14. 4x2 1 6.25y2 2 12x 2 16 5 0 h 5 1, k 5 0 Center: (1, 0) A 5 4, B 5 0, C 5 6.25 } a2 5 6 B2 2 4AC 5 0 2 4(4)(6.25) 5 2100 a 5 Ï 6 ø 2.45 } b2 5 3 Because A Þ C and B2 2 4AC < 0, the path is an ellipse. b5Ï 3 ø 1.73 } } Vertices: (1, Ï 6 ) and (1, 2Ï 6 ) 4x2 1 6.25y2 2 12x 2 16 5 0 } } Co-vertices: (1 1 Ï 3 , 0) and (1 2 Ï 3 , 0) 4 (x 2 3x 1 1.52) 1 6.25y2 5 16 1 9 3 y 6) (1, 4(x 2 1.5)2 1 6.25y2 5 25 3, 0) (1 2 4(x2 2 3x) 1 6.25y2 5 16 2 (x 2 1.5)2 (1, 0) 3 h 5 1.5, k 5 0 (1, 2 6 ) (1 1 3, 0) Center: (1.5, 0) 12. y 2 2 4y 2 2x 1 6 5 0 a2 5 6.25 Vertices: (21, 0) and (4, 0) Because B2 2 4AC 5 0, the conic is a parabola. Co-vertices: (1.5, 2) and (1.5, 22) y 2 4y 1 4 5 2x 2 6 1 4 ( y 2 2)2 5 2(x 2 1) 1.Circles, ellipses, parabolas and hyperbolas are called conic sections because they are formed by the intersection of a plane and a double-napped cone. y 4p 5 2 (1, 2) 1 2 ( , 2) 3 2 p 5 } 1 Vertex: (1, 2) 2.If the discriminant of a general second-degree equation is less than 0 and B 5 0 and A 5 C, the conic is a circle. If it is less than 0 and either B Þ0 or AÞC, the conic is an ellipse. If the discriminant is equal to 0, the conic is a parabola. If it is greater than 0, the conic is a hyperbola. x 1 1 2 3 Focus: } 2 , 2 13. 4x2 2 y2 2 16x 2 4y 2 4 5 0 3. (x 1 4)2 5 28( y 2 2) A 5 4, B 5 0, C 5 21 h 5 24, k 5 2 B2 2 4AC 5 0 2 4(4)(21) 5 16 Parabola Because B2 2 4AC > 0, the conic is a hyperbola. 4x2 2 y2 2 16x 2 4y 2 4 5 0 4(x 2 4x) 2 ( y 1 4y) 5 4 Vertex: (24, 2) 4p 5 28 2 2 Center: (2, 22) a2 5 4 2 b 5 16 a52 4. (x 2 2)2 1 ( y 2 7)2 5 9 4 4 (0, 22) (2, 7) 2 Circle (4, 22) (2, 22) x Center: (2, 7) 2 } Radius: Ï 9 5 3 x 22 (2, 26) Algebra 2 Worked-Out Solution Key CS10_CC_A2_MEWO710648_C8.indd 395 x y h 5 2, k 5 7 y (2, 2) b54 Vertices: (0, 22) and (4, 22) (24, 2) Directrix: y 5 4 ( y 1 2)2 (x 2 2)2 } 2 } 16 5 1 4 h 5 2, k 5 22 y Focus: (24, 0) 4(x 2 2)2 2 ( y 1 2)2 5 16 6 y54 (24, 0) p 5 22 4(x 2 4x 1 4) 2 ( y 1 4y 1 4) 5 4 1 4(4) 2 4 2 (1.5, –2) Skill Practice h 5 1, k 5 2 2 b52 Exercises for the lesson “Translate and Classify Conic Sections” y 2 2 4y 5 2x 2 6 2 (1.5, 0) (4, 0) x b 5 4 (1.5, 2) (21, 0) B2 2 4AC 5 0 2 4(0)(1) 5 0 2 y a 5 2.5 A 5 0, B 5 0, C 5 1 y 2 2 4y 2 2x 1 6 5 0 Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. y2 } 1 } 4 5 1 6.25 x 4 395 7/13/11 12:26:32 PM (x 2 6)2 5. } 2 ( y 1 1)2 5 1 25 8. (x 2 5) 2 1 ( y 1 1)2 5 64 h 5 5, k 5 21 h 5 6, k 5 21 Center: (6, 21) a55 b2 5 1 b51 Vertices: (1, 21) and (11, 21) x 9. ( y 2 1)2 5 4(x 1 6) (6, 22) Focus: (25, 1) 2 (x 1 8) Directrix: x 5 27 y 2 } 9 5 1 6. } 49 (28, 3) x2 h 5 28, k 5 24 Hyperbola x 22 Center: (28, 24) (211, 24) a2 5 49 (28, 24) (25, 24) Vertices: (28, 211) and (28, 3) (0, 4) y (0, 2) (25, 2) (5, 2) 1 Center: (0, 2) 21 (0, 0) x a2 5 25, a 5 5 b2 5 4, b 5 2 (28, 211) c2 5 a2 2 b2 5 25 2 4 5 21 c 5 a 1 b 5 49 1 9 c ø 4.6 5 58 Co-vertices: (0, 4) and (0, 0) Foci: (28, 211.6) and (28, 3.6) Foci: (24.6, 2) and (4.6, 2) 7 7 68 44 3 and y 5 2 }3 x 2 } 3 Asymptotes: y 5 } 3 x 1 } (x 1 3)2 ( y 2 2) (x 1 2) 1 } 36 5 1 7. } 16 h 5 22, k 5 2 Ellipse y Center: (22, 2) a2 5 36 a56 b2 5 16 b54 (22, 8) 6 (26, 2) (22, 2) c2 5 a2 2 b 2 5 36 2 16 5 20 } c 5 Ï 20 ø 4.5 Vertices: (22, 8) and (22, 24) Co-vertices: (26, 2) and (2, 2) Foci: (22, 6.5) and (22, 22.5) (2, 2) 4 (22, 24) (y 2 4)2 2 } 16 5 1 11. } 9 2 x h 5 23, k 5 4 Hyperbola Center: (23, 4) a2 5 9 a 5 3 b2 5 16 b 5 4 c2 5 a2 1 b2 5 9 1 16 5 25 c 5 5 Vertices: (26, 4) and (0, 4) Foci: (28, 4) and (2, 4) 4 y (23, 8) (23, 4) (26, 4) (0, 4) 2 (23, 0) 4 Asymptotes: y 5 } 3 x 1 8 and y 5 2 }3 x 4 x Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. Vertices: (25, 2) and (5, 2) } c 5 Ï 58 ø 7.6 396 h 5 0, k 5 2 Ellipse 2 2 ( y 2 2) 2 1 } 4 5 1 10. } 25 2 b53 x 22 p 5 1 1 1 11 1 5 and y 5 2 }5 x 1 } 5 Asymptotes: y 5 } 5 x 2 } (25, 1) 4p 5 4 Foci: (0.9, 21) and (11.1, 21) 2 (26, 1) Vertex: (26, 1) a57 y x 5 27 Parabola c 5 Ï 26 ø 5.1 2 8 h 5 26, k 5 1 } b 5 9 Radius: Ï 64 5 8 (11, 21) 21 (1, 21) 5 26 2 x (5, 21) } (6, 0) (6, 21) 22 c2 5 a2 1 b2 5 25 1 1 (y 1 4) 24 Center: (5, 21) y a2 5 25 2 2 Circle Hyperbola y Algebra 2 Worked-Out Solution Key CS10_CC_A2_MEWO710648_C8.indd 396 7/13/11 12:26:33 PM ( y 2 1)2 (x 2 4)2 12. C; } 1 } 4 5 1 16 h 5 4, k 5 1 Center: (4, 1) a2 5 16 a54 b2 5 4 b52 The co-vertices are 2 units above and below the center, at (4, 3) and (4, 21). 13. Circle 14. Circle Center: (25, 1) Center: (9, 21) r 5 6, r 2 5 36 r 5 2 r2 5 4 h 5 25, k 5 1 h 5 9, k 5 21 (x 1 5) 2 1 ( y 2 1)2 5 36 (x 2 9)2 1 (y 1 1)2 5 4 15. Parabola 16. Parabola Vertex: (24, 23) Vertex: (5, 3) Focus: (1, 23) Directrix: y 5 6 h 5 24, k 5 23 h 5 5, k 5 3 The parabola opens The parabola opens down. to the right. p 5 2(6 2 3) 5 2 3 p 5 1 2 (24) 5 5 (x 2 h) 2 5 4p( y 2 k) ( y 2 k)2 5 4p(x 2 h) (x 2 5) 2 5 212( y 2 3) ( y 1 3)2 5 20(x 1 4) 17. Ellipse Vertices: (23, 4) and (5, 4) Foci: (21, 4) and (3, 4) Then center is the midpoint of the vertices. 1 } 2 , } 2 25 (1, 4) Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. 23 1 5 4 1 4 h 5 1, k 5 4 The vertices are 4 units from the center, so a 5 4 and a2 5 16. The foci are 2 units from the center, so c 5 2 and c2 5 4. c2 5 a2 2 b2 4 5 16 2 b2 b2 5 16 2 4 5 12 The major axis is horizontal. (x 2 h)2 ( y 2 k)2 } 1 } 2 5 1 2 b a ( y 2 4)2 (x 2 1)2 1 } 12 5 1 } 16 18. Ellipse Vertices: (22, 1) and (22, 9) Co-vertices (24, 5) and (0, 5) The center is the midpoint of the vertices: 22 1 (22) 1 119 2 (x 2 h)2 (y 2 k)2 } 1 } 2 5 1 2 a b (y 2 5)2 (x 1 2)2 1 } 16 5 1 } 4 19. Hyperbola Vertices: (6, 23) and (6, 1) Foci: (6, 26) and (6, 4) The center is the midpoint of the vertices: 1 } 2 , } 2 25 (6, 21) 6 1 6 23 1 1 h 5 6, k 5 21 The vertices are 2 units from the center, so a 5 2 and a2 5 4. The foci are 5 units from the center, so c 5 5 and c2 5 25. c2 5 a2 1 b2 25 5 4 1 b2 b2 5 25 2 4 5 21 The transverse axis is vertical. ( y 2 k) 2 (x 2 h)2 } 2 } 2 5 1 2 b a (x 2 6)2 ( y 1 1)2 2 } 21 5 1 } 4 20. Hyperbola Vertices: (1, 7) and (7, 7) Foci: (21, 7) and (9, 7) The center is the midpoint of the vertices: 1 } 2 , } 5 (4, 7) 2 2 117 717 h 5 4, k 5 7 The vertices are 3 units from the center, so a 5 3 and a2 5 9. The foci are 5 units from the center, so c 5 5 and c2 5 25. c2 5 a2 1 b2 25 5 9 1 b2 b2 5 25 2 9 5 16 The transverse axis is horizontal. (x 2 h)2 (y 2 k)2 } 2 } 2 5 1 2 b a (y 2 7)2 (x 2 4)2 2 } 16 5 1 } 9 21.In writing the equation, the h and k values should be subtracted from x and y, not added. The correct (x 1 2)2 ( y 2 3)2 } , } 2 5 (22, 5) 2 equation is } 1 } 9 5 1. 25 h 5 22, k 5 5 1 } 16 5 1 22. } 49 The vertices are 4 units from the center, so a 5 4 and a2 5 16. The co-vertices are 2 units from the center, so b 5 2 and b2 5 4. The major axis is vertical. (x 1 5)2 ( y 2 2)2 Ellipse with center (25, 2) Lines of symmetry: x 5 25 and y 5 2 Algebra 2 Worked-Out Solution Key CS10_CC_A2_MEWO710648_C8.indd 397 397 7/13/11 12:26:33 PM 23. ( y 2 4)2 5 6(x 1 60) 35. 8x2 2 9y2 2 40x 1 4y 1 145 5 0 Parabola with vertex (26, 4) A 5 8, B 5 0, C 5 29 Line of symmetry: y 5 4 B2 2 4AC 5 0 2 4(8)(29) 5 288 2 (x 2 1) ( y 2 2) 2 } 9 5 1 24. } 36 The conic is a hyperbola because B2 2 4AC > 0. 36. B; 4x2 1 y2 1 32x 2 10y 1 85 5 0 Hyperbola with center (1, 2) A 5 4, B 5 0, C 5 1 Lines of symmetry: x 5 1 and y 5 2 B2 2 4AC 5 0 2 4(4)(1) 5 216 (x 2 3)2 5 1 25. ( y 2 5)2 2 } 9 Hyperbola with center (3, 5) Lines of symmetry: x 5 3 and y 5 5 26. (x 1 3)2 5 10( y 2 1) Parabola with vertex (23, 1) Line of symmetry: x 5 23 27. (x 1 2)2 1 ( y 1 1)2 5 121 Circle with center (22, 21) Any line passing through (22, 21) is a line of symmetry. 28. 6x2 2 2y2 1 24x 1 2y 2 1 5 0 A 5 6, B 5 0, C 5 22 2 B 2 4AC 5 0 2 4(6)(22) 5 48 The conic is a hyperbola, because B2 2 4AC > 0. The conic is an ellipse because B2 2 4AC < 0 and AÞC. 37. x2 1 y2 2 14x 1 4y 2 11 5 0 A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 The conic is a circle because B2 2 4AC < 0, B 5 0 and A 5 C. x2 1 y2 2 14x 1 4y 2 11 5 0 (x 2 14x 1 49) 1 ( y2 1 4y 1 4) 5 11 1 49 1 4 2 (x 2 7)2 1 (y 1 2)2 5 64 h 5 7, k 5 22 y Center: (7, 22) } Radius: Ï 64 5 8 2 x 22 (7, 22) 29. x2 1 y2 2 10x 2 6y 1 18 5 0 A 5 1, B 5 0, C 5 1 The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. 2 30. y 210y 2 5x 1 57 5 0 A 5 0, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(0)(1) 5 0 The conic is a parabola because B2 2 4AC 5 0. 31. 4x2 1 y2 2 48x 2 14y 1 189 5 0 A 5 4, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(4)(1) 5 216 The conic is an ellipse because B2 2 4AC < 0 and A Þ C. 32. 9x2 1 4y2 1 8y 1 18x 2 41 5 0 A 5 9, B 5 0, C 5 4 B2 2 4AC 5 0 2 4(9)(4) 5 2144 The conic is an ellipse because B2 2 4AC < 0 and AÞC. 33. x2 2 18x 1 6y 1 99 5 0 A 5 1, B 5 0, C 5 0 B2 2 4AC 5 0 2 4(1)(0) 5 0 The conic is a parabola because B2 2 4AC 5 0. 34. x2 1 y2 2 6x 1 8y 2 24 5 0 A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. 398 38. x2 1 4y2 2 10x 1 16y 1 37 5 0 A 5 1, B 5 0, C 5 4 B2 2 4AC 5 0 2 4(1)(4) 5 216 The conic is an ellipse because B2 2 4AC < 0 and AÞC. x2 1 4y2 2 10x 1 16y 1 37 5 0 (x 2 10x 1 25) 1 4( y2 1 4y 1 4) 5 237 1 25 1 16 2 (x 2 5)2 1 4( y 1 2)2 5 4 (x 2 5)2 } 1 ( y 1 2)2 5 1 4 h 5 5, k 5 22 Center: (5, 22) y 21 2 a 5 4, a 5 2 b2 5 1, b 5 1 Vertices: (3, 22) and (7, 22) Co-vertices: (5, 21) and (5, 23) 1 (5, 21) x (3, 22) (5, 22) (5, 23) (7, 22) Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. B2 2 4AC 5 0 2 4(1)(1) 5 24 Algebra 2 Worked-Out Solution Key CS10_CC_A2_MEWO710648_C8.indd 398 7/13/11 12:26:34 PM 39. x2 2 16x 2 8y 1 80 5 0 42. y2 1 14y 1 16x 1 33 5 0 A 5 1, B 5 0, C 5 0 A 5 0, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(0) 5 0 B2 2 4AC 5 0 2 4(0)(1) 5 0 The conic is a parabola because The conic is a parabola because B2 2 4AC 5 0. 2 B 2 4AC 5 0. y2 1 14y 1 16x 1 33 5 0 x2 2 16x 2 8y 1 80 5 0 (x 2 2 16x 1 64) 5 8y 2 80 1 64 ( y 1 7)2 5 216x 1 16 (x 2 8)2 5 8y 2 16 ( y 1 7)2 5 216(x 2 1) 2 (x 2 8) 5 8( y 2 2) h 5 8, k 5 2 h 5 1, k 5 27 p 5 24 (8, 4) p 5 2 2 Focus: (8, 4) (8, 2) y50 22 x (23, 27) Focus: (23, 27) (1, 27) x 40. 9y2 2 x2 2 54y 1 8x 1 56 5 0 x55 43. x 2 1 y2 1 16x 2 8y 1 16 5 0 A 5 21, B 5 0, C 5 9 A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(21)(9) 5 36 B2 2 4AC 5 0 2 4(1)(1) 5 24 2 The conic is a hyperbola because B 2 4AC > 0. The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. 9y2 2 x2 2 54y 1 8x 1 56 5 0 9( y2 2 6y 1 9) 2 (x2 2 8x 1 16) 5 256 1 81 2 16 9( y 2 3)2 2 (x 2 4)2 5 9 ( y 2 3)2 2 } 9 5 1 h 5 4, k 5 3 y Center: (4, 3) (x2 1 16x 1 64) 1 ( y 2 2 8y 1 16) 5 216 1 64 1 16 (x 1 8)2 1 ( y 2 4)2 5 64 h 5 28, k 5 4 (1, 3) (4, 4) (4, 2) b2 5 9, b 5 3 y Center: (28, 4) (7, 3) 3 Vertices: (4, 4) and (4, 2) x2 1 y2 1 16x 2 8y 1 16x 5 0 (x 2 4)2 a2 5 1, a 5 1 y 22 4p 5 216 4p 5 8 Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. 2 Vertex: (1, 27) y Vertex: (8, 2) ( y2 1 14y 1 49) 5 216x 2 33 1 49 } Radius: Ï 64 5 8 (28, 4) 4 (4, 3) 1 x x 24 41. 9x 2 1 4y2 2 36x 2 24y 1 36 5 0 A 5 9, B 5 0, C 5 4 B2 2 4AC 5 0 2 4(9)(4) 5 2144 44. x2 2 4y2 1 8x 2 24y 2 24 5 0 The conic is an ellipse because B2 2 4AC < 0 and AÞC. A 5 1, B 5 0, C 5 24 2 B2 2 4AC 5 0 2 4(1)(24) 5 16 2 9x 1 4y 2 36x 2 24y 1 36 5 0 The conic is a hyperbola because B2 2 4AC > 0. 9(x2 2 4x 1 4) 1 4( y2 2 6y 1 9) 5 236 1 36 1 36 (x 2 2)2 (x 1 8x 1 16) 2 4( y 2 1 6y 1 9) 5 24 1 16 2 36 2 ( y 2 3)2 } 1 } 9 5 1 4 h 5 2, k 5 3 a53 2 b52 b 5 4 (0, 3) } 2 ( y 1 3)2 5 1 4 h 5 24, k 5 23 (4, 3) Center: (24, 23) a2 5 4, a 5 2 1 Vertices: (2, 6) and (2, 0) Co-vertices: (0, 3) and (4, 3) (2, 3) 21 (x 1 4)2 2 4( y 1 3)2 5 4 (x 1 4)2 y (2, 6) Center: (2, 3) a2 5 9 x2 2 4y2 1 8x 2 24y 2 24 5 0 9(x 2 2)2 1 4(y 2 3)2 5 36 (2, 0) x b2 5 1, b 5 1 Vertices: (26, 23) and (22, 23) 2 (24, 22) 210 (26, 23) y x (22, 23) (24, 23) (24, 24) Algebra 2 Worked-Out Solution Key CS10_CC_A2_MEWO710648_C8.indd 399 399 7/13/11 12:26:35 PM 45.If A 5 C, then the conic will be a circle. If AÞC but A and C have the same sign, the conic will be an ellipse. If either A 5 0 or C 5 0, the conic will be a parabola. If A and C have opposite signs, the conic will be a hyperbola. a 46. y 5 } x 50. 21y 2 2 210y 2 4x2 5 2441 A 5 24, B 5 0, C 5 21 B2 2 4AC 5 0 2 4(24)(21) 5 336 The shape of the path is a hyperbola because B2 2 4AC > 0. 21y2 2 210y 2 4x2 5 2441 xy 5 a 21( y 2 10y 1 25) 2 4x2 5 2441 1 525 A 5 0, B 5 1, C 5 0 2 B2 2 4AC 5 1 2 4(0)(0) 5 1 21( y 2 5)2 2 4x2 5 84 ( y 2 5)2 2 The conic is a hyperbola because B 2 4AC > 0. x2 } 2 } 21 5 1 4 47.The foci are c units above and below the center, at (h, k 1 c) and (h, k 2 c). Center: (0, 5) The asymptotes are y 5 6 }b x shifted horizontally h units and vertically k units: Vertices: (0, 3) and (0, 7) (2 a (0, 7) } a 5 2, b 5 Ï 21 ( 21, 5 ) (0, 5) 21, 5 ) a a ( y 2 k) 5 }b (x 2 h) ( y 2 k) 5 2 }b (x 2 h) a ah a ah y 5 }b x 2 } b 1 k y 5 2 }b x 1 } b 1 k a bk 2 ah a bk 1 ah y 5 }b x 1 } y 5 2 }b x 1 } b b Problem Solving 48. (0, 3) 1 51. a. For the hotel, h 5 100, k 5 260 and r 5 150. You will be in range of the transmitter when (x 2 100)2 1 ( y 1 60)2 ≤ 1502. y 8 ft For the café, h 5 280, k 5 270, and r 5 100. You will be in range of the transmitter when (x 1 80)2 1 ( y 1 70)2 ≤ 1002. (0, 4) 2 b.At point (0, 0): x 6 (0, 24) ? (0 1 80)2 1 (0 1 70)2 ≤ 1002 6400 1 4900 ? ≤ 1002 Top circle: Center: (0, 4) (0 2 100) 2 2 2 Equation: (x 2 0) 1 ( y 2 4) 5 4 13,600 ≤ 22,500 ✓ y x2 1 (y 2 4)2 5 16 You (0, 0) x Center: (0, 24) (100, 260) Hotel Radius: 4 Equation: (x 2 0)2 1 (y 1 4)2 5 42 2 x 1 (y 1 4) 5 16 2 49. x 2 10x 1 4y 5 0 x2 2 10x 5 24y x2 2 10x 1 25 5 24y 1 25 11,300 µ 10,000 1 (0 1 60)2 ? ≤ 1502 10,000 1 3600 ? ≤ 22,500 Bottom circle: 2 Radius: 4 x 22 (x 2 5) 2 5 241 y 2 } 4 2 25 An equation for the path of the leap is (x 2 5) 2 5 241 y 2 } 4 2. 25 Vertex: 1 5, } 4 2 25 (280, 270) Cafe At the origin, you are in range of the hotel’s transmitter because its inequality is satisfied. You are not in range of the café’s transmitter because its inequality is not satisfied. c. Because the café’s range is 100 yards and the hotel’s range is 150 yards, if the hotel’s distance from the café is less than their combined range of 250 yards, there is an overlap. Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. y 25 The person’s jump is } feet high and 4 2(5) 5 10 feet wide. 400 Algebra 2 Worked-Out Solution Key CS10_CC_A2_MEWO710648_C8.indd 400 7/13/11 12:26:35 PM 52. a. An ellipse is formed by cutting the cone-shaped tip, because the cut enters the cone diagonally and exits the other side. b. Hyperbolas are formed by each flat side and the cone-shaped tip, because the flat sides are parallel to the axis of the cone. 53. a. The intersection is not a circle when the plane crosses the point where the cones meet. It is a point. b. The intersection is not a hyperbola when the plane crosses the point where the cones meet. It is a pair of lines. c. The intersection is not a parabola when the plane lies along the edge of the cone. It is a line. y2 2 2x 2 10 5 0 5. y 5 2x 2 1 (2x 2 1)2 2 2x 2 10 5 0 x2 1 2x 1 1 2 2x 2 10 5 0 x2 2 9 5 0 (x 1 3)(x 2 3) 5 0 x 5 63 When x 5 3: When x 5 23: y 5 2(3) 2 1 y 5 2(23) 2 1 y 5 24 y 5 2 The solutions are (3, 24) and (23, 2). 6. y 5 4x 2 8 Lesson 8.7 Solve Quadratic Systems Guided Practice for the lesson “Solve Quadratic Systems” 9x 2 (16x2 2 64x 1 64) 2 36 5 0 1. x 2 1 y2 5 13 and y 5 x 2 1 9x2 2 16x2 1 64x 2 64 2 36 5 0 2 y 5 13 2 x 2 } y 5 6Ï 13 2 x2 Using the calculator’s intersect feature, the solutions are (22, 23) and (3, 2). 2. x 2 1 8y2 2 4 5 0 and y 5 2x 1 7 8y 2 5 4 2 x2 y2 5 } 2 2 } 8 Î } Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. x2 The graphs do not intersect. There is no solution. 2 3. y 1 6x 2 1 5 0 and y 5 20.4x 1 2.6 y2 5 26x 1 1 } y 5 6Ï26x 1 1 Using the calculator’s intersect feature, the solutions are approximately (21.57, 3.23) and (222.9, 11.8). 4. y 5 0.5x 2 3 x2 1 4y2 2 4 5 0 x2 1 4(0.5x 2 3)2 2 4 5 0 x2 1 4(0.25x2 2 3x 1 9) 2 4 5 0 x2 1 x2 2 12x 1 36 2 4 5 0 2x2 2 12x 1 32 5 0 2(x2 2 6x 1 16) 5 0 There is no solution. 27x2 1 64x 2 100 5 0 2(7x2 2 64x 1 100) 5 0 2(7x 2 50)(x 2 2) 5 0 7x 2 50 5 0 or x2250 50 x5} 7 or x52 : When x 5 2: When x 5 } 7 1 2 2 } 8 y 5 6 } 9x2 2 (4x 2 8)2 2 36 5 0 2 50 x2 1 9x2 2 y2 2 36 5 0 7 22 8 y 5 4(2) 2 8 y 5 41 } 50 144 y50 y 5 } 7 The solutions are (2, 0) and 1 } 7 , } 7 2. 50 144 7. 22y2 1 x 1 2 5 0 x2 1 y2 2 1 5 0 22y2 1 x 1 2 5 0 2 2x 1 2y2 2x2 32 2250 1x 50 x(2x 1 1) 5 0 x 5 0 or 2x 1 1 5 0 1 x 5 2 }2 1 When x 5 0: When x 5 2 }2 : 0 2 1 y2 2 1 5 01 } 2 2 1 y2 2 1 5 0 1 2 y2 5 1 y 61 3 y2 5 } 4 Î3 } 1 2 y 5 6 } 1 } 2 Ï 3 2 , 6 } . The solutions are (0, 61) and 2} 2 Algebra 2 Worked-Out Solution Key CS10_CC_A2_MEWO710648_C8.indd 401 401 7/13/11 12:26:36 PM
© Copyright 2026 Paperzz