4 z − π z− 2 14. Ans. −4 cosh π 2 Singular points z = π i (lies outside) while π 2 i (lies inside). Break up the integral into two parts & apply Cauchy Theorem and Cauchy Integral Formula. 15. Ans. 1 [ −t cos 2t + sin 2t ] 8 Singularities are z = ±2i , both are of order 2 lying inside |z|=3. Residue z = +2 i (z e zt 2 + 4) 2 = e 2it e zt e −2it & − 16 t − 8 i Residue = −16t + 8i ] [ ] z = −2i 2 2 4 [ 44 4 4 z + ( ) Apply Residue Theorem 16. Ans. (a) z − 3 − 1 7 .............; z =−4 is essential singularity. Put z + 4 = + 4 & use 2( z + 4) 2( z + 4) 2 the expansion of cos 1 around 0. The series converges for all values of z ≠ −4 u 1 2 2 1 + 3 ( z + 4) + 3 ( z + 3) + ...... series converges 0 <| z + 3 |< 3, z =−3 is double 9 ( z + 3) 1 (b) 2 pole 17. Ans. (a) ...... − 4 2 1 1 1 z z2 + − + − + − + ...... z 2 z 3 z 2 2 z 8 32 128 (b) 1 6 − + ..... z 2 z3 (c) 1 1 1 − + ( z + 2) + ...... 2( z + 2) 4 8 1 8 (d) − 3 z + ....... 32 −1 Hint use 1 1 2 1 1 1 1 = = − 1 + expand . If |z|>2, ( z + 2) z z ( z + 2)( z + 4) 2 z + 2 z + 4 Assuming 18. Ans. z = 2 < 1 similarly others |z| 1 (2n + 1)π i for n= 0, ±1,..... poles; Residue = (−1) k +1 i , k=0,1,.... π 2 =z (2 n +1) 2 19. Ans. 2π i , Apply Residue theorem. Poles are z=0(order 1), z = 2 (order 2). 5π .Use 20. Ans . 288 dz ∫c ( z 2 + 1)( z 2 + 4) where C: Poles z = i of order 1& z = 2i of order 2 lies inside c ∫ ( z c 2 1 11 5π dz )= . = 2π i ( − 2 + 1)( z + 4) 18i 288i 288 C -R O R
© Copyright 2026 Paperzz