Math Placement Test Format and Topics Effective May 2013 The Math placement test at Khalifa University includes 40 questions that should be solved within 75 minutes. The test is divided into two parts: Part 1 consists of 20 questions in Arithmetic and Basic Algebra and Part 2 consists of 20 questions in College Algebra and Pre-Calculus questions. No calculator is allowed. The topics that are included in the test are described in the following table: Number of questions Topics covered Part 1: (30 Minutes) Arithmetic & Basic Algebra 20 • Arithmetic: fractions, decimals, etc. • Operations with real numbers: absolute value, powers and radicals, rationals & irrationals, etc. • Linear equations. • Linear inequalities. • Simplifying rational expressions, etc. • Geometry: angles, perimeter & area of plane figures, Cartesian coordinates, lines, Pythagorean Theorem, etc. • Polynomials: degree 2 at most. Part 2 (45 Minutes) College Algebra & Precalculus 20 • Geometry (advanced). • Polynomials (advanced). • Trigonometry: identities, equations, graphs. • Exponential functions. • Logarithmic functions. • Equations involving exponentials and/or logarithms. • Quadratic equations. • Quadratic inequalities. • Equations and Inequalities involving absolute value. • Rational functions. • Composition of functions. Sample Questions Part 1 1. The quantity 5 · √ 16 − 32 · 20 is equal to (a) 2. (b) 14. (c) 11. (d) 8. 2. Subtract and simplify: 2 1 − = ··· 5 3 3 . 15 1 (b) . 2 2 (c) . 5 1 (d) . 15 (a) 3. The decimal form of 78 is 1000 (a) 7.8. (b) 0.78. (c) 780. (d) 0.078. 4. |2 − 3| + |5 + 2| = · · · (a) 6. (b) 8. (c) −2. (d) 0. 5. Solve 3 1 =x− . 2 4 (a) x = 2. 5 (b) x = . 4 (c) x = −1.5. (d) x = 4. 1 6. Solve −4x + 7 ≥ −5. (a) x ≤ 3. (b) x ≥ 2. (c) x ≤ −1. (d) x ≥ 5. 7. Find the numerical value of 3x − 2 when x = 2. 2x + 3 3 . 4 9 (b) . 7 4 (c) . 7 2 (d) . 9 (a) 8. 52 · 34 = ··· 32 · 5 · 7 1 . 7 15 . (b) 7 45 (c) . 7 7 (d) . 45 (a) 9. A circle with area 4π has a radius of (a) 2. √ (b) 2. (c) 4. (d) π. 10. Which of the following polynomials has x = 2 as root? (a) x2 + x + 100. (b) 3(x − 2)4 + 1. (c) x2 − x − 1. (d) (3x − 6)(x + 1). 2 Sample Questions Part 2 1. Find the area of a right triangle having a hypothenuse of length 5 and a base of length 4. (a) 10. (b) 12. (c) 6. (d) 20. 2. Which polynomial of degree 3 has the following roots: −1, 0, 1? (a) x3 − x. (b) x3 + x. (c) x3 − x − 1. (d) x3 + x + 1. h πi such that cos2 x − 3 sin2 x = 0. 3. Find x ∈ 0, 2 π (a) . 6 π (b) . 2 π (c) . 3 π (d) . 4 4. Simplify log10 1 . 1000 (a) 3. (b) −3. (c) 100. (d) −100. 5. Simplify e3x · ln ex . (e2x )2 (a) xe−x . (b) xex . (c) −xe−x . (d) −xex . 3 6. Solve e2x − 2ex + 1 = 0. (a) x = 1. (b) x = 2. (c) x = e. (d) x = 0. 7. A quadratic function has a double root at x = 3. Find the coordinates of the vertex. (a) (0, 0). (b) (3, 3). (c) (3, 0). (d) (0, 3). 8. Solve (x − 1)(x + 3) ≤ 0. (a) x ∈ (−3, 1). (b) x ∈ [−3, 1]. (c) x ∈ (−∞, −3). (d) x ∈ (1, ∞). 9. Solve |x − 2| ≤ 4. (a) x ∈ [−6, −2). (b) x ∈ [−2, 6]. (c) x ∈ [2, 6]. (d) x ∈ [−6, −2]. 10. If f (x) = x2 and g(x) = 2x − 1, then f (g(0)) = · · · (a) 1. (b) −1. (c) 0. (d) 2. 4
© Copyright 2026 Paperzz