8-4 Special Product and Factoring: (a ⫾ b)2 a2 ⫾ 2ab b2 Name Date Evaluate: (3m 8)2 Square the first term. Twice the product of the terms Remember: The square of a binomial is the square of the first term, plus or minus twice the product of both its terms, plus the square of the last term. Square the last term. (3m)2 2(3m)(8) (8)2 9m2 48m 64 (a b)2 a2 2ab b2 (a b)2 a2 2ab b2 So (3m 8)2 9m2 48m 64. Determine if 49q2 28q 16 is a perfect square trinomial. 49q2 28q 16 7q • 7q 2(7q)(4) 4 • 4 Think Write the trinomial in the form a2 2ab b2, where a 7q, and b 4. ? 2(7q)(4) 28q 56q 28q False So 49q2 28q 16 is not a perfect square trinomial. Square each binomial. 2. (r 20)2 1. (x 15)2 (x)2 2(x)(15) (15)2 Copyright © by William H. Sadlier, Inc. All rights reserved. x2 (r)2 2(r)(20) (20)2 30x 225 5. (2x 11)2 r2 9h2 90xy 12h 4 10. (7u 3v)2 (5x)2 2(5x)(9y) (9y)2 81y2 42uv t2 y2 50y 625 28t 196 8. (8g 3)2 (8g)2 2(8g)(3) (3)2 (7b)2 2(7b)(5) (5)2 49b2 64g2 48g 9 70b 25 9v2 12. (12a 5b)2 (11r)2 2(11r)(7s) (7s)2 (12a)2 2(12a)(5b) (5b)2 121r 2 154rs 49s2 144a2 120ab 25b2 14. (0.5q 0.4r)2 13. (0.2x 0.3y)2 (y)2 2(y)(25) (25)2 (t)2 2(t)(14) (14)2 11. (11r 7s)2 (7u)2 2(7u)(3v) (3v)2 49u2 4. (y 25)2 7. (7b 5)2 (3h)2 2(3h)(2) (2)2 44x 121 9. (5x 9y)2 25x2 40r 400 6. (3h 2)2 (2x)2 2(2x)(11) (11)2 4x2 3. (t 14)2 1 2 (0.2x)2 2(0.2x)(0.3y) (0.3y)2 0.04x2 0.12xy 0.09y2 (0.5q)2 2(0.5q)(0.4r) (0.4r)2 0.25q2 0.4qr 0.16r 2 Lesson 8-4, pages 210–211. 2 1 15. ( 3 d 5 e) (13d) 2 (13d)(15e) (15e) 2 1 2 2 1 2 d 15 de 25 e 9 Chapter 8 201 For More Practice Go To: Determine if each trinomial is a perfect square. If so, factor it. If not, explain why not. 11b • 11b 2(11b)(1) 1 • 1 ? 2(11b)(1) 22b 22b 22b True (11b 1)2 19. 49g2 56g 64 7g • 7g 2(7g)(8) 8 • 8 ? 2(7g)(8) 56g 112g 56g False not a perfect square 22. 25x2 110xy 121y2 5x • 5x 2(5x)(11y) 11y • 11y ? 2(5x)(11y) 110xy 110xy 110xy True (5x – 11y)2 25. y2 1.2y 0.36 y • y 2(y)(0.6) 0.6 • 0.6 ? 17. 64x2 16x 1 8x • 8x 2(8x)(1) 1 • 1 ? 2(8x)(1) 16x 16x 16x True not a perfect square 20. 16t 2 40t 25 21. 36r 2 84r 49 4t • 4t 2(4t)(5) 5 • 5 6r • 6r 2(6r)(7) 7 • 7 2(4t)(5) 40t 40t 40t True 2(6r)(7) 84r 84r 84r True ? ? (4t 5)2 (6r – 7)2 23. 81v2 90vw 25w2 24. m2 m 0.25 m • m 2(m)(0.5) 0.5 • 0.5 9v • 9v 2(9v)(5w) 5w • 5w ? 2(9v)(5w) 90vw 90vw 90vw True ? 2(m)(0.5) m m m True (9v 5w)2 3 (m 0.5)2 9 10 26. q2 2 q 16 3 3 3 q • q 2(q)( ) ( ) • ( ) 4 4 4 (y 0.6)2 Solve. Show your work. 2(q) 4x2 52x 169 s2 4x2 52x 169 2x • 2x – 2(2x)(13) 132, if 2(2x)(13) 52x; 2(2x)(13) 52x, so 2x • 2x 2(2x)(13) 132 (2x 13)2 s2 s (2x 13); The measure of each side of the square is (2x 13). 30. Which trinomial is a perfect square? (59) ? 109z 2(z) 3 3 q q True 2 2 2 q 34 ( 10 10 z z True 9 9 5 2 z9 ) ( Chapter 8 ) 29. Nancy is making a square garden with side 23v 4w. What trinomial represents the area of the garden? A s2; Let s 23v – 4w so A (23v 4w)2 (23v)2 2(23v)(4w) (4w)2 529v2 184vw 16w2 So the trinomial 529v2 184vw 16w2 represents the area of Nancy’s square garden. 1 2 2 31. Evaluate: ( 2 x 5 y) 4 F. x2 5 y2 4 G. x2 5 y2 1 1 4 1 2 4 H. 4 x2 5 xy 25 y2 J. 4 x2 5 xy 25 y2 202 25 27. z2 9 z 81 5 5 5 z • z 2(z)( ) ( ) • ( ) 9 9 9 (34) ? 32q 28. The trinomial 4x2 52x 169 represents the area of a square. What binomial represents the measure of each side of the square? B. 81x2 126x 49 C. 100x2 100x 81 D. 36x2 25x 64 6c • 6c 2(6c)(5) 5 • 5 ? 2(6c)(5) 30c 60c 30c False (8x 1)2 2(y)(0.6) 1.2y 1.2y 1.2y True A. 16x2 150x 625 18. 36c2 30c 25 Copyright © by William H. Sadlier, Inc. All rights reserved. 16. 121b2 22b 1
© Copyright 2026 Paperzz