SC105- Calculus and Complex Variables Home Work 7 Week 8: October 12, 2015 Tutorial Discussion Week: October 12, 2015 Tutors: Krishna Gopal Benerjee and Dixita Limbachiya (1) Find the complex solution to each of the following equations: (a). ew = i S:: For z = i , |z| = 1 and Arg(z) = π2 + 2nπ ⇒ w = log(i) = loge (1) + i( π2 + 2nπ) i , n ∈ Z. ⇒ w = (4n+1)π 2 7π ⇒ w = . . . , − 2 i, − 3π i, π2 i, 5π i, . . . 2 2 w ⇒ for these w, e = i (b). ew = i + 1 S:: √ For z = 1 + i , |z| = 2 and Arg(z) = π4 + 2nπ √ ⇒ w = log(1 + i) = loge ( 2) + i( π4 + 2nπ) √ but loge 2 = 12 loge 2 ⇒ w = 12 loge 2 + (8n+1)π i, 4 n ∈ Z. (c). ew = −2 s:: For z = −2 , |z| = 2 and Arg(z) = π + 2nπ ⇒ w = loge −2 = loge 2 + i(π + 2nπ) n ∈ Z. (2) Compute the principal value of the complex logarithm log(z) for: (a). z = i S:: For z = i , |z| = 1 and Arg(z) = ⇒ log(i) = loge 1 + π2 = π2 i. π 2 1 (b). z = i + 1 S:: √ For z = 1 + i , |z| = 2 and Arg(z) = π4 and so, √ log(1 + i) = loge 2 + π4 i 1 loge 2 + π4 i = 2 ≈ 0.3466 + 0.7854i (c). z = −2 S:: For z = −2 , |z| = 2 and Arg(z) = π ⇒ log(−2) = loge 2 + πi ≈ 0.6931 + 3.1416i (3) Find the image of the annulus 2 ≤ |z| ≤ 4 under the logarithmic mapping w = log(z). S:: The boundry circles |z| = 2 & |z| = 4 maps onto the vertical line segments, u = loge 2 & v = loge 4 , −π < v ≤ π and each circle |z| = r, 2 ≤ r ≤ 4 maps on to the vertical line segment, v = loge r, −π < r ≤ π. Since the real logarithmic function is increasing on its domain, ⇒ v = loge r takes on all values in the inteval, loge 2 ≤ v ≤ loge 4 when 2 ≤ r ≤ 4. ⇒ The image of the annulus 2 ≤ |z| ≤ 4 is the rectangular region, loge 2 ≤ 4 ≤ loge 4, −π < v ≤ π See the figure-1 given below, 2 (4) Find the values : (a). (i)2i s:: Note since, log(i) = (4n + 1)π i 2 ∴ if z = i and c = 2i πi (i)2i = e2ilog(i) = e2i[(4n+1) 2 ] = e−(4n+1)π , where n ∈ Z (b). (i + 1)i s:: 1 (8n + 1)π ∵ log(1 + i) = loge 2 + i 2 4 ⇒ (1 + i)i = exp(i loge (1 + i)) = exp(i[loge 2/2 + (8n + 1)πi/4]) i ⇒ (1 + i) = exp(− (8n+1)π + i log2e 2 ) n∈Z 4 (5) Find the principal value of each complex power: 3 i (a). (−3) π S:: For z = −3 , |z| = 3 , & Arg(−3) = π and so log(−3) = loge 3 + iπ ⇒ (−3)i/π = exp( πi · loge (−3)) = exp( πi (loge 3 + iπ)) = exp(−1 + i(loge 3)/π) −1 cos( logπe 3 ) + i sin( logπe 3 ) = e ⇒ (−3)i/π ≈ 0.3456 + 0.1260i (b). (2i)1−i For z = 2i, |z| = 2Arg(z) = π 2 iπ 2 ⇒ log(2i) = loge 2 + ⇒ (2i)1−i = e(1−i) log(2i) π e(1−i)(loge 2+i 2 ) = π π eloge 2+ 2 −i(loge 2− 2 ) ⇒ (2i)1−i = π ⇒ (2i)1−i = eloge 2+ 2 [cos(logc 2 − π2 ) − i sin(loge 2 − π2 )] ∼ = 6.1474 + 7.400i 4 √ (6) Find all values of sin−1 ( 5). ∵ sin−1 (z) ⇒ sin−1 √ 5 = √ √ 1 = −i loge [i 5 + (1 − ( 5)2 ) 2 ] = √ 1 −i loge [i 5 + (−4) 2 = √ −i loge [i 5 ± 2i] = √ −i loge [( 5 ± 2)i] √ but[( 5 ± 2)i] = √ arg[( 5 ± 2)i] = √ ⇒ log[( 5 ± 2)i] = ⇒ sin−1 √ 5 √ ∵ loge ( 5 ± 2) 1 −i loge [iz + (1 − z 2 ) 2 ] = = √ 5±2 π 2 loge √ 5 ± 2 + i( π2 + 2nπ) (4n+1)π 2 √ ± i loge ( 5 + 2) √ ± loge ( 5 + 2) 5 n∈Z
© Copyright 2026 Paperzz