Airbone New and Advanced Satellite techniques and Technologies in A System Integrated Approach Eurocae WG28 SG4 Wolfgang Schuster, DPhil Research Fellow (Imperial College London) 27-29 March 2006 Toulouse ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Contents ILS Overview (1) ILS Performance (8) Performance Issues (2) ILS vs. GBAS errors (4) Conclusions (1) ILS Overview LOCALIZER (Top View) DM of 150 Hz AM predominates DM of 90 Hz AM predominates DM of 90 Hz AM predominates GLIDESLOPE (Lateral View) DM of 150 Hz AM predominates ~ 3o Flaring Height? use of radio-altimeter Carrier amplitude-modulated by 2 tones Depth of Modulation (DM) = function of angle Receiver measures DM of each tone, computes difference (DDM) ANGULAR position ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 4/22 ILS Performance (1/8) Error = change in DDM at a given angle with respect to the nominal (expected) DDM at that angle (either due to transmitter or receiver). ILS performance specifications from ICAO-Annex 10 (Vol 1) ICAO-8071 ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 5/22 ILS Performance (2/8) LOCALIZER Source of Error Error Magnitude Applicability Limits Course Alignment – 3.1.3.6.1.c 3 m (rare occasion) At ILS Ref. Dat. Bends on MEAN course line – 3.1.3.4.2, Att. C-2.1.4: at 95%, Fig C-1 0.031 DDM 0.031 – 0.005 DDM 0.005 DDM 0.005 – 0.010 DDM Out – A A–B B – ILS Ref. Dat. – D D–E Vertical polarization at 20 degrees bank – 3.1.3.2.2.2 (relevant for Cat-II?) 0.005 DDM (=5muA) 0.02 DDM RF Interference at 0.1 – 10 Hz: Course Line fluctuations – 3.1.3.2.3 0.005 DDM p/p N/A Displacement Sensitivity – 3.1.3.7.2 (Localizer) 10% N/A DM due to carrier at power supply freq. or harmonics (ripple) – 3.1.3.5.3.2 and due to harmonics, unwanted noise – 3.1.3.5.3.2 0.5% + 0.05% N/A Receiver Centring Tolerance – Att.C-2.2.3.1 1.66% 0.00258 DDM (at 68%) Full-width Receiver displacement sensitivity tolerance – Att.C-2.2.4.1 0.019 DDM (for 15.35% - 24.65% 0.008 DDM (18-22%) (Table I-4-7 of 8071) 20% Until 0.155 DDM DM due to Carrier DDM fluctuations – 3.1.3.5.2 (I-4-7) Displacement linearity Receiver (difference between input and output) – Att.C-2.2.6.1 ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 6/22 ILS Performance (3/8) GLIDE SLOPE Source of Error Error Magnitude Applicability Limits Glide Path Adjustement – 3.1.5.1.2.2 0.04 theta N/A Glide Path Bends on mean glide path (95%) – 3.1.5.4.2 Att. C-2.1.5: 1.2 m (95%) at ILS R.D. 0.035 DDM 0.035 – 0.023 DDM 0.023 DDM Out – A A–B B – ILS Ref. Dat. RF Interference at 0.01 – 10 Hz: GS fluctuations – 3.1.5.2.3 0.02 DDM p/p N/A Angular displacement sensitivity – 3.1.5.6.8 15% N/A DM due to carrier at power supply freq. or harmonics (ripple) – 3.1.5.5.2.2 1% N/A Receiver centring tolerance – Att.C-2.2.11 3.33% (0.0058 DDM) at 68% Full-width Receiver course displacement sensitivity – Att.C-2.2.12 0.016 DDM for 34.75% - 45.25% 0.0076 DDM for 37.5% to 42.5% N/A 20% N/A DM due to Carrier DDM fluctuations – 3.1.5.5.1. Receiver displacement linearity (between input and output) – Att.C-2.2.14 ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 7/22 ILS Performance (4/8) Localizer – Monitoring Alerts Error Monitored Location Limit before Alert Time before Alert Shift in mean course line – 3.1.3.11.2.c ILS Ref. Dat. 6m 2 seconds (1 s?) Variation in Displacement Sensitivity – 3.1.3.11.2.f N/A 17% from nominal 2 seconds (1 s?) Glide Slope – Monitoring Alerts Error Monitored Location Limit before Alert Time before Alert Shift in mean glide path – 3.1.5.7.1.a N/A –0.075 theta to +0.10 theta 2 seconds (1 s?) Variation in Displacement Sensitivity – 3.1.5.7.1.e N/A 25% from nominal 2 seconds (1 s?) ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 8/22 ILS Performance (5/8) Geometrical Considerations 3000 m 572.4 m D LOC Pt. C ILS R.D. at 30 m TH 900 m 100 m at 15 m 286.2 m GS Transmitter Slope = 3 degrees Error Interpretation Not entirely clear… ICAO-8071 – 4.1.5: “…measurement uncertainties… two-sigma or 95%...” ICAO-8071 – 4.2.55: “…whether 99.7% (i.e. three-sigma) … are within limits…” Path bends at 95%. Receiver centring tolerance at 68%... Investigate both assumptions: a) 95% and b) 99.7%. ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 9/22 ILS Performance (6/8) Monitor Limits Assumed to be at the FIVE sigma level. Error Calculation Assumptions: Same as in Draft v0.5 MIN(adjust-maintain, monitor) Justification? Linearization Point: Laterally at Pt. D: most stringent scenario (corresponds to end of touchdown box) Vertically: Threshold (i.e. at 50 ft) or higher (e.g. 100ft)? • Flaring: 50ft to 30 ft ‘end-point’ in using glide-slope? • Height at which radio-altimeter sets in for flaring? • From discussion yesterday – 75ft ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 10/22 ILS Performance (7/8) Results Localizer Glide Slope (+)Limits Point of Linearization Adjust and Monitor Limits Error at 95% D 95.2% 4.21 m D 99.7% 3.89 m (cf. 3.58 m from v0.5) TH (50 ft) 95.2% 0.76 m - 1.34 m(+) TH (50 ft) 99.7% 0.70 m - 1.31 m(+) C (100ft) 95.2% 1.52 m - 2.68 m(+) C (100ft) 99.7% 1.39 m - 2.61 m(+) (cf. 1.36 m from v0.5) for bends from Att.C-2.1.5 instead of Sect. 3.1.5.4.2 of ICAO Annex 10 (Vol 1) ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 11/22 ILS Performance (8/8) Results (cont’d) Additional error sources of ILS: ~ +8.7% (laterally) ~ +2.2% (vertically) Errors quoted at 2 sigma instead of 3 sigma: ~ +8.2% (laterally) ~ +9.4% (vertically) Errors on Glide Path Bends from Att.C-2.1.5 instead of Sect. 3.1.5.4.2: ~ +76.3%! (vertically) Significant range of values ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 12/22 Contents ILS Overview (1) ILS Performance (8) Performance Issues (2) ILS vs. GBAS errors (4) Conclusions (1) Performance Issues (1/2) ACTUAL performance of ILS? Experimental data? REQUIRED performance for Cat-II/III? Safety perspective? Autoland Method? Other Method? Some Issues… Autoland horizontal touchdown position Vertical touchdown speed? ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 14/22 Performance Issues (2/2) Estimated Position Start of Flaring Manoeuvre True Position Touchdown attitude (nose gear!)? Radio-altimeter (very accurate height) at 75ft… Slowly phase in at larger height? 100ft? Radio + 2-D GBAS? ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 15/22 Contents ILS Overview (1) ILS Performance (8) Performance Issues (2) ILS vs. GBAS errors (4) Conclusions (1) ILS vs. GBAS Errors (1/4) Localizer (top view) Glideslope (lateral view) g a a l Along Glide Slope P( Loc, GS ) = P( Loc) × P(GS ) 95% 95% 2σl 2σg P= 1 2πσ lσ g −l 2 2σ l e ∫ dl ∫ e 2 −g2 2σ g2 dg Two independent 1-dimensional systems Uncorrelated errors at NSE level ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 17/22 ILS vs. GBAS Errors (2/4) Horizontal Errors (top view) Vertical Errors (lateral view) a σz Direction of Travel l σx σg σy ANASTASIA Consortium ONE 3-dimensional system x, y and z components not uncorrelated at NSE level ([x,y,z] here could be any reference frame, not necessarily WGS84) ANASTASIA 27 March 2006, Toulouse Page 18/22 ILS vs. GBAS Errors (3/4) y Reference frames – 2D vs. 3D g l GBAS σX σY and σZ ILS x σl and σg x cos φ cos θ y = sin φ cos θ z sin θ th e Pa d i l G − sin φ cos α − cos φ sin θ sin α cos φ cos α + sin φ sin θ sin α − cos θ sin α a cos φ sin θ cos α − sin φ sin α a − sin φ sin θ cos α + cos φ sin α l g cos θ cos α ALONG-TRACK error? Use DME error? z g Actual position (unknown) σv ≠ σg (GBAS v = local vertical) ANASTASIA Consortium y’ x’ σg Incidentally… z ANASTASIA 27 March 2006, Toulouse Path Glide σx’ Computed position a Page 19/22 ILS vs. GBAS Errors (4/4) Two uncorrelated 1D vs. one correlated 3D σ σ xy σ xz σ xt 2 σ σ σ σ y yz yt COV [ x] = xy σ xz σ yz σ z2 σ zt 2 σ σ σ σ yt zt t xt 2 x cos 2 Ei cos 2 Ai ∑ σ i2 i 2 cos Ei cos Ai sin Ai ∑ σ i2 = i cos Ei cos Ai sin Ei ∑ σ i2 i cos Ei cos Ai ∑ σ i2 i ∑ cos 2 Ei cos Ai sin Ai σ i2 i ∑ cos 2 Ei sin 2 Ai i ∑ σ 2 i ∑ cos Ei cos Ai sin Ei σ i2 i ∑ cos Ei sin Ai sin Ei cos Ei sin Ai sin Ei σ i ∑ i 2 i cos Ei sin Ai σ σ i2 i 2 i ∑ sin 2 Ei i ∑ i σ i2 sin Ei σ i2 cos Ei cos Ai ∑i σ i2 cos Ei sin Ai ∑i σ i2 sin Ei ∑i σ 2 i 1 ∑i σ 2 i −1 where Ei, Ai and σi are respectively the elevation, the azimuth and the pseudorange error residual between user position and satellite i. Errors between measurement variables x, y and z are correlated Impact upon probability calculations? ILS yields errors at 95%... Incidentally… Lateral error has impact upon vertical error with respect to glidepath. ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 20/22 Conclusions Proposed Work 1. Establish ACTUAL ILS performance Experimental data? 2. Establish REQUIRED performance for safe Cat-III landing ILS Look-Alike vs. Autoland method – detailed analysis New method? 3. Translation of Cat-II/III RNP into ‘GBAS-errors’ Along-Track error? Error correlation? 4. Validate error model 5. Derive Alert Limits for Category-II/III ANASTASIA Consortium ANASTASIA 27 March 2006, Toulouse Page 21/22
© Copyright 2026 Paperzz