Life Science_int.indd - Saddleback Educational Publishing

Table of Contents
Building Process and Thinking Skills
Drawing a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reading a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Organizing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Identifying Variables in an Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Designing an Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drawing Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Predicting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analyzing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
2
3
4
5
6
7
8
Developing Concepts
Characteristics of Living Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Redi and Pasteur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Carbohydrates, Lipids, Proteins, and Nucleic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cell Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comparing Prokaryotic and Eukaryotic Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Animal Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plant Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Levels of Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DNA Structure and Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protein Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mitosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Meiosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Asexual and Sexual Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cellular Respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Photosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comparing Kingdoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Viruses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protists and Disease—Malaria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reproduction in Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plant Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mosses, Liverworts, and Hornworts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Life Science_int.indd 3
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
5/21/13 12:32 PM
Moss Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ferns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fern Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comparing Angiosperms and Gymnosperms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Asexual Reproduction in Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Life Cycle of a Gymnosperm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Life Cycle of an Angiosperm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Monocots and Dicots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parts of a Flower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Roots, Stems, and Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using a Classification Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Animal Kingdom—Comparing Phyla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Invertebrates vs. Vertebrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sponges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Cnidarians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Flatworms and Roundworms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Segmented Worms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Mollusks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Arthropods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Insects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Echinoderms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Comparing Fish, Amphibians, and Reptiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Comparing Birds and Mammals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Amphibians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Reptiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Birds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Mammals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Mammal Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Comparing Vertebrate Hearts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Single-Trait Crosses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Genetics of Blood Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Sex-Linked Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Pedigrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Genetic Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Life Science_int.indd 4
5/21/13 12:32 PM
Amino Acid Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Geologic Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Human Body Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Skeletal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Types of Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
The Muscular System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Good Eating Guidelines and Nutrition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
The Digestive System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
The Respiratory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
The Skin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
The Flow of Blood Through the Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Parts of the Blood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
The Circulatory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
The Excretory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
The Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Structure of the Eye and Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
The Reproductive System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
The Endocrine System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
The Immune Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Ecosystems—Abiotic and Biotic Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Land Biomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Water Biomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Food Webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Predator–Prey Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Ecological Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
The Water Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
The Carbon Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
The Nitrogen Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Ecological Succession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Ecological Pyramids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
The Greenhouse Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Answer Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Life Science_int.indd 5
5/21/13 12:32 PM
name
_________________________________________
date
______________________________
Drawing a Graph
A graph is often used to see if a relationship exists in a set of data. You can use a graph to
show how one variable changes in response to another variable changing.
title
Rate of Enzyme Action
1.2
Rate (g/min)
1.0
0.8
x-axis—
independent
variable
0.6
0.4
0.2
y-axis—
dependent
variable
20
0
40
60
80
100
Temperature (ºC)
The data in the table below was collected and placed in a data table. The data represents
the rate bubbles formed on an underwater plant based on its distance from the light.
Follow the steps below to graph the data.
Step 1 Draw an x-axis and a y-axis and add a title.
Step 2 Label the x-axis with the independent variable—this is the variable you change.
Step 3 Label the y-axis with the variable that is the dependent variable—the variable
that is a result of changing a variable.
Step 4 Decide on the scale for each axis. Look at your data and determine the range
of the data for each axis. Choose a scale that has the numbers equally spaced.
Step 5 Plot each point.
Step 6 Draw a line connecting the data points.
Distance from
Light (cm)
Bubbles per
Minute
10
40
20
20
30
10
40
5
Life Science • © Saddleback Educational Publishing • www.sdlback.com
Life Science_int.indd 1
1
5/21/13 12:32 PM
name
_________________________________________
date
______________________________
Reading a Graph
Data collected in an experiment is often displayed on a graph. A graphical display is an
easy way to see the relationship between the variables.
.
1. When both variables increase the trend is
2. When one variable increases and the other decreases the trend is
.
3. When there is no relationship between variables there is
between variables.
Use the graph to answer the following questions.
4. What are the two variables tested in this experiment?
Rate of Conversion of Starch
goes from left to right) is known
as the x-axis. The independent
variable is placed along the x-axis.
What is the independent variable?
Rate (g/min)
5. The horizontal axis (the axis that
1.5
1.0
0.5
20
0
40
60
80
Temperature (ºC)
6. The vertical axis (the axis that goes up and down) is the y-axis. The dependent variable is
placed along the y-axis. What is the dependent variable?
7. To read a point on the graph start at the x-axis, move up the line, move across to the
y-axis, and read the point on the y-axis. What is the rate that starch is converted at 30°C?
8. What do you notice about the graph for temperature from 0°C to 40°C?
9. Is this a positive or negative trend?
10. What do you notice about the graph for temperature from 40°C to 80°C?
11. Is this a positive or negative trend?
2
Life Science_int.indd 2
Life Science • © Saddleback Educational Publishing • www.sdlback.com
5/21/13 12:32 PM
name
_________________________________________
date
______________________________
Organizing Data
Before you actually conduct your experiment, you need to decide how you will record
what happens during the experiment. Often you record data in a science notebook. After
you have gathered your data, you need to decide on a way to organize the data to present
to others that want to see what you have gathered. Your data must be organized in an
orderly way. Follow the steps below to see how data from the following experiment is
organized.
You are trying to find out if there is a difference in how fast a monocot grows
compared to a dicot. You conduct an experiment and gather the following data.
Day 1: monocot height = 1 mm; dicot height = 2 mm
Day 2: dicot height = 3 mm; monocot height = 2 mm
Day 3: dicot height = 4 mm; monocot height = 3 mm
Day 4: monocot height = 4 mm; dicot height = 6 mm
Day 5: dicot height = 8 mm; monocot height = 5 mm
Day 6: monocot height = 6 mm; dicot height = 10 mm
Creating a data table will be the easiest way to organize your data. When you
create a data table to organize your data the independent variable is the heading
of the first column.
Step 1 Place the name of the independent variable in the top of the left column.
Step 2 Place the headings of the dependent variable at the top of the middle and
right column.
Step 3 Enter the data for each dependent variable in its correct column. In other
words, place all the monocot data in the monocot column and the dicot
data in the dicot column.
Life Science • © Saddleback Educational Publishing • www.sdlback.com
Life Science_int.indd 3
3
5/21/13 12:32 PM
name
_________________________________________
date
______________________________
Identifying Variables in an Experiment
In an experiment, you make changes in a situation and see the results. The conditions set
in an experiment are known as the variables. A variable can be temperature, the amount
of water, or amount of food given each day. In an experiment, only one factor (variable)
should change. This variable is known as the independent variable. The result of your
experiment is the dependent variable.
The following sample experiment tests the effect of sugar on yeast.
•
•
•
•
•
Pour 25 mL of yeast solution into each of 2 test tubes.
Add 10 mL of water at 30°C to each test tube.
To one test tube add 5 g of sugar.
Wait 15 minutes.
Record your observations.
1. List all the factors, or variables in the experiment.
2. Which of the variables stayed the same in each of the two test tubes?
3. Which variable was different in the test tubes?
4. Is this the independent or dependent variable?
5. You observe that the height of the liquid in the tube with the sugar is higher than in
the tube without the sugar. Is the height of the liquid in the tube the independent or
dependent variable?
6. Suppose in the tube without sugar you had added 20 mL of water at 15°C instead of the
10mL at 30°C. Would you be certain the results in the tube with sugar were caused by the
addition of the sugar?
7. List your variables in an experiment in which you explore the role of temperature on
yeast activity. Which variables would change?
4
Life Science_int.indd 4
Life Science • © Saddleback Educational Publishing • www.sdlback.com
5/21/13 12:32 PM
name
_________________________________________
date
______________________________
Designing an Experiment
When a scientist asks a question, the search for the answer to that question leads to a
hypothesis. To test that hypothesis, a scientist will design an experiment. When designing
an experiment a scientist considers the following:
• the variable being tested,
• the variable being recorded,
• other variables that need to be the same all the time during the experiment.
A scientist wants to determine if the amount of vitamins given to a young mouse affects
the growth of that mouse. The experiment is set up with two identical mice.
Answer the following questions regarding the variables in this experiment.
1. What are the variables being tested?
2. Which variable is easier to change? This will be the independent variable. ____________
3. Which variable will be the dependent variable?
4. List as many other variables you need to consider. These variables need to be kept the
same for all of the mice tested. The list is started for you—name four additional variables.
•Temperature
•
• Amount of food
•
•
•
Place the steps of the experiment in order. Write 1 in the blank next to the step
that comes first, 2 in the blank next to the step that comes next, and so on.
5.
Each morning at the same time give each mouse a certain amount of vitamins.
The amount should be the same for each mouse each day.
6.
Place each of the mice in it’s own cage, all cages should be exactly the same size
and in the same location.
7.
Weigh each mouse every week for two months. Record the data (the mouse’s
weight).
8.
Select 12 similar mice of the same age.
9.
Weigh each mouse before putting it in its cage.
10.
Feed the mice 2 grams of food each day, and make sure their water bottle is
always full.
Life Science • © Saddleback Educational Publishing • www.sdlback.com
Life Science_int.indd 5
5
5/21/13 12:32 PM
name
_________________________________________
date
______________________________
Drawing Conclusions
Once you have recorded the result of an experiment, you must review the data to
see if any patterns or relationships exist. From the patterns that exist, you can draw a
conclusion, or make a statement about the relationships that exist between your variables.
The data in the table to the right shows the
growth of two newborn organisms over 600
days. Individual A received a drug in its food.
Individual B did not receive the drug.
Days
Weight in grams
A
B
Draw a conclusion regarding the data
above. Answer the questions by filling in
the blank.
0
20
20
100
230
140
1. Over the course of 600 days, what
200
310
200
300
370
240
400
440
245
500
460
250
600
500
250
happens to the weight of each individual?
2. What is the mass of each
individual at birth (0 days)?
3. What is the weight of each individual after 200 days?
4. What was the weight of each individual after 600 days?
5. How much weight did Individual A gain over the 600 days?
Individual B?
6. Which individual gained more weight?
7. Which individual received the drug?
8. What can you say about the effect of the drug on growth?
6
Life Science_int.indd 6
Life Science • © Saddleback Educational Publishing • www.sdlback.com
5/21/13 12:32 PM