ELSEVIER MICROBIOLOGY REVIEWS FEMS Microbiology Reviews 18 (1996) 149-158 Hyperthermophilic procaryotes Karl O. Stetter * Lehrstuhl ftir Mikrobiologie und Archaeenzentrum, Universit~it Regensburg, 93053 Regensburg, Germany Abstract Hyperthermophilic Archaea and Bacteria with optimal growth temperatures between 80°C and 110°C have been isolated from geothermal and hydrothermal environments. By 16S rRNA sequence comparisons, they exhibit a great phylogenetic diversity indicated by 25 different genera. Hyperthermophiles consist of anaerobic and aerobic chemolithoautotrophs and heterotrophs growing at neutral or acidic pH. Based on their outstanding heat resistance they are interesting objects the same for basic research as for biotechnology. Keywords: Archaea; Hyperthermophilic; Phylogeny; Volcanism Contents I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 2. Environments and enrichment of hyperthermophiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 3. Phylogeny of hyperthermophiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4. Taxonomy of byperthermophiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5. Physiological properties of byl~rthermophiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. I. Extreme acidophiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2. Neutrophiles and moderate acidophiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 151 153 6. Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 * Tel.: +49 (941) 943 3160; Fax: +49 (941) 943 2403; e-mail: [email protected] 0168-6445/96/$32.00 © 1996 Federation of European Microbiological Societies. All rights reserved PII S01 6 8 - 6 4 4 5 ( 9 6 ) 0 0 0 0 8 - 3 150 K. O. Stetter / FEMS Microbiology Ret:iews 18 (1996) 149-158 1. Introduction 3. Phylogeny of hyperthermophiles Hyperthermophilic Bacteria and Archaea (former: archaebacteria) represent the organisms at the upper temperature border of life [1-3]. Hyperthermophiles belong to phylogenetically distant groups and may represent rather ancient adaptations to heat. As a rule, they grow fastest between 80°C and 100°C. In contrast to usual thermophiles, hyperthermophiles are unable to grow below 60°C. The most extreme hyperthermophiles known are so well adapted to the high temperatures that they do not even grow at 80°C or below [4,5]. A 16S rRNA-based universal phylogenetic tree is available, now [11,12]. It shows a tripartite division of the living world consisting of the domains Bacteria, Archaea and Euca~a (Fig. 1). The Archaea consist of two major kingdoms: The Crenarchaeota (Sulfolobales-Thermoproteales branch) and the Euryarchaeota (Extreme Halophiles-Methanogens branch). Short phylogenetic branches indicate a rather slow clock of evolution. Deep branching points are evidence for early separation of two groups. The separation of the Bacteria from the Eucao'a-Archaea lineage is the deepest and earliest branching point known so far. Hyperthermophiles are represented among all the deepest and shortest lineages, including Aquifex and Thermotoga within the Bacteria; 2. Environments and enrichment of hyperthermophiles Hyperthermophiles have been isolated almost exclusively from environments with in situ temperatures between about 80 and 115°C. Biotopes of hyperthermophiles are water-containing volcanic areas like terrestrial solfataric fields and hot springs, shallow submarine hydrothermal systems and abyssal hot vent systems ('Black Smokers'). Man--made high-temperature biotopes are smoldering coal refuse piles and geothermal power plants [6,7]. Further communities of hyperthermophiles had been discovered recently within oil-bearing deep geothermally heated soils [8]. Due to the low solubility of oxygen at high temperatures and the presence of reducing gasses, biotopes of hyperthermophiles are essentially unoxic. However, air-exposed surfaces of solfataric fields may contain reasonable amounts of oxygen. Although unable to grow, hyperthermophiles may survive for long times at ambient temperature. This ability may be essential for spreading out through the cold atmosphere and hydrosphere. In agreement with this result, viable hyperthermophiles could be isolated from cold Beaufort Sea water and Pacific water neighboring active Macdonald Sea Mount [8,9]. To cultivate hyperthermophiles, aerobic and anaerobic samples can to be taken from hot water, sediments and rocks. In the laboratory, aerobic and anaerobic enrichment cultures on various substrates are be obtained at conditions corresponding to the original environment. To clone hyperthermophilic enrichment cultures, direct cloning of single cells by 'optical tweezers' has been successfully applied now [10]. Pyrodictium, Pyrobaculum, Desulfurococcus, Sulfolobus, Methanopyrus, Thermococcus, Methanothermus, Archaeoglobus within the Archaea (Fig. 1, bold lines). Based on these observations, hyperthermophiles may still be rather primitive and the last common ancestor may have been a hyperthermophile [13]. 4. Taxonomy of hyperthermophiles So far, 54 species of hyperthermophilic Bacteria and Archaea are known (Table 1). They are divergent by their phylogeny and physiological properties and are grouped into 25 genera and 11 orders. Within the Bacteria, Aqu(fex pyrophilus and Thermotoga maritima exhibit the highest growth temperatures with 95°C and 90°C, respectively (Table 1). Within the Archaea, the organisms with the highest growth temperatures (between 103°C and 110°C) are members of the genera Pyrobaculum, Pyrodictium, Pyrococcus and Methanopyrus. 5. Physiological properties of hyperthermophiles Hyperthermophiles are well adapted to their biotopes, being able to grow at high temperatures and extremes of pH, redox potential and salinity (Table 1). Within their habitats, hyperthermophiles form complex ecosystems consisting of a variety of K.O. Stetter/ FEMS Microbiology Ret,iews 18 (1996) 149-158 primary producers and decomposers of organic matter. Primary producers are chemolitboautotrophs using inorganic electron donors and acceptors in their energy-yielding reactions (Table 2). 5.1. Extreme acidophiles Members of extremely acidophilic hyperthermophiles, including the genera Sulfolobus, Metallosphaera (Fig. 2c), Acid|anus and S~giolobus, are found in terrestrial and marine solfataric fields and smoldering coal refuse piles, e.g. [1,3,7,14]. They grow aerobically, facultatively aerobically or strictly anaerobically at acidic pH (opt. about pH 3). Members of Sulfolobus are strict aerobes growing au- totrophically by oxidation of S °, S 2 and H e, forming sulfuric acid or water as end product (Tables 2 and 3). Sulfolobus brierleyi (now renamed: Acid|anus brierlevi) and Sulfolobus metallicus are able to grow by leaching of sulfidic ores [15,16]. Several Su![olobus isolates are facultative or obligate heterotrophs, growing on sugars, yeast extract and peptone [14]. Under microaerobic conditions, Su!folobus isolates are able to reduce ferric iron and molybdate [17]. Growth of SulJblobus requires low ionic strength. In agreement, Su!folobus was not found in marine solfataric fields. Metallosphaera sedula. which differs from Suifolobus species by the much higher GC-content of its DNA ('Fable 3), is a powerful oxidizer of sulfidic ores like pyrite, chalcopyrite Eucarya marl animals microsporidia flagellates plants dipiomonads green non-sulfur bacteria Bacteria Archaea Su|folobus gram positives proteobactena I Desulfuroeoccus Thermotoga T~rmopmteus tlavobacteria Pyrobaculum ) PyI'ococcus Mcthanobactenum wArchaeoglobus ~ Aquifex 151 3 ' ~'-~,.,Halo~cterium 4 ~ Methanoplanus M©thanococcus k Methanospinllum 1 jamasaxii 2 iga~s Methanosarcina 3 ammalitlaotzel~eas 4 vmmcllii Fig. 1. Hyperthermophiles within the phylogenetic tree: schematically redrawn and modified from [12]. 152 K.O. Stetter / FEMS Microbiology Rec~iews 18 (1996) 149-158 Table 1 Taxonomy and upper growth temperatures of hyperthermophiles Order Genus Species BACTERIA Thermotogales Thermotoga T. maritima T. neapolitana T. thermarum T. elfii T. africanus F. nodosum F. islandicum G. petrea G. subterranea P. miotherma A. pyrophilus Thermosipho Fervidobacterium Geotoga Aquificiales Petroga Aquifex ARCHAEA Sulfolobales Sulfolobus Metallosphaera Acidianus Thermoproteales Desulfurolobus Stygiolobus Thermoproteus Pyrobaculum Thermofilum Desulfurococcales Desulfurococcus Pyrodictiales Staphylothermus Pyrodictium Thermococcales Hyperthermus Thermodiscus Thermococcus Pyrococcus Archaeoglobales Archaeoglobus Methanobacteriales Methanothermus S. acidocaldarius S. solfataricus S. shibatae S. metallicus M. sedula A. infernus A. brierleyi D. ambivalens S. azoricus T. tenax T. neutrophilus T. uzoniensis P. islandicum P. organotrophum P. aerophilum T. pendens T. librum D. mobilis D. mucosus D. saccharovorans D. amylolyticus S. marinus P. occulmm P. brockii P. abyssi H. butylicus T. maritimus T. celer T. litoralis T. stetteri T. profundus T. alcaliphilus 7: chitonophagus P. furiosus P. woesii A. fulgidus A. profundus M. fervidus M. sociabilis Tmax(°C) 90 90 84 72 77 80 80 55 60 65 95 * * * * * * * 85 87 86 75 ~ 80 * 95 75 * 95 89 97 97 97 103 103 104 95 95 95 97 97 97 98 110 110 110 108 98 93 98 98 90 90 93 103 103 92 92 97 97 Ref. [27] [33] [34] [35] [36] [37] [38] [39] [39] [39] [29] [40] [41] [42] [ 16] [43] [19] [ 15] [44] [20] [45] [46] [47] [48] [48] [21 ] [49] [46] [50] [50] [46] [51] [52] [53] [53] [54] [55] [46] [56] [57] [58] [59] [24] [25] [22] [60] [61 ] [62] [63] [64] K.O. Stetter / FEMS Microbiology Reviews 18 (1996) 149-158 153 Table 1 (continued) Order Genus Species Tmax(°C) Ref. Methanococcales Methanococcus Methanopyrales Methanopyrus M. thermolithotrophicus M. jannaschii M. igneus M. kandleri 70 * 86 91 110 [65] [66] [67] [30] • Moderate therrnophiles related to hyperthermophiles. and sphalerite, forming sulfuric acid and solubilizing heavy metal ions (Table 2). Acidianus similar to Sulfolobus is able to grow by oxidation of S °, sulfides, H 2 and organic matter. In addition, it is able to grow anaerobically by reduction of elemental sulfur with H 2 as electron donor [18]. Members of Acidianus are able to grow in the presence of up to 4% salt and have been isolated from a marine hydrotherreal system [19]. Stygiolobus is a strictly anaerobic extreme acidophile, growing obligately chemolithoautotrophically by reduction of S o with H 2 [20]. 5.2. Neutrophiles and moderate acidophiles Communities of neutrophilic and slightly acidophilic hyperthermophiles are found in terrestrial solfataric fields, submarine hydrothermal systems and deep oil reservoirs [8]. Most of them are strict anaerobes. Terrestrial solfataric fields contain members of the genera Thermoproteus, Pyrobaculum, Thermofilum, Desulfurococcus and Methanothermus (Tables 2 and 3). Cells of members of Thermoproteus, Pyrobaculum and Thermofilum are almost rectangular rods. During the exponential growth phase, spheres are visible at the ends ('golf clubs'). Cells of Thermofilum are only about 0.17 to 0.35 /xm in diameter, while those of Pyrobaculum and Thermoproteus are about 0.50 /zm. Thermoproteus neu- trophilus, Thermoproteus tenax and Pyrobaculum islandicum are able to grow chemolithoautotrophically by anaerobic reduction of S O by H 2 (Table 2). As an exception, Pyrobaculum aerophilum is a marine organism able to grow anaerobically by reduction of nitrate by H 2 and on H 2 and 02 under microaerobic conditions [21]. Strains of Pyrobaculure organotrophum, Thermoproteus uzoniensis and Thermofilum are obligate heterotrophs growing on organic substrates by sulfur respiration. Thermoproteus tenax and Pyrobaculum islandicum are facultative heterotrophic sulfur respirers. Members of Desulfurococcus, Staphylothermus and Thermodiscus are coccoid and disk-shaped strictly heterotrophic sulfur respirers. Members of Thermococcus and Pyrococcus gain energy by fermentation of peptides, amino acids and sugars, forming fatty acids, CO 2 and H 2. Hydrogen is inhibitory to growth and can be removed by gassing with N 2 [22]. Alternatively, hydrogen inhibition can be prevented by the addition of S °, where upon H2S is formed instead of H 2. Pyrococcusfuriosus is able to ferment pyruvate, forming acetate, H 2 and CO 2 [23]. Pyrococcus and Thermococcus species were found in oil reservoirs, too [8]. Thermococcus alcaliphilus (Fig. 2b) is able to grow up to pH 10.5, while Thermococcus chitonophagus represents a novel hyperthermophilic chitin degrader [24,25]. Many terrestrial and subma- Table 2 Energy-yielding reactions in chemolithoautotrophic hyperthermophiles Energy-yielding reaction Genera 4H 2 + CO 2 ~ CH 4 4- 2 H 2 0 H 2 + S ° ~ H2S 4H 2 + H2SO 4 ~ H2S + 4 H z O H 2 + H N O 3 ~ HNO 2 + H 2 0 H 2 + 1/202 ~ H20 2S ° + 302 + 2 H 2 0 ~ 2 H 2 S O 4 (FeS 2 + 702 + 2 H 2 0 ~ 2FeSO 4 + 2 H 2 S O 4) Methanopyrus, Methanothermus, Methanococcus Pyrodictium, Thermoproteus, Pyrobaculum, Acidianus, So'giolobus Archaeoglobus Pyrobaculum, Aquifex Pyrobaculum, Aquifex, Sulfolobus, Acidianus, Metallosphaera Aqulfex, Sulfolobus, Acidianus, Metallosphaera 154 K.O. Stetter/ FEMS Microbiology Ret,iews 18 (1996) 149-158 rine hydrothermal fields contain members of the bacterial genus Thermotoga which are rod-shaped cells surrounded by a characteristic sheath-like structure ('Toga') overballooning at the ends (Table 3). The Toga contains porins and is most likely homologous to the outer membrane of gram-negative bacteria [26]. Thermotoga ferments various carbohydrates like glucose, starch and xylanes, forming acetate, L-lactate, H 2 and CO 2 as end products [27]. The rod-shaped (Fig. 2a) chemolithoautotrophic Aquifex pyrophilus represents the deepest phylogenetic branch within the bacterial domain [28] (Fig. 1). Aquifex gains energy by oxidation of hydrogen or sulfur under microaerobic conditions [29]. Alternatively, Aquifex is able to use nitrate as electron acceptor (Table 2). Archaeal coccoid sulfate reducers are members of Archaeoglobus. Some species occur within hot oil reservoirs and may be responsible for Fig. 2. Electron micrographs of hyperthermophilic microorganisms(bar, 0.5 /xm) Preparation: a-c: freeze etching; d: scanning electron micrograph a Aquifex pyrophilus b Thermococcus alcaliphilus c Metallo6phaera sedula d Pyrodictium abyssi. K.O. Stetter / FEMS Microbiology Reviews 18 (1996) 149-158 155 members of Archaea, Methanopyrus species contain 2,3-di-O-geranylgeranyl-sn-glycerol as the dominating membrane lipid [31]. Further marine methanogenic hyperthermophiles are Methanococcus igneus and Methanococcus jannaschii (Table 1). H2S production, there ('reservoir souring') [8]. In the laboratory, growth is stimulated by crude oil. Archaeoglobus fulgidus and Archaeoglobus lithotrophicus are able to gain energy by reduction of SO 4- by H 2. Archaeoglobus profundus is an obligate heterotroph. Archaeoglobus fulgidus possesses several coenzymes which had been assumed to be unique for methanogens. The organisms with the highest growth temperature are members of Pyrodictium and Methanopyrus, growing at ! 10°C. Cells of Pyrodictium are disk-shaped and are connected by a network of ultrathin hollow tubules (Fig. 2d). Strains of Pyrodictium are usually chemolithoantotrophs gaining energy by reduction of S O by H~. Pyrodictium abyssi is a heterotroph growing by peptide fermentation. Methanopyrus kandleri is a rod-shaped methanogen with a pseudomurein cell wall covered by an S-layer. Representing the deepest and shortest phylogenetic branch within the Archaea (Fig. 1), members of Methanopyrus are strict chemolithoautotrophs that grow optimally at 100°C with a doubling time of 50 min [5,30]. In contrast to all other 6. Conclusions and perspectives There is an unanticipated diversity of species of hyperthermophiles within high temperature environments. It is evident by 16S rRNA diversity and by unusual physiologic properties. In their biotopes, hyperthermophiles are either primary producers or consumers of organic matter. Energy conservation in primary producers occurs by anaerobic and aerobic types of respiration, in which molecular hydrogen is mainly used as an electron donor. Consumers gain energy either by anaerobic or aerobic types of respiration or by fermentation. Direct microscopic inspection of hot biotopes indicates there are many other morphotypes yet to be Table 3 Growth conditions and morphological and biochemical features of hyperthermophiles Species Growth conditions Temperature (°C) Sulfolobus acidocaldarius Metallosphaera sedula Acidianus infernus St3'giolobus azoricus Thermoproteus tenazc Pvrobaculum islandicum Pyrobaculum aernphilum Thermofilum pendens Desulfurococcus mobilis Staphylothermus marinus Pyrodictium occultum Thermodiscus maritimus Thermococcus celer Thermococcus alcaliphilus Pyrococcus.furiosus Archaeoglobusfulgidus Methanothermus sociabilis Methanopyrus kandleri Methanococcus igneus Thermotoga maritima Aquifex pyrophilus pH Minimum Optimum Maximum 60 50 60 57 70 74 75 70 70 65 82 75 75 56 70 60 65 84 45 55 67 75 75 88 80 88 100 100 88 85 92 105 88 87 85 100 83 88 98 88 80 85 80 80 95 89 97 103 104 95 95 98 110 98 93 90 105 95 97 110 91 90 95 marine (m); terrestrial (t). Habitat * DNAmol% G+C Morphology 37 45 31 38 56 46 52 57 51 35 62 49 57 43 38 46 33 60 31 46 40 lobed cocci cocci lobed cocci lobed cocci regular rods regular rods regular rods slender regular rods cocci cocci in aggregates discs with fibres discs cocci cocci cocci irregular cocci rods in clusters rods in chains irregular cocci rods v, ith sheath rods Aerobic (ae) Anaerobic (an) 1-5 ae t 1-4.5 ae t ae/an t an t an t an t 1.5-5 1-5.5 2.5-6 5-7 5.8--9 4-6.5 4.5-7 4.5-8.5 5-7 5-7 4-7 6.5-10.5 5-9 5.5-7.5 5.5-7.5 5.5 -7 5-7.5 5.5-9 5.4-7.5 ae/an m an t an t an m an an an an an an an an an an ae m m m m in m t m in m m 156 K. O. Stetter / FEMS Microbiology Reciews 18 (1996) 149-158 cultivated. Moreover, extraction and amplification of DNA corresponding to 16S rRNA from a hot spring indicates the presence of many unknown members of Archaea [32]. Since cultivation is the prerequisite for understanding how hyperthermophiles live and which roles they play within high temperature ecosystems, learning how to cultivate them is a critical challenge in the future. [11] [12] [13] Acknowledgements [14] I wish to thank Gertraud Rieger for the preparation of the electron micrographs. The work presented from my laboratory was supported by grants of the Deutsche Forschungsgemeinschaft, the Bundesministerium f'tir Forschung und Technologic and the Fonds der Chemischen Industrie. [15] [16] [17] References [18] [1] Brock, T.D. (1986) Thermophiles: General, Molecular and Applied Microbiology. John Wiley & Sons, New York. [2] Stetter, K.O. and Zillig, W. (1985) Thermoplasma and the thermophilic sulfur-dependent archaebacteria. In: The Bacteria (Wolfe, R.S. and Woese, C.R., Eds.), Vol. 8, pp. 85-170. Academic Press, New York. [3] Stetter, K.O. (1992) Life at the upper temperature border. In: Frontiers of Life (Tran Thanh Van, J., Tran Than Van, K., Mounolou, J.C., Schneider. J. and McKay, C., Eds.), pp. 195-219. Gifsur-Yvette: Editions Fronti~res. [4] Stetter, K.O. (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300, 258-260. [5l Huber, R., Kurr, M., Jannasch, H.W. and Stetter, K.O. (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature 342, 833-834. [6] Marsh, R.M. and Norris, P.R. (1985) The isolation of some thermophilic, autotrophic iron- and sulfur-oxidizing bacteria. FEMS Microbiol. Lett. 17, 311-315. [7] Fuchs, T.M. (1994) Physiologische und molekularbiologische Untersuchungen an neu isolierten thermoacidophilen Archaeen. Diplomarbeit, Universi~t Regensburg, Germany. [8] Stetter, K.O., Huber, R., Bl~Schl, E., Kurr, M., Eden, R.D., Fiedler, M., Cash, H. and Vance, I. (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 300, 743-745. [9] Huber, R., Stoffers, P., Cheminee, J.L., Richnow, H.H. and Stetter, K.O. (1990) Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature 345, 179-182. [10] Huber, R., Burggraf, S., Mayer, T., Barns, S.M., Rognagel, [19] [20] [21] [22] [23] [24] [25] P. and Stetter, K.O. (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376, 57-58, Woese, C.R. and Fox, G.E. (1977) Phylogenic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088-5090. Woese, C.R., Kandler, O. and Wheelis, M.L. (1990) Towards a natural system of organisms. Proposal for the domains Archaea, Bacteria and Eucao'a. Proc. Natl. Acad. Sci. USA 87, 4576-4579. Stetter, K.O. (1994) The lesson of Archaebacteria. In: Nobel symposium (Bengtson, S., Ed.), No. 84, pp. 143-151, Columbia University Press, New York. Brock, T.D. (1978) Therrnophilic Microorganisms and Life at High Temperatures. Springer-Verlag, New York. Brierley, C.L. and Brierley, J.A. (1973) A chemolithoautotrophic and thermophilic microorganism isolated from an acidic hot spring. Can. J. Microbiol. 19, 193-198. Huber, G. and Stetter, K.O. (1991) Sulfolobus metallieus, sp. nov., a novel strictly chemolithoantotrophic thermophilic archaeal species of metal mobilizers. System. Appl. Microbiol. 14, 372-378. Brierley, C.L. and Brierley, J.A. (1982) Anaerobic reduction of Sulfolobus species. Zentralblatt f. Bakteriologie und Hygiene, I. Abteilung Originale C 3, 289-294. Segerer, A., Stetter, K.O. and Klink, F. (1985) Two contrary modes of chemolithoautotrophy in the same archaebacterium. Nature 313, 787-789. Segerer, A., Neuner, A., Kristjansson, J.K. and Stetter, K.O. (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. J. Bacteriol. 36, 559-564. Segerer, A.H., Trincone, A., Gahrtz, M. and Stetter, K.O. (1991) Stygiolobus azoricus gen. and sp. nov., represents a novel genus of anaerobic, extremely thermoacidophilic archaea of the order Sulfolobales. J. Bacteriol. 41,495-501. V~ilkl, P., Huber, R., Drobner, E., Rachel, R., Burggraf, S., Trincone, A. and Stetter, K.O. (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl. Environ. Microbiol. 59, 29182926 Fiala, G. and Stetter, K.O. (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol. 145, 56-61. Schafer, T. and SchiSnheit, P. (1992) Maltose fermentation to acetate, CO z and H 2 in the anaerobic hyperthermophilic archaeon Pyrococcusfuriosus: evidence for the operation of a novel sugar fermentation pathway. Arch. Microbiol. 158, 188-202. Keller, M., Braun, F.-J., Dirmeier, R., Hafenbradl, D., Burggraf, S., Rachel, R. and Stetter, K.O. (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch. Microbiol. 164, 390-395. I-Iuber, R., St~Shr, J., Hohenhaus, S., Rachel, R., Burggraf, K.O. Stetter / FEMS Microbiology Ret;iews 18 (1996) 149-158 [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] Jannasch, H.W. and Stetter, K.O. (1995) Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Arch. Microbiol. 164, 255-264. Rachel, R., Engel, A.M. Huber, R., Stetter, K.O. and Baumeister, W. (1990) A porin-type protein is the main constituent of the cell envelope of the ancestral eubacterium Thermotoga maritima. FEBS Lett. 262, 64-68. Huber, R., Langworthy, T.A., K~Snig,H., Thomm, M., Woese, C.R., Sleytr., U.B. and Stetter, K.O. (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144, 324-333. Burggraf, S., Olsen, G.J., Stetter, K.O. and Woese, C.R. (1992) A phylogenetic analysis of Aquifex pyrophilus. System. Appl. Microbiol. 15, 352-356. Huber, R., Wilharm, T., Huber, D., Trincone, A., Burggraf, S., Ktinig, H., Rachel, R., Rockinger, I., Fricke, H. and Stetter, K.O. (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. System. Appl. Microbiol. 15, 340351. Kurr, M., Huber, R., KSnig, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjansson, J.K. and Stetter, K.O. (1991) Methanopyrus kandleri gen. and sp. nov., represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol. 156, 239-247. Hafenbradl, D., Keller, M. Thiericke, R. and Stetter, K.O. (1993) A novel unsaturated archaeal ether core lipid from the hyperthermophile Methanopyrus kandleri. System. Appl Microbiol. 16, 165-169. Barns, S.M., Fundyga, R.E., Jeffries, M.W. and Pace, N.R. (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91, 1609-1613. Jannasch, H.W., Huber, R., Belkin, S. and Stetter, K.O. (1988) Therrnotoga neapolitana, sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch. Microbiol. 150, 103-104. Windberger, E., Huber, R., Trincone, A., Fricke, H. and Stetter, K.O. (1989) Therrnotoga thermarum sp. nov. and Thermotoga nectpolitana occuring in African continental solfataric springs. Arch. Microbiol. 151, 506-512. Ravot, G., Magot, M., Fardeau, M.-L., Patel, B.K.C., Prensier, G., Egan, A., Garcia, J.-L. and Ollivier, B. (1995) Thermotoga elfii sp. nov., a novel thermophile bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45(2), 308-314. Huber, R., Woese, C.R, Langworthy, T.A., Fricke, H. and Stetter, K.O. (1989) Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the 'Thermogales'. System. Appl. Microbiol. 12, 32-37. Patel, B.K.C., Morgan, H.W. and Daniel, R.M. (1985) FerL,idobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141, 63-69. 157 [38] Huber, R., Woese, C.R., Langworthy, T.A., Kristjansson, J.K. and Stetter, K.O. (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the 'Thermotogales'. Arch. Microbiol. 154, 105-111. [39] Davey, M.E., Wood, W.A., Key, R., Nakamura, K. and Stahl, D. (1993) Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the 'Thermotogales'. System. Appl. Microbiol. 16, 191-20(I. [40] Brock, T.D., Brock, K.M,, Belly, R.T. and Weiss, R.L. (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Microbiol. 84, 54-68. [41] Zillig, W., Stetter, K.O., Wunderl, S., Schulz, W., Priess, H. and Scholz, I. (1980) The Sulfolobus-Caldariella group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch. Microbiol. 125, 259-269. [42] Grogan, D., Palm, P. and Zillig, W. (1990) Isolate B 12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Solfolobus shibatae, sp. nov. Arch. Microbiol. 154, 594-599. [43] Huber, G., Spinnler, C., Gambacorta, A. and Stetter, K.O. (1989) Metallo.~phaera sedula gen. and sp. nov., represents a new genus of aerobic, metal-mobilizing, thennoacidophilic archeabacteria. System. Appl. Microbiol. 12, 38-47. [44] Zillig, W., Yeates, S., Holz, I., BiSck, A., Gropp, F. and Simon, G. (1987) Desulfurolobus ambiL'alens, gen. nov. sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. System. Appl. Microbiol. 8, 197-203. [45] Zillig, W., Stetter, K.O., Sch~ifer, W., Janecovic, D., Wunderl, S., Holz, I. and Palm, P. (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zentralblatt ftir Bakteriologie und Hygiene, I. Abteilung Originale C2, 205227. [46] Stetter, K.O. (1986) Diversity of extremely thermophilic archaebacteria. In: Thermophiles: General, Molecular and Applied Microbiology (Brock, T.D., Ed.), pp. 40-74. John Wiley & Sons, New York. [47] Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Kostrikina, N.A., Chernych, N.A. and Zavarzin, G.A. (1990) Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs, Arch. Microbiol. 154, 556-559. [48] Huber, R., Kristjansson, J.K. and Stetter, K.O. (1987) Pyrobaculum gen. nov. a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch. Microbiol. 149, 95-101. [49] Zillig, W., Gierl, A., Schreiber, G., Wunderl, S., Janecovic, D., Stetter, K.O. and Klenk, H.P. (1983) The archaebacterium Thermofilum pendens represents, a novel genus of thermophilic, anaerobic sulfur-respiring Thermoproteales. System. Appl. Microbiol. 4, 79-87. [50] Zillig, W., Stetter, K.O., Prangishvilli, C., Sch~ifer, W., Wunderl, S., Janecovic, D., Holz, I. and Palm, P. (1982) Desulfurococcaceae, the second family of the extremely ther- K.O. Stetter / FEMS Microbiology Reviews 18 (1996) 149-158 158 rnophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralblatt ftir Bakteriologie mad Hygiene, I. Abteilung Originale C 3, 304-317. [51] Boach-O~molovskaya, E.A., ~ e v , A.I., Miroshnichenko, M.L., Svetlichnaya, T.P. and Alexeyev, V.A. (1985) Characteristics of Desulfurococcus amylolyticus n. sp., a new extreme thermophilic archaebactr,xium from hot volcanic vents of Karnchatlo and Ktmashir. Microbiologyia 57, 78-85 (in Russian) [52] Fiala, G., Slitter, K.O., .lannasch, H.W., Langworthy, T.A. and Madon, J. (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. System. Appl. Microbiol. 8, 106-113. [53] Stetter, K.O., K~inig, H. and Stackebrandt, E. (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at I05°C. System. Appl. Microbiol. 4, 535-551. [54] Pley, U., Schipka, J., Gambacorta, A. Jannasch, J.W., Fricke, H., Rachel, R. and Stetter, K.O. (1991) Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. System. Appl. Microbiol. 14, 245-253. [55] Zillig, W., Holz, I. Janecovic, D. Klenk, H.P., Imsel, E., Trent J., Wunderl, S., Forjatz, V.H., Coutinho, R. and Ferreira, T. (1990) Hyperthermus bu~licus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J. Bacteriol. 172, 3959-3965. [56] Zillig, W., Holz, I., Janecovic, D., Sch~ifer, W. and Reiter, W.D. (1983)The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. System. Appl. Microbiol. 4, 88-94. [57] Neuner, A., Jannasch, H.W., Belkin, S. and Stetter, K.O. (1990) Thermococcus litoralis sp. nov. a new species of extremely thermophilic marine archaebacteria. Arch. Microbiol. 153,205-207. [58] Miroshnichenko, M.L., Bonch-Osmoslovskaya, E.A., Neuner, A., Kostrikina, N.A., Chernych, N.A. and Alexeyev, V.A. (1989) Thermococcus stetteri sp. nov. a new extremely thermophilic marine sulfur-metabolizing archaebacterium. System. Appl. Microbiol. 12, 257-262. [59] Kobayashi, T., Kwak, Y.S., Akiba, T., Kudo, T. and Horikoshi, K. (1994) Thermococcus profundus sp. nov.. a new hyperthermophilic archaeon isolated from deep-sea hydrothermal vent. System. Appl. Microbiol. 17, 232-236. [60] Zillig, W., Holz, I., Klenk, H.P., Trent, J., Wunderl, S., Janekovic, D., Imsel, E. and Haas, B. (1987) Pvrococctts woesei sp. nov., an ultra-thermophilic marine archaebacterium, represents a novel order, Thermococcales. System. Appl. Microbiol. 9, 62-70. [61] Stetter, K.O. (1988) Archaeglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. System. Appl. Microbiol. 10, 172, 173. [62] Burggraf, S., Jannasch, H.W., Nicolaus, B. and Stetter, K.O. (1990) Archaeglobus profundus sp. nov. represents a new species within the sulfate-reducing archaebacteria. System. Appl. Microbiol. 13, 24-28. [63] Stetter, K.O., Thomm, M., Winter, J., Wildgruber, G., Huber, H., Zillig, WI, Janecovic, D., Kt~nig, H. Palm, P. and Wunderl, S. (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zentralblatt ftir Bakteriologie and Hygiene, I. Abteilung Originale C2, 166-178. [64] Lauerer, G., Kristjansson, J.K., Langworthy, T.A., KSnig, H. and Stetter, K.O. (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. System. Appl. Microbiol. 8, 100-105. [65] Huber, H., Thomm, M., Ktinig, H., Thies, G. and Stetter, K.O. (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol. 132, 47-50. [66] Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R. and Wolfe, R.S. (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136, 254-261. [67] Burggraf, S., Fricke, H., Neuner, A., Kristjansson, J., Rouvier, P., Mandelco, L., Woese, C.R. and Stetter, K.O. (1990) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. System. Appl. Microbiol. 13, 263-269.
© Copyright 2026 Paperzz