Practice - Warren County Schools

Name
Ch
4
Class
Date
Practice
Congruent Figures - Monday
Would you use SSS, AAS, ASA, or SAS to
prove the triangles congruent? If there is not
enough information to prove the triangles
congruent write not enough information. If
there is extra information you figured out,
mark it on the diagram.
4.
5.
6.
7.
8.
9.
10.
11.
For Exercises 8 and 9, can you conclude that the
triangles are congruent? Justify your answers.
13. GHJ and IHJ
14. QRS and TVS
12.
Complete the proof.
Given: YA  BA , B  Y
Prove: AZ  AC
Statements
1) YA  BA , B  Y
Reasons
1)
2) YAZ and BAC are vertical angles.
2) Definition of vertical angles
3) YAZ  BAC
3)
4)
4)
5)
5)
5. Complete the proof.
Given: BD  AB , BD  DE , BC  DC
Prove: A  E
Statements
Reasons
1) BD  AB , BD  DE
1)
2) CDE and CBA are right angles.
2) Definition of right angles
3) CDE  CBA
3)
4)
4) Vertical angles are congruent.
5) BC  DC
5)
6)
6)
7) A  E
7)
Name
Class
Ch
4
Date
Practice (continued)
Congruent Figures - Tuesday
For Exercises 12, can you conclude that the figures are congruent? Justify
your answers.
12. FGH and JKH
Statements
20. Given: BD is the angle bisector of ABC.
BD is the perpendicular bisector
of AC . Prove: ADB  CDB
Statements
Reasons
14. Given: BC  DC, AC  EC
Prove: ABC  EDC
Statements
Reasons
Reasons
For Exercises 9 and 10, write a paragraph proof or two column proof.
9. Given: D  G
HE  FE
Prove: EFG  EHD
10. Given: JM bisects J.
JM  KL
Prove: JMK  JML
Name:___________________________________
Ch
4
Congruent Triangles
Practice – Wednesday
15. Given:
WX || YZ ,WX  YZ
Prove: WXZ  YZX
14. Given: LOM  NPM, LM  NM
Prove: LOM  NPM
5. Given: B and D are right angles.
AE bisects BD
Prove: ABC  EDC
7. Write a proof. Given: E  H
HFG  EGF Prove: EGF  HFG
Date: _______________________________
8. Write proof.
Given: K  M
KL  ML
Prove: JKL  PML
9. Given: RT  SU, RU  RS
Prove: ∆RUT  ∆RST
Name: _________________________________
Ch
4
Date:_______________________________
Congruent Triangle Practice
Thursday
10. Write a paragraph or two column proof. Use the information from the
diagram to prove that
∆ABD  ∆CDB.
11. Write a paragraph proof or two column proof.
Given: AD bisects EB, AB  DE; ECD, ACB
are right angles.
Prove: ∆ACB  ∆DCE
15. Write a paragraph proof or two column proof.
Given: P is the midpoint of
Prove: MRQ  MRN
QN , MP  QN
Given: RU  TS , RUT and UTS are right angles, V is the
midpoint of US.
Prove: RVU  TVS
Statements
Reasons
1) RU  TS , RUT and UTS are right
angles, V is the midpoint of US .
1)
2) UT  TU
2)
3)
3) All right angles are congruent
4)
4) SAS
5) RUS and SUT are complementary
angles.
6)
5)
7) SUT  RTU
7)
8) RUS  STR
8)
9)
10) RVU  TVS
9) Definition of midpoint
10)
11) RVU  TVS
11)
6) Definition of complementary angles
Algebra Find the values of the variables.
13.
9.
14.
10.